of \(\text{HOD}_\text{σνΩ} \).

Then there is a filter \(G_A \) on \(P \) s.t.
* \(G_A \) is \(\text{HOD}_S \)-generic
* \(\text{HOD}_{σνΩ} = \text{HOD}_S [G_A] \)

Proof. Let \(H = \text{HOD}_S \). Know: \(H = \text{HOD}_{σνΩ} \).

Working in \(\text{HOD}_{σνΩ} \).

Let \(P \) be the Vopěnká algebra for adding a subset of \(σνΩ \) to \(\text{HOD}_S \).

\((P, ≤) \models \forall c \in P (c ∈ \text{OD}_H μ) \).

\(G_A = \{ c ∈ P | A ∈ π(c) \} \)

(1), (2) are then standard facts about Vopěnká algebra. \(\square \)

Define

\(P \) = the set of all pairs \((s, F) \) s.t.

- \(s ∈ T \) and \(F : T → V \)
- \(F(∅) = \mathcal{P}_ω (κ_0) \)
- \(\forall < s_0...s_n > ∈ T : μ_{n+1}(F(< s_0...s_n >)) = 1 \)

Ordering

\(< s_0, F_0 > ≤ < s_1, F_1 > \) iff

- \(s_0 ≥ s_1 \)
- \(F_0 ≤ F_1 \)
- \(∀ c ∈ \text{dom}(s_0) - \text{dom}(s_1) : s_c(c) ∈ F_1(σ_{f(c)}) \)

Lemma (Prikry property) \(P \) has the Prikry property, i.e.

if \(z \) is a countable set of terms \((s_0, F_0) ∈ P \) and \(z \)

is a formula then there is some \(t \) s.t. \((s_0, t) ∈ P \) and

\((s_0, H) \models \forall t \exists t \) for all \(t ∈ z \).
Proof: Exercise: there is a DC-free proof of the lemma.

Now let \(G \) be \(\not\emptyset \)-quency \(V \). Let
\[
S_G = \{ \sigma \in (\mathcal{Q}F) \mid \exists \sigma', \sigma'' \in \sigma \, \text{s.t.} \, \sigma' \leq \sigma'' \} = \langle \sigma, 1 \leq \sigma \rangle
\]
We will use the Prikry property to show:

\[
\text{Lemma } (\forall \xi < \omega) \quad \mathcal{P}(\xi) \cap \text{HOD}^V_{S_G(\xi+1)} = \mathcal{P}(\xi) \cap \text{HOD}^V_{S_G(\xi+1)}
\]

Rem. If lemma holds: then
\[
\text{HOD}^V_{S_G(\xi+1)} = \exists \Gamma \text{ infinitely many Wadding cardinal}
\]
This is because \((\forall \xi < \omega) \, \text{HOD}^V_{S_G(\xi+1)} = \emptyset \) is Wadding.

Proof of the lemma

\(\leq \) Holds because we use \(V \) as a predicate

\(\geq \) If not: There are:

- Formula \(\phi(x_1, x_2, x_3) \),
- \(\exists \sigma \in \mathcal{O} \)
- \(\sigma > \xi \)

\(\sigma \cdot (S_G \cap F) \in G \)

\(\sigma \cdot (S_G \cap F) \in G \)

By Prikry property: there are densely many conditions of the form \((S_G \cap F, H) \) that decide the statement

\[
(\forall \xi) (S_G(\xi+1) \in \text{HOD}^V_{S_G(\xi+1)})
\]

so \(\sigma \cdot (S_G \cap F) \in G \). This mean:

\[
(\forall \xi) (S_G(\xi+1) \in \text{HOD}^V_{S_G(\xi+1)})
\]

But then this set is in \(\text{HOD}^V_{S_G(\xi+1)} \) by our above arrangements. Contradiction.
Let \(N = \text{HOD}^{(\mathcal{U}, \mathcal{V})} \), where \(G \) is \(\mathcal{R} \)-generic \((\mathcal{V}, \mathcal{U}) \), and \(s_0 = (\mathcal{V}, \mathcal{U}) \). So \(N \models \mathcal{E} \text{C} \) and \(\omega^N_1 = \sup\theta_i \).

Lemma. \(\mathcal{V} \) is a derived model of \(N \). More precisely:

There is a \(\mathcal{G} \)-generated \((\mathcal{W}, \mathcal{U}) \)-generic \(/ N \) filter \(\mathcal{K} \) s.t.

\(\mathcal{V} = L^V(\text{Ham}^{\mathcal{K}}_K, \mathcal{U}_K) \).

Proof. Let \(N_i = \text{HOD}^{(\mathcal{V}, \mathcal{U})} \), \(\theta_i = \text{HOD}^{(\mathcal{V}, \mathcal{U})} \).

We know:

\(\theta(\theta_i) \cap N_i = \theta(\theta_i) \cap N_i = \theta(\theta_i) \cap N \) for \(j \geq i \).

In \(\mathcal{V} \) there is a filter \(\mathcal{K} \) that is \(\mathcal{G} \)-generated \(/ N \).

\(\mathcal{V} = \mathcal{L}(\text{Ham}^{K}) \). This is because each \(x \in \mathcal{V} \) s.t. \(s_0(x) \) then \(x \) can be absorded by a Vopěnka algebra of size \(\omega_1^N \), namely a Vopěnka algebra for \(N \).

Now to see that \(\mathcal{G}(\mathcal{V}) = \text{Ham}^{K} \). Enough to see \(\mathcal{G}(\mathcal{V}) \subseteq \text{Ham}^{K} \) otherwise we get a sharp for \(\mathcal{V} \) in the generic extension of \(\mathcal{V} \).

Let \(B = \mathcal{G}(\mathcal{V}) \). \(B \) is Suslin co-Suslin.

Markin's theorem \((\mathcal{A}D + \mathcal{D} \mathcal{K}) \) \(B \) is homogeneously Suslin. Then we can code the homogeneity system \(\mathcal{A}D + \mathcal{D} \mathcal{K} \) by the \(\omega_1 \)-adical a countable sequence of ordinala that is bounded below \(\theta \).

(\text{Measures are OD by Kunen.}) So we can get trees \(T_i \) s.t. \(p(r) = B = \mathcal{U}(p(T)) \) and \(T_i \) are OD from that sequence. Now since \(f \) is bounded below \(\theta \), there is \(i \) s.t. \(s_0(i) \geq f \) and \(s_0(i) \cap \Theta \cap \mathcal{N} \).

There is a \(\mathcal{G} \)-generic over \(\mathcal{N}_{i+1} \) s.t. the collapse of \(f \) is in \(\mathcal{N}_{i+1} \). Since the corresponding collapse \(\mathcal{T} \in \mathcal{E} \mathcal{N}_{i+1} \).

We have \(f \in \mathcal{N}_{i} \). So for all \(j \geq i \) \(\mathcal{N}_{i} \cap \mathcal{E} \mathcal{N}_{j} \) can decode \(f \) to recover the trees \(T \) and \(U_i \). So

\(p(CT_{\mathcal{N}} \cap \mathcal{E} \mathcal{N}_{i+1} = B \cap \mathcal{U}(p(T)) \cap \mathcal{N}_{i+1} \).

This shows that \(\mathcal{H}_{\mathcal{V}} \).
Next goal: let \(\varphi \) be a \(\Sigma_1 \)-formula

let \(\psi \) be a \(\Sigma_1 \)-formula and \(\psi \in \varphi(\mathbb{R}) \). WTS: \(\varphi(\mathbb{R}) \) \(\subseteq \varphi(\mathbb{R}) \).

Lemma There is \(A \in \text{Hom}_{\omega_1}^\mathbb{R} \) s.t. \(L(A, \mathbb{R}^A) \models \varphi(\mathbb{R}) \).

Proof Let \(\gamma \) be least s.t. \(L_\gamma(\mathbb{R}(\mathbb{R})) \models \varphi(\mathbb{R}) \) and there is a sequence \(\langle \alpha_i \mid i < \omega_1 \rangle \) s.t. \(\Theta = \sup \Theta_i \) and \(\langle \alpha_i \mid i < \omega_1 \rangle \) is definable in \(L_\gamma(\mathbb{R}(\mathbb{R})) \) from a set of reals and no ordinal parameters. Let \(j: (\mathbb{N}, \epsilon) \to (\mathbb{M}, \in) \) be a stationary tower map induced by a \(R_{\omega_1}^\mathbb{N} \)-generic \(\mathcal{G}/\mathcal{N} \). We have:

1. \(\omega(j) = \omega_1^\mathbb{N} \) and \(j(\omega_1^\mathbb{N}) = \omega_1^\mathbb{M} \)
2. \(L(\mathbb{M}, \epsilon) = \mathbb{R} \)
3. \(j(\text{Hom}_{\omega_1}^\mathbb{N}) \supseteq \mathbb{R}(\mathbb{R}) \)
4. \(j(A) = A^* \) for all \(A \in \text{Hom}_{\omega_1}^\mathbb{N} \)
5. \(\gamma \in \text{wp}(\mathbb{M}, \epsilon) \)

Case 1. Suppose \(j(\text{Hom}_{\omega_1}^\mathbb{N}) \not\supseteq \mathbb{R}(\mathbb{R}) \). So there is some \(A \in j(\text{Hom}_{\omega_1}^\mathbb{N}) \) \(\not\in \mathbb{R}(\mathbb{R}) \). Since \(\mathcal{M}, \epsilon) \models (L_\gamma(A, \mathbb{R}(\mathbb{R})) \models \varphi(\mathbb{R}) \) (because \(\mathcal{M}, \epsilon) \models \varphi(\mathbb{R}) \)) by elementaryness of \(j \) we have \(A \in \text{Hom}_{\omega_1}^\mathbb{N} \) s.t. \(L(A, \mathbb{R}(\mathbb{R})) \models \varphi(\mathbb{R}) \).

Case 2. \(j(\text{Hom}_{\omega_1}^\mathbb{N}) \supseteq \mathbb{R}(\mathbb{R}) \).

We can pick \(\gamma \) s.t. \(\gamma \not\in j(\text{Hom}_{\omega_1}^\mathbb{N}) \). Then \(L_\gamma(\mathbb{R}(\mathbb{R})) \not\models \varphi(j) \).

Hence there is some sequence \(\langle \alpha_i \mid i < \omega_1 \rangle \) s.t. \(\Theta = \sup \Theta_i \). Why? We know such a sequence is definable in some \(B \supseteq \mathbb{R}(\mathbb{R}) \) without ordinals.

Now \(B = C^* \) for some \(C \in \text{NC}_{\varphi}(\varphi) \) where \(\varphi \) is \(\omega_1^\mathbb{R} \)-generic over \(\mathbb{N} \). By replacing \(\varphi \) by \(\varphi(\mathcal{G}) \) if necessary, we can assume \(\mathcal{G} \subseteq \mathbb{N} \) and \(C^* = B \). So \(B = C^* = j(C) \models \varphi(j) \)

hence \(\langle \alpha_i \mid i < \omega_1 \rangle \) \(\models \varphi(j) \). Say \(j(\langle \alpha_i \mid i < \omega_1 \rangle) = \langle \alpha_i \mid i < \omega_1 \rangle \).

From \(\langle \beta_i \mid i < \omega_1 \rangle \) we choose a sequence \(\langle B_i \mid i < \omega_1 \rangle \) cofinal in \(\text{Hom}_{\omega_1}^\mathbb{N} \). This is a contradiction.
as we can code \(\text{Def}(\text{Hom}_{\text{w}_1}) \) by a \(D \in \text{Hom}_{\text{w}_1} \),
\(B_i \in D \) all \(i \). But \(\langle B_i : i \in \text{Ord} \rangle \) is cofinal in \(\text{Hom}_{\text{w}_1} \).

Now since \(L(A, \text{Ord}) \models \text{ZF(Ord)} \) and \(j \rightarrow L(A^j, \text{Ord}) \models \text{ZF(Ord)} \),
here \(A^j \in \text{Ord}^2 \).

So \(M_{\text{Ord}} \models \text{ZF(Ord)} \).

CASE 3 No largest Suslin cardinal \(\omega + \Theta \) singular.

Since \(\text{cf}(\Theta) > \omega \) we have DC by Solovay.

Since every regular \(< \Theta \) is measurable, let \(\mu \) be a measure on \(\text{rng}(\text{cf}(\Theta)) \) cofinal increasing. For each \(\alpha \in \Theta \), \(\text{cf}(\alpha) = \omega \) let

\[I_\alpha = \{ A \in \Theta_\alpha \mid \text{sup}(A) < \Theta_\alpha \} \]

\[\Rightarrow \{ \neg \text{HOD}^{I_\alpha}_{\text{Ord}} = \text{AD}^+ + \text{AD}_\text{R}^+ \}
\[\Theta_\alpha = \text{\neg HOD}^{I_\alpha}_{\text{Ord}} \]

\[\forall X \in \text{HOD}^{-1}_{I_\alpha} : \text{HOD}^{-1}_{I_\alpha} \cap \text{Ord} = \text{limit of Woodin in HOD}^{-1}_{I_\alpha} \]

Our \(N \) will be a ZFC model set.

\(\omega^{\aleph_1} = \text{limit of limits of Woodins in } N \)

Let \(\mu \) be a supercompact measure on \(\text{P}_{\text{w}_1}(I_\alpha) \).

Lemma For each \(\alpha \) s.t. \(\text{cf}(\alpha) = \omega \), \(\Theta_\alpha \) there is

\[\sigma \in \text{P}_{\text{w}_1}(I_\alpha) \text{ s.t.} \]

\[\text{HOD}_{\text{P}_{\text{w}_1}(I_\alpha)} = \text{AD}^+ + \text{AD}_\text{R}^+ \]

\[\sigma \text{ has transitive collapse } = \{ A \in \Theta \mid \text{sup} A < \Theta \} \]

as computed in \(\text{HOD}_{\text{P}_{\text{w}_1}(I_\alpha)} \).
Define

\(T_0 = \{ \tau \subseteq \Lambda \delta \mid \text{all } \tau_i \leq \mu : \}

\begin{align*}
&\bullet \sum_{\omega \in \tau_i} \left(\text{cf}(\delta_i) = \omega \land \Theta_i \subseteq \Theta \right) \\
&\bullet \Theta_i \subseteq \sup \{ \delta_i \mid \gamma \in \delta_i \} \\
&\bullet \delta_i \in \mathcal{P}_\omega (I_{\delta_i}) \\
&\bullet \text{HOD}_{\delta_i} (\omega_{\delta_i}) = \text{AD}^+ + \text{AD}_{\omega_{\delta_i}}^\omega \\
&\bullet \delta_i \text{ collapses to } \{ \alpha \subseteq \Theta \mid \sup (\alpha) < \Theta \} \text{ in } \text{HOD}_{\delta_i} (\omega_{\delta_i})
\end{align*}

\(T = \{ \text{the set of all } s = \langle \delta_0, \ldots, \delta_n \rangle \text{ s.t.} \}

\begin{align*}
&\bullet s \subseteq T_0 \\
&\bullet \mathcal{P}(\mathcal{R}) \text{ HOD}_s = \mathcal{P}(\mathcal{R}) \text{ HOD} \\
&\bullet (\forall c \leq \mu)
\begin{align*}
&\bullet \alpha_i < \alpha_{i+1} \\
&\bullet \delta_i \subseteq \delta_i^+ \text{ and } \delta_i \in \text{HOD}_{\delta_i} (\omega_{\delta_i}) \text{ for all } \lambda \leq \delta_i \\
&\bullet \text{HOD} (\omega_{\delta_i}) \text{ countable in } \text{HOD}_{\delta_i} (\omega_{\delta_i}) \text{ for all } \lambda < \delta_i \\
&\bullet \mathcal{P}(\Theta_i) \otimes \text{HOD}_{\delta_i} (\omega_{\delta_i}) = \mathcal{P}(\Theta_i) \otimes \text{HOD}_s \\
&\text{where } \Theta_i = \Theta \cap \text{HOD}_{\delta_i} (\omega_{\delta_i})
\end{align*}
\end{align*}

Now define Birkhoff forcing:

\(\mathcal{P} = \{ \text{the set of all pairs } \langle s, F \rangle \text{ such that set}, \)

\(F : T \to V \text{ and } \)

\((\forall t \in T) \ t^* \langle s \rangle \in T \text{ for all } s \in F(t) \text{ and } \)

\(\forall t. \forall \gamma. \exists F \subseteq \omega_{\delta_i} \text{ such that } \gamma \in F(t) \)

Ordering:

\(\langle s_0, F_0 \rangle \leq \langle s_1, F_1 \rangle \) \iff \(s_0 \supseteq s_1 \) and

\(\langle \forall i \in \text{dom}(s_0) \setminus \text{dom}(s_1), s_0(i) \in F_1 (s_1(i)) \rangle \)

\(F_0 \subseteq F_1 \)
The largest Suslin cardinal.

Assume there is a largest Suslin cardinal \(\kappa \).

Claim. \(\kappa \) is a regular limit cardinal.
- \(\kappa = S(\kappa) \quad \text{and} \quad \text{Scale}(\kappa) \)
- \(S(\kappa) \) is closed under quantifiers.

The Envelope

Let \(\Gamma \) be a pointclass and \(\kappa \in \text{On} \). We define \(\text{\textunderbar{\Gamma}, \kappa}-\text{envelope} \) as follows.

Definition (Martin) Let \(\Delta = (A_x : x \in R) \) each \(A_x \subseteq R \).
Then \(\text{\textunderbar{\Delta}} \) is the set of all \(A \in \theta(\Gamma) \) such that for all countable \(S \subseteq R \) there is a \(z < \kappa \) s.t. \(S \cap A = S \cap A_z \).

We let
\[
\Lambda(\Gamma, \kappa) = \{ \text{\textunderbar{\Delta}} | A \subseteq \Gamma \text{ and } \text{card}(A) \leq \kappa \}
\]

Lemma. Let \(\Gamma \) be nonselfdual, closed under \(\forall R \) and \(\rho \alpha \text{ (if } \Delta \text{ not closed under } \exists \text{ assume scale } (3^R \Delta \text{ with monus } \kappa \text{ of either}) \). Then
\[
\Lambda(\Delta, \kappa) = \Lambda(\Gamma, \kappa) = \Lambda(3^R \Gamma, \kappa) \text{ where } \kappa = S(\Delta).
\]

Lemma. Assume assumptions of the previous lemma. Then there is a single \(\Delta = (A_x : x \in R) \) with each \(A_x \subseteq \Delta \) s.t. every set in \(\Lambda(\Gamma, \kappa) \) is Wadge reducible to a set in \(\text{\textunderbar{\Delta}} \).
Corollary Under same hypotheses: \(\Lambda(G, n) \) is closed under \(\wedge, \vee, \neg \).

Why: \(\Lambda \) because \(\Lambda(G, n) = \Lambda(\Delta, n) \).

Lemma Suppose \(\Gamma \) is nonselfdual closed under \(\forall \), \(\forall^* \), and \(\neg \cdot \neg \) (\(\Gamma \)). Let \(n = o(\Delta) \). Then \(\Lambda(G, n) \) is closed under \(\forall^*, \forall^* \).

Coding measures

Let \(m \), \(n = o(\Delta) \) be as above. Fix an \(\forall^* \) norm \((W, \| \cdot \|) \) of length \(k \) (with each \(W_i \in \Delta \)).

Let \(U \) be a universal \(\forall^* \) set. For \(x \in W \) let \(B_x = \{ f < n | (\exists x \in W) (\forall (n) = f) \} \). By the Coding Lemma every subset of \(n \) is of the form \(B_x \). For a measure \(\mu \)

on \(n \):

\[
C_\mu = \{ z | \mu(B_z) = 1 \}
\]

Lemma \(\Gamma \) as above. For \(A \in \Delta(G, n) \) iff there is a measure \(\mu \) on \(n \) s.t. \(A \leq \mu C_\mu \).

Upper bound for the next semiscale

Theorem \(\Gamma \) nonselfdual, closed under \(\forall^* \) and \(\neg \cdot \neg \) (\(\Gamma \)). Assume every \(\forall^* \) set admits a \(\forall^* \) scale with norm \(n \leq \Sigma(\Delta) \). Assume also that there is a Suslin cardinal greater than \(n \). Then every set in \(\forall^* \) admits a semiscale \(m \leq n \).
Remark. It is not clear if we can get a scale whose
members are in \(\mathcal{A}(\mathbb{R}, \kappa) \):

Question. Can we find a homogeneous tree \(T \) on
\(\mathbb{R} \times \kappa \) a countable family \(\mathcal{A}_\kappa \) of \(\mu_\kappa \) of measure \(\kappa \).

\(\forall x \left(\text{there is a } \nu \text{ s.t. } \mathcal{A}_\kappa \subseteq \mathcal{A}_\nu \right) \Rightarrow \left[\begin{array}{c}
\left(\mathcal{A}_\nu \right)_{\mu_\kappa} = \text{leftmost branch of scale}
\\
\left(\mathcal{A}_\nu \right)_{\mu_\kappa}^\prime
\end{array} \right]
\)

Lower bound for the next scale

Lemma. If non-selfdual, closed under \(\mathcal{A}(\mathbb{R}) \) and \(\text{proj}(\mathbb{R}) \)
let \(A \) be \(\mathcal{A}(\mathbb{R}) \)-complete. Then \(A \) does not admit
a scale all of whose members are \(\kappa \)-reducible to some \(B \in \mathcal{A}(\mathbb{R}, \kappa) \).

Proof. Idea. This is the "largest countable \(\mathcal{A} \)" argument.

Remark. A semiscale can be converted to a scale within
the next projective class

Lemma. Suppose \(\mathcal{A} \) is non-selfdual, closed under
quantifiers and scale \(\mathcal{A}(\mathbb{R}) \) (and \(\kappa \leq \Theta(A) \) is not
the largest Suslin cardinal). Then every set in \(\mathcal{A}(\mathbb{R}, \kappa) \)
is \(\kappa \)-Suslin.

Assume \(\mathcal{A}(\mathbb{R}, \kappa) \) is closed under quantifiers, \(\kappa \leq \Theta(A) \)
is not the largest Suslin cardinal and \(\mathcal{A} = \mathcal{A}(\mathbb{R}, \kappa) \).

Let \(\mu = \Theta(A) \). So cf(\(\mu \)) = \(\omega \).

Let \(\mathcal{E}_0 = \bigcup_{\gamma < \mu} S(\kappa, \gamma) \).

Recall \(\text{proj}(\mathcal{E}_0), \text{proj}(\mathcal{R}) \)

eca.
Lemma \(S(x) = E_2 \).

Lemma \(S_\tau = S_1(A) \cap \mathcal{X}^+ \) and \(\mathcal{X}^+ \) is regular.

Lemma Let \(B \in \mathcal{A}_1, \rho < \sigma \) and \(B = \{ B_\beta \mid \beta < \rho \} \) be s.t. \(B_\beta \subseteq \omega \) \(B \) for each \(\beta \). Then \(B \in \mathcal{A}_1 \).
Continuation of the lecture in the morning.

IP has the Priery property:
Let \(G \) be \(V \)-generic for \(P \), \(s_G = U \{ s \mid (s,F) \in G \} \),
\(N = \text{HOD}^{(vca_7,v)} \models ZFC + \omega_I = \text{limit of limit of Woodins} \).
Let \(s_0 = \langle s_0 | i \in \omega \rangle \).

Lemma (a) (VCA,\(\zeta \)) \(\mathcal{P}(\omega_I) \cap \text{HOD}^V_{s_G(\zeta + 1)} = \mathcal{P}(\omega_I) \cap \text{HOD}^V_{s_G(\zeta + 1)} \)
where \(\zeta = \text{HOD}^V_{\kappa_I(\omega_I)} \)

(b) Upenope holds. Assume \(A \subseteq \omega_I \) bounded.

Fix \(\theta_I < \博弈 \) in \(\text{HOD}^V_{s_G(\omega_I)} \) and
\(\text{HOD}^V_{s_G(\omega_I), A} = \text{HOD}^V_{s_G(\omega_I), [G_A]} \).

(c) \(\theta_I \) is a limit of Woodins in \(\text{HOD}^{(vca_7,v)}_{s_0,1} \)

To show (a): Note that \(\text{HOD}^V_{s_G(\omega_I), A} \models A \Delta \rho \) so \(\text{HOD}^V_{s_G(\omega_I), A} \models \theta_I \) is a limit of Woodins

Fix \(G \) \(V \)-generic \(/ V \) and \(s_G = \langle s_0 | i \in \omega \rangle \).

(2) \(s_0 \in \text{HOD}^{(vca_7,v)} \models ZFC + \omega_I = \text{limit of limit of Woodins} \)
and \(V = D(\text{HOD}^{(vca_7,v)} \mathcal{V}, \omega_I) \)

Def (Woodin) Assume \(J \) is a limit of Woodins.

\(\text{Hom}^{<\omega} \) is weakly closed if the following holds.

1) If \(\theta_I < J \) is Woodin and \(G \subseteq \theta_I \) is generic \(/ V \)

Let \(j: \text{Ult}(V(G)) \rightarrow \text{Ult}(V(G)) \) be the generic map, then \(j(\text{Hom}^{<\omega} J) = \text{Hom}^{<\omega} J \)
2) \(\forall \delta \) holds in VTR for any \(\delta \) that is \(<\delta\text{-generic} >\).

Lemma Exactly one of the following holds:

1. \(\exists x \in \mathbb{R} \text{ s.t. } A \in \text{Hom}_{\mathcal{N}^{<\omega_1}} \text{ s.t. } L(A, \mathcal{R}^{\mathcal{V}}) \models \varphi^{\mathcal{V}} \)

 (we are assuming \(V \models \varphi^{\mathcal{V}} \text{ when } \varphi \text{ is } \Sigma_1 \))

2. \(\text{Hom}^{<\omega_1}_v \text{ is weakly sealed} \).

Proof Assume \(V \models \varphi^{\mathcal{V}} \text{ where } \varphi \text{ is } \Sigma_1 \). Let \(A \) be large enough s.t. \(L(A, \mathcal{R}^{\mathcal{V}}) \models \varphi^{\mathcal{V}} \). For \(x \in \mathbb{R}^{\mathcal{V}} \) let

\(j_x : (\mathcal{N}^{<\omega_1}, \in) \rightarrow (M_x, \mathcal{E}_x) \) induced by a \(\varphi^{\mathcal{V}} \text{-generic} \) s.t.

1. \(\mathcal{U}(j_x) = \omega^\mathcal{V} \text{ and } j_x(\omega^\mathcal{V}) = \omega^*_1 \)

2. \(\mathcal{V}(M_x, \mathcal{E}_x) = \mathcal{V}^{\mathcal{V}} \)

3. \(\text{Hom}^{<\omega_1}_v \subseteq j_x \left(\text{Hom}_{\mathcal{N}^{<\omega_1}} \right) \)

4. \(\forall A \in \text{Hom}^{<\omega_1}_v \exists j_x(A) = A^x \)

5. For every successor Woodin cardinal \(\kappa < \omega_1^\mathcal{V} \) in \(\mathcal{N}^{<\omega_1} \) there is an \(\mathcal{N}^{<\omega_1} \text{-generic} \) \(H \in \mathcal{P}^{\mathcal{V}} \text{ inducing} \)

\(j_H : \mathcal{N}^{\mathcal{V}} \rightarrow \text{Ult}(\mathcal{N}^{\mathcal{V}}, H) \) and

\(k_H : \text{Ult}(\mathcal{N}^{\mathcal{V}}, H) \rightarrow (M_x, \mathcal{E}_x) \) so that

\(j_x = k_H \circ j_H \)

Case 1 \(P(\mathbb{R}^{\mathcal{V}}) \subseteq j_x \left(\text{Hom}^{\mathcal{N}^{<\omega_1}} \right) \) for some \(x \in \mathbb{R}^{\mathcal{V}} \).

Already done.

Case 2 \(P(\mathbb{R}^{\mathcal{V}}) = j_x \left(\text{Hom}^{\mathcal{N}^{<\omega_1}} \right) \) all \(x \in \mathbb{R}^{\mathcal{V}} \).

We have:

\(j_x \left(\text{Hom}_{\mathcal{N}^{<\omega_1}} \right) = \text{Hom}_{\mathcal{N}^{<\omega_1}} \text{ (takes a little)} \)

(Note: We don't get weakly sealed this way as \(\mathcal{E}_x \text{ are not weakly homogeneous} \)

(2) Holds by varying the embedding \(j_x \) to include any given condition.
This gives (1) in the statement of the Main Lemma.

Now: if (2) holds then

\[
\text{Lemma } \text{Hom}^N_{\omega_1} = L(\text{Hom}^N_{\omega_1}) \cap \text{PCR}
\]

Assuming this lemma: Then \(L(\text{Hom}^N_{\omega_1}) \) is a counterexample to the theorem on the sense that \(L(\text{Hom}^N_{\omega_1}) \models \text{AD}^+ \cup \text{C}^\dagger \text{[R]} \) but for no \(A \in \text{Hom}^N_{\omega_1} \)
\[
L(A, \text{[R]}) \models \text{C}^\dagger \text{[R]} \text{. } & \text{in } L(\text{Hom}^N_{\omega_1}) \text{, } \omega_1 \text{ does not exist .}
\]

By repeating this we get an infinite descending sequence of ordinals.

Proof of the lemma

Sublemma \(\text{if } \text{Pr} \text{ in } \text{V}^N_{\omega_1}, \text{ G O P generic in } N \text{ then} \)

\(\text{in } N[G] \) there is an elementary embedding \(\mathcal{E} \) \(\text{so that } \)

\(\mathcal{E} : L(Hom^N_{\omega_1}) \rightarrow L(Hom^N_{\omega_1}[G]) \)

s.t.

\(\mathcal{E}(Hom^N_{\omega_1}) = Hom^N_{\omega_1}[G] \)

Assuming the sublemma, we prove now the lemma:

If the lemma fails, let \(\xi \) be least s.t.

\(\text{Hom}^N_{\omega_1} \nsubseteq L(\text{Hom}^N_{\omega_1}) \cap \text{PCR} \)

Take \(A \) is definable without ordinal parameters s.t. \(\forall \Phi \in L(\text{Hom}^N_{\omega_1}) \cap \text{PCR} \)

Then use the tree production lemma.

The hypothesis of the TPL holds for \(\Phi \). We get \(A \in \text{Hom}^N_{\omega_1} \).

Proof of Sub lemma

Let \(\kappa \in \omega_1^N \) is a limit of Woodin in \(N \)

\(\nu \text{ is } \omega \text{ e.t. } \text{in } N \)

Then \(\text{let } \nu < \kappa \text{ be a Woodin.} \)
Find $\mathcal{G}_\omega \subseteq \mathcal{P}_\omega^{<\omega}$ that is generic over \mathcal{N} s.t.
$G_i = \mathcal{G}_\omega \cap \mathcal{P}_\omega^{<\omega}$ is \mathcal{N}-generic for $\mathcal{P}_\omega^{<\omega_i}$. Let
$s_i = \cap i R_{\mathcal{N},\omega}^{<\omega_i}$. There are
$j_i : N \rightarrow \mathcal{M}_i$ be the generic embeddings.
Let \mathcal{M}_*^i be the direct limit. \mathcal{M}_i is embeddable
into \mathcal{M}_ω, hence well-founded. We have
$j_i(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}) = \text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}.$

Let $j : N \rightarrow \mathcal{M}_*$ be the direct limit map.
We get $j^*(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}) = \text{Hom}_{\mathcal{N}}^{\mathcal{N}(\omega)}$.

Let $N[G]^{(\omega)}$ be the symmetric extension of $N[G]^{(\omega)}$
for Col$(\omega_1 < \omega)$ s.t. $N(\omega) = N[G]^{(\omega)}$. We have
$j^* : L(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}) \rightarrow L(\text{Hom}_{\mathcal{N}[G]^{(\omega)}}^{<\omega_i})$ and
$j^*(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}) = \text{Hom}_{\mathcal{N}[G]^{(\omega)}}^{<\omega_i}$

Also: $j^* : L(\text{Hom}_{\mathcal{N}[G]^{(\omega)}}^{<\omega_i}) \rightarrow L(\text{Hom}_{\mathcal{N}(\omega)}^{<\omega_i})$
and
$j^*(\text{Hom}_{\mathcal{N}[G]^{(\omega)}}^{<\omega_i}) = \text{Hom}_{\mathcal{N}(\omega)}^{<\omega_i}$. (for some different j^*)

Now we fix points + use trees to show that the
two maps move sets of reals correctly. Then
this can be used to embed $L(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i}) \rightarrow L(\text{Hom}_{\mathcal{N}_\omega}^{<\omega_i})$.
We assumed $\nu^* \leq \sigma_1$.

G generic over $L[x]$, for \mathcal{C}_0 (w_1, c_1), $\nu^* = \text{1st inacc of } L[x]$.

In $L[x, G]$ defined a DLS T:

Indizes: (N_i, s) where $N \in M_\mu$-like, $\delta^N < w_1$, $s \in c_0$.

N is strongly s-iterable:

Given a good stack (T_0, \ldots, T_n) on N (Each T_i maximal on else has a last model without dropping on the main branch.) T_{i+1} as the last model of T_i or as $L(M(T_i))$ (if maximal).

Let T_i be on N_i. We demand that there are $b_0 \ldots b_n$ s.t.

\[\nu_e (\text{Type } (s^- \cup S_{i_k}^{T_{i_k}})_{i_k=1}^{N_{i_k}}(s)) = \nu_e (\text{Type } (s^- \cup S_{i_k}^{T_{i_k}})_{i_k=1}^{N_{i_k}}(s)) \]

We then define strongly s-iterable as before.

Need this notion in order to get absoluteness.

(N_i, s) indexes $H^N \equiv \text{Hull } N_{\text{max}}(s)$.

$(N_i, s) \leq^* (P, t)$ iff there is a good stack on N with last model P and $s \leq t$.

\[\pi (N_i, s)(P, t) = b_0 \ldots b_n \mid H^N \]

for any such good stack.

$M_\nu = \text{dir lim } M_{\nu^+}$

$M_{\nu^+} = \text{dir lim of all iterates of } M_\mu$ by its canonical strategy $\Sigma M_\mu \in HC$.

We have $\pi: M_\nu \rightarrow M_{\nu^+}$ and $\pi \upharpoonright (\Sigma M_{\nu^+}) = \Omega$.

For any $s \in M_\nu$ we let $s^k = \pi (N_i, s)$, then the map $s \rightarrow s^k$ is OI in $L[x, G]$.

Claim: $s_\omega = \nu^+(L[x, G])$ ($= L[w_2]$, $\in L[x, G]$).
Proof \(S_\omega \leq n^+ L[\kappa, G] \): Take \(\gamma < S_\omega \). Say

\(\pi_1(N, \kappa, \gamma) = \xi \) from \(\gamma < \kappa^+ \). The DLS of all \((N_\gamma, \kappa)\)

s.t. \((N, \kappa) \leq (N_\gamma, \kappa)\) gives us a map from \(H \in L[\kappa, G] \) onto

sup \(\pi_1(N, \kappa, \gamma) \) in \(L[\kappa, G] \).

To see \(n^+ L[\kappa, G] \leq S_\omega \). Pick \(\alpha < n^+ L[\kappa, G] = n^+ L[\kappa] \). Let

\(s = \langle \kappa^\beta \rangle \) and \(\alpha \) a term s.t. \((\gamma, \alpha) \in \beta \) and \(\beta < \alpha \).

Let \(\eta < \alpha \). Have \(\eta = \min \{ \max(s), \kappa^\beta, \beta, \alpha \} \) s.t. \(\eta < \alpha \).

Let \(N \) be \(\xi_{\beta+1} \)-iterable s.t. \(\beta < \kappa^\eta \) measurable in \(\kappa_1 \),

and \(x \) being \(\beta_{\kappa^\eta} \)-generic \(\in N \) (Extender algebra)

\(\pi_1(N_\gamma, \kappa, \gamma) \leq \kappa \leq \kappa_1 \).

Let \(\pi_1(N_\gamma, \kappa, \gamma) \leq \eta < \alpha \).

Note \(\ot_p(\pi_1(N_\gamma, \kappa, \gamma)) \leq \delta^\gamma \) (\(\delta^\gamma \).

\(\pi_1(N_\gamma, \kappa, \gamma) \leq \eta < \alpha \).

\(\o_p(\pi_1(N_\gamma, \kappa, \gamma)) \leq \delta^\gamma \).

Let \(\gamma^\gamma = \pi_1(N_\gamma, \kappa, \gamma) \).

Show \((\alpha) \gamma^\gamma \) does not depend on \((N_\gamma, \kappa)\).

(\(\beta \)) \(\gamma < \beta < \alpha \implies \gamma^\gamma = \gamma^\beta \).

Proof: Exercise.

\(\text{Claim: } L_{\kappa^\gamma} \in \mathcal{H} \).

Proof: Given \(\eta \) normal on \(M_\alpha \), every \(\Gamma \) short:

\(\text{let } \lambda_{\eta} = \sum_{\chi \in \lambda} \chi \text{ is free in } M_\alpha \mid M_\alpha \).

\(\text{Let } \lambda_{\eta} = \kappa^* \text{ the least inacc } > \delta_{\eta} \text{ of } M_\alpha \).

Claim: \(\lambda_{\eta} \in \mathcal{H} \).

Proof: Given \(\eta \) normal on \(M_\alpha \), every \(\Gamma \) short:
If T short: $M \models (T)$ is the unique b s.t. $Q(T) \subseteq M^b$.
If T maximal: Note for $s \in On^{\omega}$

$M_b \models \forall \theta s^{**}$-iterable for good stacks in $M_b[\kappa_{b^*}]

Why: Pick $(N,s') \in F(s.t. x \in \mathbb{R}_{\omega}^n - \text{generic } N.)$ $s' = s$

Then $N[N_{s'} \models HC(L_{\omega_1^C})]$. So

$N[\text{max}(s')] \models I$ am s-iterable

$N[s'] \models \text{same}$, $(N_{s'}, \omega) : (N, \omega) \rightarrow M_{b^*}$. So
$M_{b^*} / s^{**} \models I$ am s^*-iterable.

More precisely:

$M_{b^*} \models I$ am s^*-iterable in $L[\gamma, H]$ where (γ, H) is

$\text{Col}(w_1, \delta_0) \times \text{Col}(w_1, <\kappa_0)$ for \ldots.

For each s^* pick a branch $(in V)$ b_{s^*} which

witnesses s^*-iterability for T. (Is cofinal and

$\text{type } \text{max}(s^*) (s^* - \delta_0^*) = (\text{type } (s^* - \delta^C))$

Let $b = \text{max}(T)$. Then $L[M^b] = M_b$ and $s(T) = b_*(s^*)$

Then

$b = \lim_{s^*} b_{s^*}$

Because γ_{s^*} are cofinal in δ_0^*.

b is independent of how b_{s^*} were generically chosen in

$\text{Col}(w_1, \gamma_0)$. Hence $b \in \text{HOD}[L_{\omega_1^C}^\omega]$. So $\kappa_\alpha \in \text{HOD}[L_{\omega_1^C}^\omega]$

Claim: $\text{HOD}[L_{\omega_1^C}^\omega] \subseteq L[M_{\omega_1}, \delta_0]$. (Hence \subseteq)

Proof: We can find an $A \in \delta_0^* = \omega \times L_{\omega_1^C}^\omega$ s.t.

(1) $\text{HOD}[L_{\omega_1^C}^\omega] = L[A]$

(2) A is definable without paramaters over $L_{\omega_1^C}^\omega$

(like Vopěnka.)
Claim \(M^*_\infty = \lim_{n \to \infty} F M_n \) is dense in \(\mathcal{L}[\mathcal{Y}, \mathcal{H}] \).

Proof:
Given \((N_1) \in F[\mathcal{L}[\mathcal{Y}, \mathcal{H}]) \).

Let \(M_\infty = \lim_{n \to \infty} F M_n \).

For \(\psi \in M_\infty \) and \(\mathcal{L}[\mathcal{Y}, \mathcal{H}] \),

For \(q \leq p \) let \(\phi_q = (\pi \circ \text{dom}(q)) \circ q \).

Let \(\phi_q \).

Let \(q \in \mathcal{L}[\mathcal{Y}, \mathcal{H}] \).

\((N_1, \xi) \in \mathcal{F}[\mathcal{L}[\mathcal{Y}, \mathcal{H}]) \).

There are only finitely many.

Now compare all \(N_q \) simultaneously and also with \(P \).

The calculation terminates at \(R \).

So \(\xi \mapsto R \).

\((N_1, \xi) \in \mathcal{F}[\mathcal{L}[\mathcal{Y}, \mathcal{H}]) \) by symmetry.

Similarly, if \(M_\infty \)

\(M_\infty \rightarrow^L \mathcal{L}[\mathcal{M}_\infty, \mathcal{L}_\infty] \)

By \(\mathcal{N}_m \)

\(\ni \)

also by \(\mathcal{E}_{M_1} \).

Obtain by companion.

tree in \(\mathcal{L}[\mathcal{Y}, \mathcal{H}] \).

Then we can find \(\xi \) in \(\mathcal{L}[\mathcal{M}_\infty, \mathcal{L}_\infty] \).

Use a tree searching for \(\xi \).

\(j \in \text{dom}(\xi) \).

\(L \) is unique with making the diagram commutative.

Because it moves types of indiscernibles correctly.

(This needs some elaboration.)

So \(F M_\infty \) is dense in \(\mathcal{L}[\mathcal{Y}, \mathcal{H}] \).

\(\lim_{n \to \infty} F M_n = M^*_\infty \).

Let \(\iota : M_\infty \rightarrow M^*_\infty \) be the map given by \(M_\infty \).

(\(\xi < M_\infty \) need this since we only want countably many \(N_q \)')
Claim. For $f \leq S_\omega^1$, \[\text{Col}(w, S_\omega^1) \times \text{Col}(w, < \kappa) \] \[\exists \alpha \in \mathbf{A} \iff M_\alpha \models (\text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa)) \]

\[\Rightarrow M_\alpha \models (\text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa)) \iff \varphi(\bar{\alpha}, \bar{\beta}) \]

Proof. Fix \bar{z}. Let $\bar{z} = \bar{u}$, (\bar{v}, \bar{w}) with $s \subseteq \omega^\omega$. Choose N s.t.

\[\bar{v} \subseteq N \nexists \bar{z} \in \mathbb{R}_N^\omega \text{ - generic over } N, \text{ hence } L[\bar{v}, \bar{w}] \text{ is a } \text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa) \text{-generic finite extension of } N. \]

Then \[\bar{v} \in A \iff L[\bar{v}, \bar{w}] = \varphi(\bar{z}) \]

\[\Rightarrow N \equiv (\text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa)) \]

Note that $\Pi : N \rightarrow M_\alpha$ is an elementary map via Σ_1. Then $\Pi \upharpoonright S_\omega^1 = \Pi_{(\omega_1)^{N \cap \omega_1}}$. So they agree on \bar{z}. Hence:

\[\Rightarrow M_\alpha \models (\text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa)) \]

\[\Rightarrow M_\alpha \models (\text{Col}(\omega_1, S_\omega^1) \times \text{Col}(\omega, < \kappa)) \]

as $\bar{v}(\bar{z}) = \Pi_{(\omega_1)^{M_\alpha \cap \omega_1}}(\bar{z}) \Rightarrow \varphi(\bar{z})$.

Exercise: \[\exists \gamma \text{ s.t. } \gamma < \delta_\omega \subseteq M_\alpha. \text{ Hence } \gamma \upharpoonright \text{Ord} \text{ is } M_\alpha \text{-closed.} \]

Thus, Woodin (PD). For a cone of x:

\[L[\bar{v}, \bar{w}] \models \omega_2 \text{ is Woodin.} \]

Hence $L(M_\alpha, S_\omega^1) = \delta_\omega$ is Woodin.

Exercise: \[\delta_\omega \subseteq j(M_\alpha, S_\omega^1) \text{ for } j \text{ generic over } M_\alpha. \]

\[\exists \gamma \text{ s.t. } S_\omega^1 \subseteq j(M_\alpha, S_\omega^1) \text{ and } \gamma \text{ is Woodin.} \]

Hence $L(M_\alpha, S_\omega^1) = \delta_\omega$.
We can use this to show:

Let $\mathcal{L} = \Sigma_{M_1} \Gamma$ (trees in M_1) where ν is the first inaccessible $> \delta_{M_1}$ in M_1.

Then $L[M_1, M] \models L[M_1, M] = M_1 \upharpoonright \delta_{M_1}$ and $L[M_1, M] \models \delta_{M_1}$ is Woodin.

Sketch: Let M_0 be the adic limit of \mathcal{F}^{M_1} where \mathcal{F}^{M_1} is the DSL for M_1 up to ν

$M_0^* = $ adic limit \mathcal{F}^{M_0} of \mathcal{F}^{M_0}

$M_1 \xrightarrow{i} M_0 \xrightarrow{i(i)} M_0^*$

(Note: Adding δ_{M_0} to M_0 does not add bounded subsets of δ_{M_0})

$i(i)$ maps $L[M_0, M_0] \rightarrow L[M_0^*, M_0^*]

Use this to show:

$\text{Hull } L[M_0, M_0] \models \text{rng}(i(i)) = L[M_1, M]$

Point: Definitions are allowed to act on δ_{M_0}

$i(i)$ preserves δ_{M_0}-definitions.
Lemma let $B \subseteq \mathcal{L}$, $\rho < \lambda$ and $B = (B_\beta | \beta < \rho)$ be s.t.
$B_\beta \subseteq B$ for each β. Then $B \subseteq \mathcal{L}$

Lemma \mathcal{L} is closed under ultrapowers

Lemma Σ_1 is closed under ultrapowers.

Lemma Σ_1 is a Suslin cardinal, $S(\Sigma_1) = \Sigma_2$ and scale(Σ_2)

Remark We can show that Δ_1 (and Σ_1, Π_1) is closed under measure quantification by measures on λ.
Using this one can show that every Π_1 set admits a semi-scale with curves in Π_1.

Question Do we have $\text{scale}(\Sigma_0)$, $\text{scale}(\Pi_1)$?

Definition A tree on $w \times w$ is strongly homogeneous if there are measures μ_x on T_x s.t.
- μ_x witnesses the homogeneity of T_x
- There are measures λ_x on A_x s.t. for all x with T_x well-founded, the ranking function $T_x \upharpoonright A_x$ has minimal values $[+\xi]$ where T_x is the function on T_x induced by ξ.

Fact If every κ-LS is strongly κ-LS then we can fill the gap with the where we have only semi-scale instead of a scale.
A non-selfdual, closed under quantifiers, \(\Gamma = S(n) \)
where \(n = o(A) \). Let \(A \in \mathcal{B}'(\Gamma) \) and let \(A = \mathcal{P}(T) \)
where \(T \in \text{on} \ \omega \times \nu \).

Definition (Steel): \(\text{Env}(\Gamma) \) is the set of all
\(A \in \omega^\omega \) s.t. for some \(z_0 \in \omega^\omega \), for any countable set
of reals \(z \) containing \(z_0 \) we have \(A \in \text{EL}(T, z) \).

\(\text{Env}'(\Gamma) = \) the set of all \(A \in \omega^\omega \) s.t. for some
\(z_0 \in \omega^\omega \) : for any countable set of reals \(z \) containing \(z_0 \),
we have \(A \in \text{EL}(T, z) \) from finitely
many ordinals, \(T \) and \(z \).

Remark: We can consider the variations \(\text{Env}^\sim, \text{Env}'^\sim \) where
we consider "\(z \geq z_0 \)" instead of "\(z \) containing \(z_0 \)".
Clearly \(\text{Env} \leq \text{Env}^\sim, \text{Env}' \leq \text{Env}'^\sim \).

Theorem: For \(\Gamma \) as above : \(\lambda (\Gamma, \nu) = \text{Env}(\Gamma) = \text{Env}'(\Gamma) = \text{Env}^\sim(\Gamma) \).
Analyze $E_0^L(\omega_1)$ on the assumption M^*_w exists. Let E_0^L be the unique FS of M^*_w.

Actually, it is important to do it under the weaker $D^L(\omega_1)$. Let M_ω be the linear set E_0^L-iterates of M_w via trees in $M_w \upharpoonright \delta^M_w$, so that there is no drop on the main branch.

Recall: $M_w = \text{Hull}^w(M_w)$ whenever Γ is a proper class.

So M_w is sound. This soundness can be used to show that the system of iterates is directed.

$L_\omega = E_0^L$ trees in M_ω based on $M_\omega \upharpoonright \delta^M_\omega$.

(We $E_\omega = \sup_{i\in\omega} E_i^{M_\omega}$.)

Then: $\text{HOD}^{L(\omega_1)} = L(M_\omega, L_\omega)$

Approximate via a DSL defined over $L(\omega_1)$.

Def $WG(M_w)$ as:

1. φ_0, φ_i (only φ_i on $M_{w-1}^{T_i}$ where $M_{w-1}^{T_i} = M$)
2. b_0, b_i (if φ_i normal)
3. win iff $\lim_i M_{w_i}$ exist and is w.f.

"It has a winning strategy in $WG(M_w)$ if $\delta^{\omega_1}_1 = \sum_i (\varphi)$

If it has a w.s. \(\Rightarrow\) it has a w.s. in $L(\omega_1)$.

Fact If M, N are δ^ω_1-closable project to w one sound and w-small then $M \models \text{N} \models \text{N}^*$.

So the *Mouse-set-conjecture* holds in $L(\mathbb{R})$: in $L(\mathbb{R})$, TFAE for a countable transitive and $\kappa \leq \alpha$:

1. $b \in OD(\alpha \cup \{\lambda\})$
2. b is $C_{\Sigma_3^1}(\alpha)$
3. b is in some ω_1-iterable mouse over α
4. b is in some ω-small, ω_1-iterable mouse over α

Remark: every every ω_1-iterable mouse is (ω_1+1)-iterate.

The proof (1) \Rightarrow (2) is just an abstract computation.

(3) \Rightarrow (4): Define b to be from its state constructed in any M_α

(1) \Rightarrow (4): This is the "correctness" of M_α. Enough to show (ETS): $b \in M_\alpha(\alpha)$. But then $b \in M_\alpha(\alpha) \cup w_1^{M_\alpha}(\alpha)$ and this is iterable in $L(\mathbb{R})$: the iteration strategy: $\mathbb{R} \to T$ to the unique cut $b \in \{M_\alpha \cap W \in (\mathbb{R},\mathbb{R})\}$-iterable.

To be $M_\alpha(\alpha)$: iterate $M_\alpha(\alpha) \to \cdots M_i \to \mathbb{N}$ via $\Sigma_0^{M_\alpha(\alpha)}$ so that for some G queue $\mathcal{G} = \lambda \cap \mathcal{G}$: $1^{\mathcal{G}}_\mathbb{R} \in \mathbb{R}$.

So $b \in OD(\alpha \cup \{\lambda\}) \cap L(\mathbb{R})$. So $b \in \mathcal{N}$, so $b \in M_\alpha(\alpha)$.

Def. A premouse M is *full* off $(\mathbb{V}_\theta,\mathbb{V}_{\theta+})$ if

$b \in OD(\mathbb{V}_\theta,\mathbb{V}_{\theta+}) \Rightarrow b \in M$

So: $M_{\omega+1}$ is and its iterates are full.

Def. A premouse M is le-suitable off there are $S_0 \cdots S_\ell$

Woodins s.t. $M = S_i$'s are the unique Woodins and

$\mathcal{O}_n = S_\ell^{+\ell+\ell+\ell+}$ and \mathbf{E}

and M is full and ω-small.

(To be safe, add the requirement: no $\mathcal{M}_\mathcal{Y}, \mathcal{Y} \in \mathcal{O} \mathcal{Y}$ has this property.)
We write \(k = k(M) \) \((k \text{ as above}) \)

Crucial Definition Let \(ASR, M \) be a \(\text{pointwise} \) \(M \models \text{ZFC} - \text{Powerset} \) and \(M \models \delta^*_\omega \). Let \(\tau \) be a \(\text{Col}(\omega_1^M, \delta^*_\omega) \) term. Then \(\tau \) captures \(A \) over \(M \) iff for every \(q \), \(\text{Col}(\omega_1^M, \delta^*_\omega) \)-generic \(/M \)
\[\tau^q = A \cap M[g] \]

Example Let \(ASR \) be \(\text{OD}^{L(\mathbb{R})} \), \(\delta = \delta^*_\omega \). Then there is \(\tau \in M_\omega \) s.t. \(\tau \) captures \(A \).

Exercise using genericity iterations.

For \(\tau \) a term, \(\delta \) as above let
\[\tau^* = \{ (p, \sigma) \mid p \in \text{Col}(\omega_1^M, \delta) \text{ and } \sigma \in \text{Col}(\omega_1^M, \delta) \times \mathbb{R} \text{ and } \tau \models p, \sigma \} \]

Assuming \(B \models \sigma \in IR \); (we assume such terms always exist)

1. \(\tau = \tau^* \)
2. \(\tau^* = \tau^* \)

Definition \(\tau \) is invariant iff for all \(q, h \) generic for \(\text{Col}(\omega_1^M, \delta) \)
\[M[g] = M[h] \Rightarrow \tau^q = \tau^h \] \((M \text{-definable}) \)

For invariant \(\sigma, \tau \) TFAE:

1. \(\sigma^* = \tau^* \)
2. \(\sigma^q = \tau^q \) on all \(M[g] \), \(q \) \(\text{Col}(\omega_1^M, \delta) \)-generic \(/M \)
3. \(\neg \exists \text{some } \neg \)

Proof: Exercise
\(\tau^* = \text{the unique standard invariant term capturing } A \text{ over } M \text{ if exists} \)

We write: \(\tau^* = \bigotimes_{A, i, j} \tau^*_{ij} \)

\(\rho \in M^\omega(\delta^*) \)

\(\text{Denote extended } \text{let } M \text{ be } k\text{-suitable, } A \in OD^{L(\mathbb{R})} \)

then \(\tau^*_{ij} \text{ exists for all } k \leq n \).

\[\mathbb{R^R} \]

Definition Let \(A \) be OD, \(A = \langle A_0, \ldots, A_n \rangle \). Let \(M \) be \(k \)-suitable then \(\Sigma \) is an \(A \)-iterative strategy for \(M \) iff \(\Sigma \) is a strategy in \(WG(M, \omega) \) for \(\Sigma \) s.t. of \(M \rightarrow N \) is an iterative map w.r.t \(\Sigma \) then

1. \(N \) is \(k \)-suitable
2. \(\pi(\tau^*_{ij}, \delta^*) = \tau^*_{ij} \) for all \(i, j \) \(j \neq k \) is enough.

\(\Sigma \) is \(A \)-iterative iff \(\pi \) has such a strategy.

Lemma if \(A \in (OD^{L(\mathbb{R})})^\omega \) then for any \(\Sigma_0 \)-iterate \(N \)

of \(M^\omega \) there is a \(\Sigma_0 \)-iterate \(P \) of \(N \) s.t. for all \(k \leq n \)

\(\Sigma_0 \) is an \(A \)-iterate \(P \) s.t. for \(\Pi^R \).

Proof (by picture) Assume \(N = N_0 \rightarrow N_1 \rightarrow N_2 \rightarrow \ldots \)

and \(\Sigma_i \) moves \(\tau^{N_i} \) incorrectly. Update each \(N_i \) to \(N^*_i \)

to make \(D(N_i, \delta^*) A_{i, j} \delta^* \).

\(\mathbb{R^R} \)

The map - composition: bottom row + right column is an iterative map, \(\exists N^*_w \) is w.f. in each \(N_0 \rightarrow N_1 \rightarrow N_2 \rightarrow \ldots N_n \) \(D(N_i, \delta^*) : A \in OD \) so as to

then for sufficiently large \(i \), \(\tau^*_w(i) \) is fixed, \(\text{our } N^*_w \)

would be ill-founded. From that point on, the terms are moved correctly.

[8]
Def. For M, N k-suitable $\pi : M \rightarrow N$ is an A-iterable iff π arises from a play according to an A-iterable strategy.

Def. M is strongly A-iterable iff whenever $\pi : M \rightarrow N$, $\sigma : M \rightarrow N$ one A-iterable then $\pi \cap H^M_A = \sigma \cap H^M_A$. (Here M is k-suitable, $A \in OD^{\omega_0}(\mathcal{P}(\beta))$)

Here: for P k-suitable over $A \in OD^{\omega_0}(\mathcal{P}(\beta))$, $P = L(P \cup \text{crit}(P))$

$\delta(P, A) = \sup \{ \xi < \delta^P \uparrow \eta \mid \Delta_4 \text{ definable over } P \text{ from parameters} \}

\delta(P, A) < \delta^P

Similar: for $A = \{ A_0, \ldots, A_k \}$

$\delta(P, A) < \delta^P$

$H_{\pi, A} = \text{Hull}P(\pi, P \cup \{ \xi \in \varepsilon^P \uparrow \eta \})$

$H_{\pi, A} \cap \delta^P = \delta(P, A)$

Lemma. Let N be a Σ_0-iterable of M_0 s.t. $\Sigma_0 \vdash \text{an } A\text{-IS for } P = N \uparrow \delta^P \uparrow \eta$. Then P is strongly A-iterable.

Proof:

This is like the M_1 argument before - check this.

Also appeal to the $D-\psi$ property of Σ_0.

$\pi \uparrow H^P_A = \Sigma_0 \uparrow H^P_A$ using

$P \not\rightarrow \eta$ $D-\psi$ property of Σ_0.
Let
\[I^* = \xi(N, A) \quad \text{if} \quad N \text{ is } k \text{-suitable and } N \text{ is strongly } A \text{-iterable} \]
\[(N, \bar{A}) \leq (P, \bar{B}) \quad \text{if} \quad \text{there is a } \bar{A} \supseteq \text{IM} \quad \text{and} \quad k(N) \leq k(P) \quad \text{and} \quad \bar{A} \text{ is an initial segment of } \bar{B}. \]

\[P(N, A), (P, B) : H^N_A \rightarrow H^P(B, A) \]

be the common value of all \(k\)-iteration maps.

\(\mathcal{F} = \text{the corresponding DLS,} \)

\(\mathcal{F} \) is definable over \(L(R) \)

Claim: \(M_\omega = \text{chlin lim of } \mathcal{F} \)

Def: \(\mathfrak{T}_k = T^{L(R)}(d_0, \ldots, d_k) \) where \(d_i \) are \(R \)-indiscernibles
coded as set of reals.

So: \(\mathfrak{T}_k \) is \(\text{OD}(L(R)) \)

Lemma: Suppose \(B \subseteq R \) is \(\text{OD}(L(R)) \) and \(A \) is \(\text{OD}(L(R)) \) and \(A \leq_w B \). Then there are densely many \((N, \bar{C}) \in I \) s.t. \(A_1B \subseteq \bar{C} \) and \(\mathfrak{c}^N_{A_1} \subseteq H^N_B \) and hence \(\mathcal{F} : H^N_A \rightarrow H^P_B \) is \(\mathcal{F}(N, B), (P, B) \) then \(\mathcal{F}(\mathfrak{c}^N_{A_1}) = \mathfrak{c}^P_{A_1S_w} \).

Proof: Choose any \((N, \bar{C}) \) s.t. \(A_1B \subseteq \bar{C} \) and \(\Sigma_0 \) is a \(\bar{C} \)-iterable \(\Sigma \)-iteration of \(M_\omega \). Also make sure \(x \in B^N_{\Sigma_0} \text{-generic}/N \) where \(A \leq_w B \text{max} \).

For \(x \) a standard \(\Sigma \)-iteration of \(\text{Col}(\mathfrak{c}, k) \).

When \(k = k(N) \) pick an \(\tau_c \in B^N_{\Sigma_0} \) s.t.
Let \(k = q \ast h \) as \(\text{cel}(w, s_k) \) - generic by rearrangement of generics. Then
\[
\sigma \circ \sigma \Rightarrow \sigma \text{ is } \sigma
\]
Since there are \(< s_k^N \) such \(\sigma \)'s and \(\tau \)'s \((\tau \text{ determines}) \)
So \(< s_k^N \) many. So all \(\tau \in H^N_B \). So \(\tau \in H^N_B \). \(\square \)

Corollary: \(\text{discrim } \overline{f} = \lim \text{ of all } H_{(N, \overline{F}_w)} s.t. \)
\[
N = P \ast \delta_{j}^N \text{ for } P \in \Sigma \text{ iterate of } M_w.
\]

To show this limit is \(M_w \! \lambda_w \):

Lemma: Let \(\overline{f} \) be a \(\Sigma_0 \) - iterate of \(M_w^N \) and
\[
N = N^N \ast \delta_{k}^N \text{ for } \delta_{k}^N.
\]
Let
\[
S_j = \text{Th}(M_w(N), \ldots, \delta_j) \cup N(1_{\overline{F}_w})
\]
very large cardinals.

Then
\[
(1) \ U_j \ast P_s_j \in H_N(\delta_{k}^N \cup S_j)
\]
\[
(2) \ U_j \ast P_s_j
\]

Proof: (2) is easy - use the theory \(\text{Th}(M_w(N), \ldots, \delta_j) \)

(1) Given \(j \) take \(\overline{f}_j = \overline{f}_{j+5} \). Idea: Induction force prevents

Idea: Once \(L(\overline{F}_w) \) Induction force a remove whose derived

(\(\overline{F}_w \) is \(L(\overline{F}_w) \).
For a countable transitive well-founded self well-ordered add a Turing degree above a

letting

\[T = \text{tree of a scale on universal } \Sigma^2_1 \text{ set on } \mathcal{L}(\varphi) \]

in \(\mathcal{L}[T_{\varphi}] \) : take all \(\varphi \)-suitable \(\varphi \) s.t. \(\varphi \) is \(\varphi \)-suitable and \(\varphi \leq_T \varphi \). \(\varphi \) over \(\alpha \).

\(\varphi(\alpha) \) = result of comparing all of them and making all \(\varphi \leq_T \varphi \) generic \(\mathcal{L}[T_{\varphi}] \).

They can be compared via \(\mathcal{L}[T_{\varphi}] \).

Given \(d_0 < d_1 < \ldots < d_n \)

\[\varphi_0 = \varphi_0 \]

\[\varphi_{i+1} = \varphi_{d_{i+1}} \]

Let \(\langle d_i \mid i \leq n \rangle \) be Prikey. Can show for

\[\varphi_{\omega} = \bigcup \varphi_i \]

\[\mathcal{L}[\varphi_{\omega}] \vdash \varphi(y) \leq_T \varphi_i \text{ for any } y < \varphi(\varphi_i). \]

(all \(\varphi_i \) are OD-finite)

Moreover: There is an iterate of \(M_\omega \) via \(\Sigma_0 \) s.t.

it is of the form \(\varphi_\omega \) some Prikey-generic \(\varphi_\omega \).

Can then define \(S_j \) from \(\varphi_{j+5} \) using the Prikey forcing.

The rest is similar to the \(M_\varphi \)-argument.
Core model induction in $L(R)$

Def. Let $\kappa \geq \aleph_1$ be a cardinal and $A \in H_\kappa$. A model operator over A on H_κ is a partial function $F : H_\kappa \rightarrow \kappa$.

$$M = (\mathcal{M}, \epsilon, A, E, B, S) \rightarrow F(M) = \eta$$

where

$$M = (\mathcal{M}, \epsilon, A, \bar{E}, B, \bar{S})$$

such that

- \mathcal{M} is an end-extension of $M^\#$, $M \in \{\mathcal{M}\}$
- $F(M) = \text{Hull}_{\mathcal{M}} \{\mathcal{M} \cup \{\mathcal{M}\}\}$
- $F(M)$: $\text{the least ordinal above } \text{cut}_{\mathcal{M}}$.
- \mathcal{M} is a Woodin + Sharp.
- F is feeding in info about Σ_1 on \mathcal{M} for η coded by A.

Examples
- $\eta = F$
- $F = M^\#$

Theorem: (Heath's shakeup + condensation relative to F).

Let (\mathcal{M}, \bar{M}) be given. Suppose $\pi : \bar{M} \rightarrow F(\mathcal{M})$ is either Σ_0 cofinal or Σ_1. Then $\bar{M} = F(\pi^{-1}(\mathcal{M}))$.

* F condenses well
Exercise Assume \(F : H_\omega \to H_\omega \) is a model operator
which condenses well. Let \(\kappa > \nu \). Then there is at most one
extension \(\bar{F} \) of \(F \), \(\bar{F} : H_\kappa \to H_\nu \) s.t. \(\bar{F} \) also condenses well.

Def Let \(F : H_\nu \to H_\nu \) be an MO. A model
\(M = (M_1, V, A, F, B, S) \) is a potential premodel iff
there is \(\bar{M} = (M_1, \bar{V}, \bar{A}, \bar{F}, \bar{B}, \bar{S}) \) a sequence of models, write
\(M_0 = M_1 \) satisfying
\[
M_{n+1} = (F(M_n), \bar{M}_{n+1})
\]
and \(E \) is a coherent extension sequence.

\(\iff \) \(M \) is a premodel off all proper initial segments are sound.

Def \(K^C, F_\kappa(\nu) \) - construction. This is like an ordinary
\(K^C \) construction with the exception that the step
\(M_3 \mapsto \begin{cases} \bar{M} & \text{if } \bar{M} \in \text{M}_1 \text{ satisfying } M_3 \mapsto F(M_3). \end{cases} \)

Example Don't add any extenders, \(\nu = \omega \). Then
\(K^C, F_\omega(\omega) = L^F(\omega) \). Point: If \(F \) condenses well
then \(L^F(\omega) = GC \& \text{ et c.} \) (\(\omega \)-countable \(\bar{F} \) in \(L^F(\omega) \)).

As usual: Countable substructures of models \(N_1 \) from the
\(K^C, F_\kappa(\nu) \) construction are \(\omega_1 \)-iterable in this sense:
if \(Y \) is a countable tree on \(W \) with \(\bigcup_{\alpha < \epsilon} Y_\alpha \)
and \(\sigma : W \to N_\kappa \) then \(F \) has a last model embeddable
in \(\sigma \) some \(W_2 \) - \(\sigma \leq \sigma \) or else there is or else there
is a maximal branch \(b \) s.t. \(\bar{M}_b \) is embeddable into \(W_2 \).
Def. A premouse M is F-small iff $M \Vdash \kappa$ is Woodin where $\kappa = \mathsf{cf}(E^M_{\alpha})$ some α.

$M^F_2(\kappa) = \text{the least } (\kappa+1)\text{-iterable premouse}$

Def. Assume \mathcal{Y} is an IT on an F-pm which does not have a definable Woodin card. We say that \mathcal{Y} is guided by L^F iff $\forall \lambda < \mathsf{lh}(\mathcal{Y}) : \mathcal{Y}(0, \lambda)^* = \mathsf{unfGd}$.

Def. Assume \mathcal{Y} is an IT on an F-pm which does not have a definable Woodin card. We say that \mathcal{Y} is guided by L^F iff $\forall \lambda < \mathsf{lh}(\mathcal{Y}) : \mathcal{Y}(0, \lambda)^* = \mathsf{unfGd}$. Let \mathcal{Y} be the unique cofinal branch \mathcal{Y} of \mathcal{G} for \mathcal{G} s.t. for some $\langle \mathcal{G} \rangle \subseteq M^\mathcal{Y}$ s.t. \mathcal{G} either projects below $S(\mathcal{Y})$ or else $S(\mathcal{Y})$ is not definably Woodin over \mathcal{G}. Briefly \mathcal{G} kills Woodinness of $S(\mathcal{Y})$ and $\mathcal{G} \subseteq L^F(M(\mathcal{Y}))$.

Plan: $K^F_r(\mathcal{G})$ is fully iterable via the strategy of producing trees which are guided by L^F.

Theorem (K^F_r existence dichotomy). For simplicity assume \mathcal{G} is a measurable cardinal.

Let \mathcal{F} be a model on $V_\mu = V_{\kappa2}$ s.t. $K^F_r(\mathcal{G})$ be the result of the $K^F_r(\mathcal{G})$-construction K^F inside $V_\kappa2$.

Let \mathcal{E} be the partial strategy of producing IT's which are guided by L^F. Then:

1. If \mathcal{E} produces a model with a Woodin, i.e.,

 there is a tree T of limit length on $K^F_r(\mathcal{G})$ guided by L^F s.t. $L^F(M(T)) \in \mathcal{S}(\mathcal{G})$ is Woodin, then $K^F_r(\mathcal{G})$ reaches $M^F_r(\mathcal{G}) = M^F(\mathcal{G})$ is iterable.

2. If one of the hypotheses is false, then $K^F_r(\mathcal{G})$ is $\kappa+1$ iterable.
If (3) applies, isolate \(\mathcal{K}^F(P) \) and use it to get a contradiction from the favorite background hypothesis.

Proof

This is like the proof in the classical case when \(F = \text{nd}^+ \) and uses that \(F \) condenses well.

Remember one more "local" version of the \(\mathcal{K}^F \)-existence axiom (for instance:)

Applications Show PD from various hypotheses

Theorem \(T \Omega \Rightarrow \mathcal{V} \) is closed under \(M^\#_{\text{suitable}} \)

Theorem There are \(\omega \) pairs of successor cardinals with the tree property with sup \(\delta \cdot \omega \cdot 2^\delta < \delta \).

Then \(H_\delta \) is closed under \(M^\#_{\text{suitable}} \)

Theorem Let \(\kappa \) be singular, \(\text{cf}(\kappa) > \omega \). Suppose \(\exists \kappa \in \kappa \setminus \kappa^+ \delta \) is stationary. Then \(H_\kappa \) is closed under \(M^\#_{\text{suitable}} \).

Theorem Suppose \(CH \) and there is a precipitated ideal on \(\omega_1 \).

Then PD holds. (i.e., \(H_\omega \) is closed under all \(M^\#_m \))

Theorem (Woodin) There is \(\omega_1 \)-dense ideal on \(\omega_1 \). Then PD.
Theorem 9.40

Suppose \(G \subseteq \mathcal{P}(\omega_1) \) is a pointclass, \(V = L(\omega_1, \mathcal{R}) \), and \(\omega_1 \) is \(\Theta \)-regular.

Let \(G_0 \subseteq P_{\omega_1} \) be \(L(\omega_1, \mathcal{R}) \) generic and let \(H_0 \subseteq \text{Col}(\omega_3, \langle G_0 \cup \mathcal{R} \rangle) \) (here \(\mathcal{R} \) is essentially \(\text{Hod} \)).

Let \(\mathcal{L}(\omega_1, \mathcal{R}) \langle G_0 \cup \mathcal{R} \rangle \) be \(\mathcal{L}(\omega_1, \mathcal{R}) \)-generic. Then

\[L(\omega_1, \mathcal{R}) \langle G_0 \cup \mathcal{R} \rangle \models \exists X \mathcal{L}(\omega_1, \mathcal{R}) \langle G_0 \cup \mathcal{R} \rangle \]

\(MM^{++}(\mathcal{R}) \) is:

- \(MM \) for pales of size \(2^{\aleph_\omega} \) plus
- For any collection \(\langle \tau_x, \omega_1 < \tau_x \rangle \) of \(\mathcal{R} \)-names for stationary subsets of \(\omega_1 \), each \(\tau_x \) is stratified.

Define \(P_{\omega_1} \) is the set of \(\langle (M, I), a \rangle s.t. \):

- \(M \) is a countable transitive model of \(\text{ZFC} + \text{MA}_{\omega_1} \)
- \(I \) is a precipitous ideal on \(\omega_1 \) in \(M \)
- \((M, I) \) is iterable by repeated application of generic ultrapowers by \(I \).
- \(a \in \mathcal{P}(\omega_1)^M \) and \(\forall x \in \mathcal{P}(\omega_1)^M s.t. \omega_1^M = \omega_1^M \).

Ordering:

\[\langle (M, I), a \rangle \leq \langle (N, J), b \rangle \]

iff

\[\langle (N, J), b \rangle \in H(\omega_1)^M \]

\[\forall j : (N, J) \rightarrow (\omega_1^*, j^*) \text{ in } M \text{ s.t. } j(\bar{b}) = a \text{ and } \]

(so \(j \) is an iteration map of length \(\omega_1 \))

Note: \(j \) is uniquely determined by \(j(\bar{b}) \).

Facts

(1) If \(G \subseteq P_{\omega_1} \) is a filter but

\[A_G = \bigcup \{ a : \langle (M, I), a \rangle \in G \} \]

For all \(p \in G \), \(p = \langle (M, I), a \rangle \) there is unique

\[j_p : (M, I) \rightarrow (M^*, I^*) \text{ s.t. } j_p(a) = A_G. \]
Let
\[\mathcal{B}_k = \bigcup \{ j_p (\mathcal{P}(\alpha, \mu)) : P = (\mu, i, \alpha) \in G \} \]
and
\[\mathcal{R}_{\text{max}} \in L(KR) \).

Theorem 9.33/35 Suppose that \(\Gamma \subseteq \mathcal{P}(\aleph_1) \) is a pointclass and \(L(\Gamma, \mathcal{R}) \models \Delta^+ \). Let \(G \in \mathcal{R}_{\text{max}} \) be \(\mathcal{R}(\Gamma, \mathcal{R}) \)-measurable. Then in \(L(\Gamma, \mathcal{R})[G] \):

1. \(\mathcal{P}(\{y\}) = \mathcal{P}(\omega_1) \subseteq L(\mathcal{R})[G] \)
2. \(L(\mathcal{R})[G] \models c = \omega_2 \)
3. \(\forall A \in \mathcal{P}(\mathcal{R}) \cap L(\Gamma, \mathcal{R}) : L(A, \mathcal{R}) \not\models [G] \models \neg \text{FC} \)
4. \(\forall A \in \mathcal{P}(\omega) - L(\mathcal{R}) : G \in L(\mathcal{R})[A] \).

Proof of Theorem 9.40 \(L(\Gamma, \mathcal{R})[G_0] \models \omega_2 - \text{DC} \) so \(\text{ETS} \)

\[L(\Gamma, \mathcal{R})[G_0] \models \text{MM}^+ (c) \]

Let \(\pi_1, \pi_2, \pi_3 \) be \(\mathcal{R}_{\text{max}} \)-names for:
- \(\pi_1 \) a point on \(\omega_2 \) preserving stationary subsets of \(\omega_1 \)
- \(\pi_2 \) an \(\omega_1 \)-sequence of dense subsets of \(\pi_1 \)
- \(\pi_3 \) an \(\omega_1 \)-sequence of \(\pi_1 \)-names for stationary subsets of \(\omega_2 \).

Fix a coding of elements of \(H(\omega_2) \) by reals
- first code elements of \(H(\omega_2) \) by subsets of \(\omega_1 \)
- then, since each subset of \(\omega_1 \) is on \(L[K] \) for some \(x \in \omega \) code this by \(x^\# \) and the relevant \(\tau \).

Letting \(B_{\pi_1}, B_{\pi_2}, B_{\pi_3} \) be the set of codes for elements of \(\pi_1, \pi_2, \pi_3 \) we have that for any \(\text{TCM} \) of \(\text{ETC} \) and closed under \(\text{E} \) daggers for reals: of \(\omega_2^M \).

\(B_{\pi_1} \) \(\text{M} \) decodes as a \(\mathcal{R}_{\text{max}} \)-name for a \(p.o. \) on a subset of \(\omega_1^M \).

\(B_{\pi_2} \) \(\text{M} \) decodes as an ...
Let T_0 be a tree on $\omega^3 \times \omega^3$ set
\[p(T_0) = B_\omega \times B_\omega \times B_\omega \quad \text{and} \quad p(T_1^*) = \text{its complement}. \]
This is possible due to AD^+; it implies reflection to Thm^+ below.

If $j: M \rightarrow M^*$ when $M \models \text{ZFC transitive and } T_0, T_1 \in M$ the
\[p(T_i^*) \subseteq p[j(T_i^*]) \quad i = 0, 1. \]

Theorem 9.38: Assume $\mathcal{P} \in \mathcal{P}(\mathcal{R})$ is a pointclass and
$L(\mathcal{P}, \mathcal{R}) \models \text{AD}^+$. Then $\forall X \in \mathcal{P} \cap \text{On} \cap L(\mathcal{P}, \mathcal{R})$ satisfies
\[0 \in L[\mathcal{Y}] \]
\[L[\mathcal{Z}] \subseteq \mathcal{Y} \quad \text{and} \quad \forall \mathcal{Z} \in \mathcal{Y} \subseteq \mathcal{R} \text{ s.t. } L[\mathcal{Z}] \subseteq \mathcal{R} \]

- $L[\mathcal{Y}] \subseteq \mathcal{N}$ and
- $L[\mathcal{Y}] \cap \mathcal{N} = \mathcal{N} \cap \mathcal{V}_\kappa$ for the least strongly inaccessible
- $\exists \mathcal{D} \leq \omega_1^\mathcal{N}$ s.t. \mathcal{N} is Woodin in \mathcal{N}.

Proof sketch
- Let S be this set \mathcal{S} for T_0, T_1
- Let μ be the club measure on $\mathcal{P}(\mathcal{R})$

\[\text{normality: if } f: \mathcal{P}(\mathcal{R}) \rightarrow \mathcal{P}(\mathcal{N}) \text{ is such that } \]
\[f(0) \leq \sigma \quad \text{for } \sigma \neq \delta \text{ then } \exists \mathcal{X} \in \mathcal{R} \text{ s.t. } \]
\[\exists \sigma, 1 \in \mathcal{X} \Leftrightarrow f(\sigma) \downarrow \mu. \]

Take $\prod_{\sigma \in \mathcal{P}(\mathcal{R})} L(\mathcal{S}, \sigma)(\mu = L(\mathcal{S}, \mathcal{R}))$

Let T_0, T_1^* be the images of T_0, T_1 under the up map.
Then $p(T_0^*) = p(T_0)$ and $p(T_1^*) = p(T_1)$. So
$L(\mathcal{S}, \mathcal{R}) = p(T_1^*)$ decides as... .

So: $\forall \sigma \in \mathcal{P}(\mathcal{R}) \ L(\mathcal{S}, \sigma)$ also thinks this.

Force over $L(\mathcal{S}, \sigma)$ with $\prod_{\text{max} \sigma} L(\mathcal{S}, \sigma)$

denote the forcing generic g. Then $L(\mathcal{S}, \sigma) \models 2^{\mathcal{R}} = \mathcal{R}$, etc let t be an enumeration
of σ in $L(\mathcal{S}, \sigma)[g]$. Then $L(\mathcal{S}, \sigma)(g) = L(\mathcal{S}, t)$.
let \(N \) be as for \(L(S, \mathcal{M}) \) (T.9.36). Let \(P \) be the realization of \(\mathcal{M} \) by \(g \). \(N \vDash P \) preserves state subset \(\mathcal{M} \).

Let \(h \subseteq P \) be \(N \) - generic.

Let \(d \) be winning on \(N \). Let \(K \) be \(N \) - generic for \(\text{Coll}(\omega_1, \delta) \). Force over \(N \vDash K \) with \(\mathcal{C} \) forcing to get \(M \vDash \mathcal{M} \). Call this extension \(N^+ \). Let \(g \) be the least strongly inaccessible of \(N^+ \). Then \(\langle (N^+, N^+) \rangle \vDash \mathcal{M} \) and is above all \(\langle (M, L) \rangle \) for all \(\langle (M, L) \rangle \) in \(g \).

Let \(p_0 \in G \subseteq \mathcal{P}_{\text{max}} \), \(L(P_{\text{max}}) \) - generic. Then \(j_{p_0} : (N^+, N^+) \rightarrow (N^+, N^+) \).

\[j_{p_0} : (N^+, N^+) \rightarrow (N^+, N^+) \]

\[j^* = N^+, N^+ \]

Assume \(\Gamma \) is a pointclass, \(L(P_{\text{max}}) \vDash \mathcal{M} \). \(G \subseteq \mathcal{P}_{\text{max}} \) is \(L(P_{\text{max}}) \) - generic. Then \(L(P_{\text{max}}) \vDash \omega_2 - \text{DC} \).

Proof: It suffices to prove \(\omega_2 - \text{DC}_P \). Suppose \(R \subseteq \Gamma \times \Gamma \). Work in \(L(P_{\text{max}}) \). Find \(n < \Theta \) s.t. all \(w \)-sequences from \(\text{tr}(w, n) \) have extensions in \(v\). For all \(n < \Theta \), \(w(n) \) is \(\leq \Theta \). Why:

- \(c = \mathcal{P}(w_1) = \mathcal{P}(w_2) \)
- \(\exists B \subseteq R \) coding \(R \setminus w(c) \), \(FA \subseteq R \) coding \(R_{\text{max}} \) name for \(B \).

So in \(L(C_{\text{max}}) \) can find \(\omega_2 \) - sequence through \(R \).