Errata of the book

“Set theory. Exploring Independence and Truth”

by Ralf Schindler

p.2 l.-6: delete the first “u” in “analogous.”

p.5, line following the statement of Corollary 1.10: should read “Proof of Theorem 1.9,” not “Proof of Theorem 1.8.”

p.5 l.16: delete the last “that.”

p.8 l.-2: delete “[a,b] is dense in [a,b].” This is obvious nonsense. (Thanks to Alexander Paseau!)

p.18 l.4: Suppose that \(b \) does not have a maximum [...].

p.18 l.-7: delete “the.”

p.20 l.10: Shat that [...]

p.23 l.8: insert “is” before “inductive.”

p.27 l.9: replace “the \(R \)–least \(x_0 \)” by “an \(R \)–least \(x_0 \).” (Thanks to Philipp Schlicht!)

p.34 l.1: “my” should be “may.”

p.35 l.3f.: ... for cardinals \(\kappa, \lambda \) with \(\lambda \leq \kappa \).

p.35 l.20: replace \(\pi(\gamma) \) by \(\pi((\gamma, \gamma)) \). Similarly, l.25: replace \(\pi(N_0) \) by \(\pi((N_0, N_0)) \), l.27: replace \(\pi(N_\alpha) \) by \(\pi((N_\alpha, N_\alpha)) \).

p.37 l.16: replace “is” by “in.”

p.38 l.7: replace “Problem” by “Problem.”

p.41 l.-3: replace \(A_{x\eta} \) by \(A_{\eta} \).

p.43 l.1: replace “from” by “form.”

p.43 l.2: replace \(\kappa^+ \) by \(\kappa \).

p.44 l.3: replace \(\gamma_{\alpha'}^S \) by \(\gamma_{\alpha'} \in S \).

p.44 l.-3: this is not the same \(g \) as in l.10 of the same page.

p.45 l.2: delete “in.”

p.45 l.11 and l.15: replace \(\mathcal{P}(\kappa) \) by \([\kappa]^{cf(\kappa)} \); also lines 11, 14, 15, and 16: replace \(Y \subset \kappa \) by \(Y \in [\kappa]^{cf(\kappa)} \).

p.62, Problem 4.4: cf. p.35 l.3f.

p.97 footnote 1: replace “until p. 97” by “until p. 101.”

p.139 l.7 from b.: This should say “Also, if \((2^{\aleph_0})^{L[x]} = \omega_1^{L[x]} < 2^{\aleph_0}\), then by Lemmas 7.19 and 7.20 there is a largest \(\Sigma^1_2(x) \)-set of reals which is smaller than \(2^{\aleph_0} \), namely \(\omega \cap L[x] \).”
p.239 Lemma 11.13: Make \(\forall x \in U' \exists y \in U' x \in y \) part of the hypothesis. Without this additional hypothesis (a) and (c) are false: Take \(U = 4, U' = 4 \cup \{0, 2\} \), and \(\pi = \text{id} \). (Thanks to Toby Meadows!)

p.275 Problem 11.3: Cf. the correction to p.239 Lemma 11.13.