Algorithmische
Graphentheorie

12.Vorlesung
12.05.2015
Anmerkung

Falls nicht alle Gewichte unterschiedlich sind, wähle die lexicographische Ordnung der Kanten als Tie-breaker.

\[E = (a, b) < E' = (a', b') \implies \]

- \[w(e) < w(e') \]

oder \[w(e) = w(e') \] und \[(a, b) <_{\text{lex}} (a', b') \]

Ablauf MST-Verifikation:

1.) Konsumiere \(T_B \) von \(T \)
 - \(\tau \) läuft in \(O(|V|) \) durch, zu jeder Zeit habe ich einen Baum bei Ausführung Borůvka
 - \(\Rightarrow \) Aufwand = \(T(n) \leq T(n/2) + O(n) \)
 - \(T(n) = O(n) \)

2.) Für jede Kante \(e \in \text{typus } E \) teste, ob schwere Kante in \(x \leftrightarrow y \in T_B \) leichter ist (oder gleich) \(w(e) \)
Finden von schwersten Kanten in Bäumen

Eingabe: Baum T_i, Anfragen $(v_1,v_1) \ (v_2,v_2) \ ... \ (v_m,v_m)$, wobei v_i,v_i Blätter in T_i

Frage: Gib für jedes $1 \leq i \leq m$ die schwere Kante auf $v_i \rightarrow v_i$ Pfad aus

Anwendung: Dies kann für den 2) Schritt in Verifikationsalg. benutzt werden

Notation: Tiefe eines Knotens = Abstand zur Wurzel

$\textbf{LCA}(u,v) = \text{Tiefe gleichkamerter Vorfahr von } u \text{ und } v$

$\textbf{LA}(u,i) = \text{Vorfahr von } u \text{ auf Ebene } i$

$p(u) = \text{Vater von } u$
- Originalfragen: \((u_i, v_i)\)

 kann übersetzt werden in

 \[
 (u_i, \text{LCA}(u_i, v_i)) \quad + \quad 1 \times \text{Vergleich}
 \]

 \[
 8 \times (v_i, \text{LCA}(u_i, v_i))
 \]

 von nun an nur solche Anfragen!

- für jedes Blatt \(u\) muss ich also eine Reihe von Anfragen
 \((u, v_1), (u, v_2), (u, v_3), \ldots, (u, v_k)\)
 beantragen

- ObdA. \(d[u, v_1] < d[u, v_2] < d[u, v_3] \ldots < d[u, v_k]\)

- Wir speichern als \(Q(m) = \langle d[u, v_1], d[u, v_2], \ldots, d[u, v_k] \rangle\)

- Für jedes \(Q(v)\) möchten wir eine Sequenz \(A(v) = \langle a_1, a_2, \ldots, a_k \rangle\) berechnen mit:

 \[\text{LA}(u, a_i)\text{ ist der untere Knoten}
 \]

 der Schwestern Kante auf

 Pfad \(u \to \text{LA}(u, d_i)\)
Beobachtung: $A(\cdot)$ ist schwach steigend.

Zur Arbeit mit den Sequenzen $A(\cdot)$ und $Q(\cdot)$ benötige ich folgende Operationen:

- $\text{unite}(A, B)$, vereinigt Sequenzen A, B (sortiert)
 zu einer sortierten Sequenz ohne Duplicates
 z.B. $\text{unite}((1,2,3), (2,4,7)) = (1, 2, 3, 4)$

- $\text{remove}(A, a)$, entfernt a aus Sequenz A
 z.B. $\text{remove}((1,2,3,4), 2) = (1,3,4)$

- $\text{add}(A, a)$, fügt a zu A hinzu
 Ergebnis bleibt sortiert, ohne Duplicates
 z.B. $\text{add}((1,3,4), 6) = (1,3,4,6)$
\text{extract}(A, i) \) liefert das \(i \)-te Element von \(A \)
\[\text{2.} \text{B. } \text{extract}(\langle 1,3,4,6 \rangle, 2) = 3 \]

\(\text{replace-suffix}(A, a, j) \) liefert Sequenz \(A' \), wobei die \(a \)-ten Einträge \((a; b) \) durch \(a \) ersetzt werden
\[\text{2.} \text{B. } \text{replace-suffix}(\langle 1,3,4,6 \rangle, 3, 8) = \langle 1,3,8,8 \rangle \]

\(\text{Subseq}(A, B_1, B_2) \): finde die Positionen der Einträge aus \(B_1 \) die auch in \(B_2 \) auftauchen
\rightarrow übernehme diese Stellen von \(A \)
\[\text{2.} \text{B. } \text{Subseq}(\langle 1,3,8,8 \rangle, \langle 2,4,6,16 \rangle, \langle 2,3,6 \rangle) = \langle 1,8,8 \rangle \]
Algorithmus

1. \(r \leftarrow \text{Wurzel von } T \)
 \(A(v,v) \text{ minier. Knoten} : Q(v) = \langle \rangle \)
 for alle \(v \in V \) (bottom-up)
 \[L \quad Q(p(v)) = \text{unite}(Q(p(v)), \text{remove}(Q(v), d[v]-1)) \]

2. \(A(r) = \langle \rangle \)
 foreach \(v \neq r \) (top-down)
 \[A(v) = \text{subseq}(A(p(v)), Q(p(v)), Q(v)) \]
 \[j \leftarrow \text{binary-search}(v) \]
 \[\text{replace-suffix}(A(v), d[v], j) \]
 if \(d[v]-1 \in Q(v) \) then \(A(v) = \text{append}(A(v), d[v]) \)

RETURN A

Teil 1 Initialisierung, d.h. Sehe alle Sequenzen \(Q(\cdot) \)

Teil 2 Berechne Top-Down die Sequenzen \(A(\cdot) \)

wobei

\(\text{binary-search}(v) \) liefert die Index \(j \)

für aktuelles \(Q(\cdot) \), sodass

\[w(m_{j-1}, P(m_{j-1})) = w(v, p(v)) = w(m_j, P(m_j)) \]

für \(w(m_0, \ldots) = +\infty \) \& \(w(m_{k+1}, \ldots) = -\infty \)
Erklärung

Teil (a)

Die "interessanten" Knoten von Knoten u sind die interessanten Knoten der Kinder - Kinderer Bsp

Bestimme Ringen Q bottom-up

Teil (b)

1.) Übernehmen die Stellen aus \(A(p(u)) \), die für \(A(v) \) relevant sind
 (d.h. die zu \(Q(v) \) zugehören sind)

2.B. \(Q(p(u)) = \{0, 2, 3, 5\} \)

\(Q(v) = \{0, 2, 6\} \)

\(A(p(u)) = \{2, 4, 4, 6\} \)

\[\Rightarrow \]

relevant: \(\langle 2, 4 \rangle \)

Für \(A(v) \)

Aber bisher ist Kante \(\langle u, p(v) \rangle \)
noch nicht berücksichtigt worden.
- die "neue" Kante \((u, p(u))\) kann die schwersten Kanten, d.h. \(A(v)\) verändern.

\[\text{Bsp}\]

\[\text{D.h. schwerste Kanten waren vorher von Gewicht } \underline{4,4,2} \text{ jetzt } \underline{4,4,3,3}\]

\[\text{sortiert}\]

\[\text{Also: finde Position, ab welcher Gewicht der neuen Kante größer als das alle Max. Gewicht ist}\]

\[\text{(- Binäre Suche da } \langle w(u), w(v) \rangle \text{ relevant)}\]

\[\text{Ab dieser Stelle ist das neue Maximalgewicht durch die neue Kante } (u, p(u)) \text{ gegeben!}\]

\[\text{- evtl. füge neue Anfrage ein wenn } |\partial^+(p(u))| \geq |\partial(v)|\]