Erweiterte Suche

Oberseminar zur Mengenlehre
SS 2016

Dienstags, 16-18 Uhr im SR1D

Vorträge

  • April 12: Farmer Schlutzenberg. Criteria for mice to satisfy $V = \operatorname{HOD}_{x}$, part I.
    Abstract: Let $\mathcal M = (M; \in, \mathcal E, \ldots)$ be a mouse such that $(M; \in) \models \operatorname{ZF}^{-} + \ \omega_{1} \text{ exists}$. Then
    (1) $(M; \in) \models V = \operatorname{HOD}_{x}$, where $x = \mathcal E \restriction \omega_{1}^{\mathcal M}$.
    (2) If $\mathcal M$ is tame, then $(M; \in) \models V = \operatorname{HOD}_{x}$ for some real $x \in M$.
  • April 19: Farmer Schlutzenberg. Criteria for mice to satisfy $V = \operatorname{HOD}_{x}$, part II.
  • April 26: Farmer Schlutzenberg. Criteria for mice to satisfy $V = \operatorname{HOD}_{x}$, part III.
  • May 3: cancelled
  • May 10: Farmer Schlutzenberg. Criteria for mice to satisfy $V = \operatorname{HOD}_{x}$, part IV.
  • May 17: cancelled (Pentecost break)
  • May 24: Ralf Schindler. Varsovian models, part I
  • May 31: Ralf Schindler. The long extender algebra.
  • June 7: Mariam Beriashvili (Tbilisi). Some set theoretical aspects of measurability.
    Abstract: We will discuss the measurability of some ill-behaved subsets of Polish spaces (e.g. Vitali sets, Berstein sets, Hamel bases, ...) with respect to certain classes of nonzero diffused, $\sigma$-finite measures.
  • June 14: cancelled (Young Set Theory Copenhagen).
  • June 21: Fabiana Castiblanco. Preservation of sharps and arboreal forcings, part I
    Abstract: We will prove that certain proper forcing notions like Sacks, Silver, Mathias, Miller and Laver forcing preserve sharps for reals. Furthermore, these forcing notions preserve also the existence of $M_{n}^{\#}(x)$ for every $n < \omega$, $x \in \Bbb{R}$.
  • June 28: Fabiana Castiblanco. Preservation of sharps and arboreal forcings, part II
  • July 4: Farmer Schlutzenberg. $*$-translations, part I
  • July 5: Farmer Schlutzenberg. $*$-translations, part II
  • July 11: Yizheng Zhu. On higher Friedman's conjecture
    Abstract: Every uncountable $\Delta^1_{2n+1}$ set of reals contains a member of every $\Delta^1_{2n+1}$ degree above $M_{2n-1}^\#$. $Q_{2n+1}$ is the largest non-trivial $\Pi^1_{2n+1}$ set closed downwards under $\Delta^1_{2n+1}$-reducibility. This is joint work with Liang Yu.
  • July 12: Farmer Schlutzenber. $*$-translations, part III
Impressum | © 2007 FB10 WWU Münster
Universität Münster
Schlossplatz 2 - 48149 Münster
Tel.: +49 (251) 83-0 - Fax: +49 (251) 83-3 20 90
E-Mail: