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Dedicated to the memory of William B. Arveson

Abstract. Given a dynamical system (A, α) where A is a unital C∗-algebra and α is a
(possibly nonunital) ∗-endomorphism of A, we examine families (π, {Ti}) such that π is a
representation of A, {Ti} is a Toeplitz–Cuntz family and a covariance relation holds. We
compute a variety of nonselfadjoint operator algebras that depend on the choice of the co-
variance relation, along with the smallest C∗-algebra they generate, namely the C∗-envelope.
We then relate each occurrence of the C∗-envelope to (a full corner of) an appropriate twisted
crossed product. We provide a counterexample to show the extent of this variety. In the
context of C∗-algebras, these results can be interpreted as analogues of Stacey’s famous
result, for nonautomorphic systems and n > 1.

Our study involves also the one variable generalized crossed products of Stacey and Exel.
In particular, we refine a result that appears in the pioneering paper of Exel on (what is now
known as) Exel systems.

1. Introduction

For this paper, a dynamical system (A,α) consists of a unital C∗-algebra A
and a (possibly non unital) α ∈ End(A). We study the representation theory
of universal objects that satisfy (more or less) the covariance relation

π(α(x)) =
n∑

i=1

Tiπ(x)T
∗
i , for all x ∈ A,

where {Ti} is a Toeplitz–Cuntz family and n ≥ 1. We were initially motivated
by [9, 10, 11, 30, 36, 39]. Stacey’s multiplicity n crossed product is the universal
C∗-algebra A×n

α N, when π is additionally assumed to be nondegenerate [39],
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and a family of such representations is inherited by Cuntz’s twisted crossed
product A∞ ⋊α∞

On [10]. Therefore a canonical ∗-epimorphism A ×n
α N →

p(A∞ ⋊α∞
On)p is induced, where p = [1A] ∈ A∞. Stacey shows that this

∗-epimorphism is injective when n = 1 or α is an automorphism [39, Prop. 3.3
and 3.4], and one can ask for an extension of this result. The counterexample
provided in Subsection 4.32, shows that this is hopeless, and another approach
should be considered.

This approach is given in the context of operator algebras both selfadjoint
and nonselfadjoint, influenced by the ideas of Arveson [1, 3] and the work
of many researchers in dilation theory (see [8, 12, 13, 14, 19, 25, 31, 35], to
mention but a few). Instead of examining a large universal C∗-algebra TS gen-
erated by a system of relations S, one considers the noninvolutive analogue AS

subject to S. The goal is to associate the smallest C∗-algebra C∗
env(AS) that

is generated by AS , namely the C∗-envelope of AS , to C∗-algebras generated
by an invertible system S ′ that dilates S. We coin this as Arveson’s program
on the C∗-envelope.1

There are some interesting consequences derived from this approach. First
of all the C∗-envelope possesses a ring theoretical injective property. Thus in
the following short exact sequence

0 −→ J −→ TS −→ C∗
env(AS) −→ 0,

the algebra AS is preserved isometrically by the unique ∗-epimorphism TS →
C∗

env(AS). The same scheme holds by substituting TS with any C∗-algebra
generated by an isometric copy of AS . Taking into account that S is reflected
isometrically inside TS , hence in AS , this gives a picture on how narrow one
can be on defining universal C∗-algebras related to S. One cannot go beyond
the minimal C∗

env(AS). Additionally, the ideal J in TS , namely the Šilov ideal
of AS , plays the role of the noncommutative Šilov boundary and it is equipped
with the analogous properties.

The motivating and intriguing part of this theory is that, even though
C∗

env(AS) always exists as a minimal object [19, 13, 2, 23], the interest lies
exactly on connecting it to a natural C∗-algebra of invertible S-like relations.
Nevertheless, the possibility of C∗

env(AS) being TS is not excluded. In this
paper we are interested in both such cases for a fixed system S.

To this end we define the nonselfadjoint operator algebras And ×t
α T +

n and
And ×α T +

n in analogy with Cuntz’s twisted crossed product and Stacey’s
crossed product respectively, where the use of the superscript “t” is self-
explanatory. In Theorem 4.26 we show that C∗

env(And ×t
α T +

n ) is a full corner
of the twisted crossed product A∞ ⋊α∞

On. This is the analogue of [39,
Prop. 3.3 and 3.4] for nonautomorphic systems and n > 1. On the other hand
C∗

env(And ×α T +
n ) is simply A ×n

α N when α is unital (see Theorem 4.17). In
fact the given counterexample shows that And ×t

α T +
n and And ×α T +

n are

1 We emphasize that the term C∗-envelope must not be confused with the notion of an
enveloping C∗-algebra. The first one is a minimal C∗-algebra associated to AS , whereas the
second one is the maximal C∗-algebra TS . See Subsection 2.1 for the pertinent definitions.
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not canonically isomorphic unless α is an automorphism. From one point of
view [28, 37], And ×α T +

n resembles a maximal twisted product, in contrast to
And ×t

α T +
n which resembles a minimal twisted product ; they coincide when α

is an automorphism, but not in general.
The notation And emphasizes on that A is represented nondegenerately

inside the universal objects. One can define A×t
αT

+
n and/or A×αT +

n , without
imposing this requirement. By appropriately weighting the generators, we
show that And ×t

α T +
n embeds in A ×t

α T +
n , and in Theorem 4.23 we give the

connection of C∗
env(A ×t

α T +
n ) with the twisted crossed product. This is the

stepping stone to get the results explained in the previous paragraph.
We give applications of our results in cases that involve a transfer opera-

tor L following [16, Sec. 4] and [11]. To do so we use the language of C∗-
correspondences. In Theorem 4.30 we show that the Cuntz–Pimsner algebra
of the correspondence ML⊗Xn is a full corner of the twisted crossed product
and has a rather special form. Here ML is Exel’s correspondence [16] and Xn

is the Hawaiian earring graph on n edges.
Exel systems (A,α, L) were introduced in the pioneering paper of Exel [16]

and have been under considerable investigation in a series of papers [4, 5, 20,
33]. In these papers a similar representation theory is used, when n = 1.
For this reason, we present the one-variable case separately, as it may be of
independent interest. This allows us also to simplify proofs for n > 1. A third
reason for following this presentation of our results is that we correct an error
in [16, Thm. 4.7]: it is claimed that, when α is injective and α(A) is hereditary,
then A⋊α,L N [16, Def. 3.7] is ∗-isomorphic to A(A,α)[16, Def. 4.4]. However,
in Theorem 3.14 we show that A ⋊α,L N is actually ∗-isomorphic to A ×1

α N,
while in Proposition 3.4 we show that A(A,α) coincides with A ×1

α N exactly
when α(1A) = 1A. A fourth important reason is that And ×α T +

n behaves in a
different way when n = 1, since And ×α T +

1 ≃ And ×
t
α T +

1 (cp. Theorem 3.22,
Theorem 4.16, Subsection 4.32).

In Proposition 3.9 we give necessary and sufficient conditions for A to be
embedded injectively in A ⋊α,L N, adding to results obtained by Brownlowe
and Raeburn [4]. In fact, when α is unital or (A,α, L) is as in [16, Sec. 4], then
A ⋊α,L N is the Cuntz–Pimsner algebra of ML, which we prove is a Hilbert
bimodule (see Proposition 3.10 and Theorem 3.14). This is quite surprising.
We remark that Brownlowe, Raeburn and Vitadello [5] examine Exel systems
arising from commutative C∗-algebras, for which they show that A ⋊α,L N is
again the Cuntz–Pimsner algebra OML

. We wonder whether this is true in
general; yet this lies outside the purview of this paper and is to be pursued
elsewhere.

The paper is divided into three parts. In Section 2 we present notation and
give the constructions that are used in the sequel. In Section 3 we present the
results concerning the one variable case. In Section 4 we proceed to the exam-
ination of the multivariable case. We conclude by giving the counterexample
mentioned earlier.
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We emphasize that in general the dynamical systems (A,α) are neither
injective nor unital. Noninjectivity is treated by combining [38, 39, 22]: the
objects related to (A,α) are identified with the objects related to the injective
system (A/Rα, α̇). (Therefore the copy of A inside these objects is A/Rα,
and it is A exactly when α is injective.) On the other hand, the trick of
“weighting” the generators makes dilation theory far more tractable for our
purposes and helps us treat the nonunital cases. We hope that the reader will
discover applications of these tricks to other constructions.

Remarks on Notation and Conventions. The noninvolutive part T +
n of

the Toeplitz–Cuntz algebra Tn is the linear span of elements sµ, for a word µ
in F+

n . Whereas it would be convenient to use the semigroup F+
n (resp. N) in

our notations when possible, we avoid doing so since the group Fn (resp. Z)
generated by F+

n (resp. N) does not contain the analogous relations that hold
in Tn. Therefore T +

n and F+
n differ based on their representation theory and

we want to emphasize that distinction in our notation. (Note that in this way
we deliberately avoid any confusion with the notation of [12] and [34].) The
isometric copy of T +

n in On will be denoted by O+
n .

We will say that a family {Ti}ni=1 of operators in a B(H) is a Toeplitz–Cuntz
family (resp. a Cuntz family) if the Ti are isometries with orthogonal ranges
and

∑n
i=1 Ti ≤ IH (resp.

∑n
i=1 Ti = IH). For sake of simplicity we will often

write Ti ∈ T +
n (resp. Ti ∈ O+

n ), meaning that {Ti}ni=1 is a Toeplitz–Cuntz
family (resp. a Cuntz family).

Throughout the paper a number of different operator algebras are defined,
and for this reason we include an Index at the end of this paper. However,
even if the established notation may not be self-contained, we do not proceed
to change it. For example, Stacey’s crossed product A×n

α N could be denoted
alternatively by And ×α Tn, as follows by its representation theory.

Finally, we make the convention that a canonical representation is a repre-
sentation that maps generators to generators of the same index.

2. Operator algebras and constructions

2.1. Operator algebras and the C∗-envelope. An operator algebra A is
a closed subalgebra of some B(H), where H is a Hilbert space. When A is
closed under the involution inherited by B(H) then it is a C∗-algebra. The
representation theory of an operator algebra consists of completely contractive
(resp. isometric) homomorphisms ρ : A → B(H), i.e., every homomorphism
ρk ≡ idk ⊗ ρ :Mk(A) → B(H(k)) is contractive (resp. isometric).

A representation ν : A → B(K) is called a dilation of ρ if ρ(a) = PHν(a)|H
for all a ∈ A. A complete isometry ρ is called maximal if any dilation ν of
ρ is trivial. By [13] every complete isometry has a dilation that is maximal.
Therefore ρ is maximal if and only if, given a maximal dilation ν of ρ, there is
a representation σ such that ν = ρ⊕ σ.

A pair (C, ρ) such that C is a C∗-algebra, ρ : A → C is a complete isometry
and C = C∗(ρ(A)), is called a C∗-cover of A. An ideal J in C is called boundary
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if the restriction of the quotient map qJ to ρ(A) is a complete isometry; the
Šilov ideal J is the largest boundary ideal. Consequently, the pair (C/J , qJ ◦
ρ), called the C∗-envelope of A and denoted simply by C∗

env(A), is the smallest
C∗-cover generated by A. (It is clear that C/J contains no nontrivial boundary
ideals.) In fact the C∗-envelope has a universal property: for every C∗-cover
(C, ρ) of A there is a (necessarily) unique ∗- epimorphism Φ : C → C∗

env(A)
such that Φ(ρ(a)) = a for all a ∈ A.

Lemma 2.2. Let π : C∗
env(A) → B(H) be a ∗-homomorphism. Then π is

faithful if and only if π|A is a complete isometry.

Proof. If π is faithful then it is a complete isometry, hence π|A is a complete
isometry. For the converse, the ∗-homomorphism π̃ : C∗

env(A)/ kerπ → B(H)
is faithful. Hence kerπ = (0), as a boundary ideal of A in C∗

env(A). �

Unlike [3], a representation π of a C∗-cover C of A is called boundary if the
restriction of π to A is maximal [13]. We say that A has the unique extension
property if any faithful representation π : C∗

env(A) → B(H) is a boundary
representation [14]. In particular the free atomic representation of C∗

env(A) is
boundary, therefore the irreducible representations of C∗

env(A) are boundary
as direct summands of a boundary representation. Therefore, if A has the
unique extension property, then it admits a Choquet boundary in the sense of
[3], i.e., the existence of sufficiently many irreducible boundary representations
of C∗

env(A).
The existence of the C∗-envelope was first proved by Arveson in the case

where there were enough boundary representations [1]. The first proof for
the general case was given by Hamana [19]. Twenty five years later Dritschel
and McCullough [13] gave an independent proof for the existence of the C∗-
envelope, simplified later by Arveson [2]. The first author gives an independent
proof of Hamana’s Theorem in [23]. The existence of the Choquet boundary
for separable operator systems (or operator algebras) was proved by Arveson
[3] and it is still an open problem for the nonseparable cases. Recently, Kleski
[29] has proved that, for the separable case, the supremum can be replaced by
the pointwise maximum.

We remark that the notion of the C∗-envelope should not be confused with
the notion of the enveloping C∗-algebra of an involutive Banach algebra. The
universal property of the C∗-envelope suggests that it is the smallest C∗-cover
of X . One might want to rename the C∗-envelope as the C∗-minimal cover,
though it seems impractical to try to change established terminology.

Below we describe the construction of universal/enveloping (in general non-
selfadjoint) operator algebras.

2.3. Universal operator algebras. An effective way to create a universal
operator algebra B with respect to generators and relations is, first to form
the corresponding universal C∗-algebra A in the sense of Blackadar [6], and
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then consider the appropriate operator subalgebra B of A. The universal rep-
resentation of B is then the restriction of the universal representation of A
to B.

A second way is to construct an operator algebra B relative to (a certain
family of) contractive representations of a Banach algebra B with the property
that every contractive homomorphism (in this family) of B acting on a Hilbert
space lifts to a completely contractive homomorphism of B. (If in addition B
has an involution to take in account, then B is the enveloping C∗-algebra of
B.) Below is a brief discussion of the construction of such a universal object.

Let B be a Banach algebra, B be an operator algebra and φ : B → B be
a contractive algebraic homomorphism. We say that ρ lifts to a completely
contractive homomorphism ρ̃ if the following diagram is commutative

B
φ

//

ρ

""❊
❊❊

❊
❊
❊
❊❊

B

ρ̃

��
✤

✤

✤

B(H).

Suppose that the cardinality of B is less or equal to a cardinal β that we
choose such that βℵ0 = β. First let F be the set of contractive representations
(Hi, ρi) of B such that dim(H) ≤ β. Let H = ⊕i∈FHi, φ := ⊕i∈Fρi, and

B := φ(B)
B(H)

. Then B is an operator algebra with the operator structure
inherited from B(H). Equivalently, let the seminorms on Mk(B)

ωk([aij ]) = sup{‖[ρ(aij)]‖B(H
(k)
ρ )

| (Hρ, ρ) ∈ F}.

If N = kerω1(= kerφ), thenMk(N ) = kerωk. Hence the family of the induced
norms ‖·‖k on Mk(B/N ) with ‖[bij +N ]‖

k
= ωk([bij ]) is defined. Then B is

the completion of the image of B/N in B(H) (cp. [7, Subsec. 2.4.6]). Every
(Hi, ρi) ∈ F lifts to the completely contractive homomorphism ρ̃i(·) := PHi

·|Hi

of B. We will refer to idB ≡ ⊕i∈F ρ̃i as the universal representation of B (the
representations (Hi, ρ̃i) are the building blocks, as shown below).

Let (H, ρ) be a contractive representation of B where H has arbitrary di-
mension, say J0 = dim(H). Let the set S consist of pairs (J, {Kj}j∈J) such
that J ⊆ J0, theKj are mutually orthogonal subspaces ofH with dim(Kj) ≤ β
and every Kj is reducing for ρ(B), i.e., every Kj is ρ(B)-invariant and ρ(B)∗-
invariant. The set S is nonempty. Indeed, let C be the C∗-algebra generated
by ρ(B) inside B(H). Then the cardinality of C is less or equal to β, since it
is the closure of the span of monomials of the form

(ρ(a1)
∗)ǫ1ρ(b1)ρ(a2)

∗ · · · (ρ(an)
∗)ǫ2 , with ǫ1, ǫ2 = 0, 1, and al, bl ∈ B.

Then the Hilbert subspace [Cξ], for ξ ∈ H , is reducing for C (and consequently
for ρ(B)), and has cardinality less or equal to β. Choosing an η ∈ H that is
orthogonal to [Cξ] we can form the subspace [Cη] that is orthogonal to [Cξ]
and so on.
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We define a partial order in S by the rule (J, {Kj}j∈J) ≤ (J ′, {Kj′}j′∈J′),
if J ⊆ J ′ and Kj′ = Kj when j′ = j ∈ J . If I is a chain of such pairs then
(I, {Kk}k∈I), with I = ∪l∈IJl, and Kk = Kjl , when k = jl ∈ Jl, is a maximal
element of I in S. Applying Zorn’s Lemma we obtain a maximal element in
S, say (J, {Kj}j∈J).

If there is a nonzero ξ ∈ H such that ξ ⊥ K, then [Cξ] is reducing for ρ(B)
and has dimension less or equal that β, which leads to a contradiction. Thus
H = ⊕j∈JKj . Therefore ρ = ⊕j∈Jρj , where ρj = ρ|Kj

. But every ρj is in
F , hence lifts to a completely contractive representation of B, say ρ̃j . Thus
ρ̃ = ⊕j∈J ρ̃j is a completely contractive representation of B, which is a lifting
of ρ.

Similarly one can start with a family F ′ of contractive representations of B.
Starting with representations in F ′ that act on Hilbert space with the upper
bound on the dimension, one can construct an operator algebra A(B,F ′) that
has the universal property for representations in F ′ (acting on Hilbert spaces
of arbitrary dimension). We will refer to A(B,F ′) as the universal operator
algebra relative to F ′.

2.4. Radical and direct limits. Given a dynamical system (A,α), let the
radical ideal Rα be the closure of ∪n kerα

n [38]. Since x ∈ Rα if and only if
limn α

n(x) = 0, an injective ∗-homomorphism is defined by

α̇ : A/Rα → A/Rα : x+Rα 7→ α(x) +Rα.

The direct limit dynamical system (A∞, α∞) associated to (A,α) [39] is

A
α //

α

��

A
α //

α

��

A
α //

α

��

· · · // A∞

α∞

��
A

α // A
α // A

α // · · · // A∞.

If (A,α) is unital, then A∞ 6= (0). It may be the case that A∞ is trivial, but
α∞ is always an automorphism of A∞. The image of A in A∞ is A/Rα, thus
(A∞, α∞) coincides with the extension ((A/Rα)∞, (α̇)∞) of (A/Rα, α̇).

2.5. Exel systems. An Exel system (A,α, L) consists of a dynamical system
(A,α) with a transfer operator L : A → A, i.e., L is a continuous positive
linear map such that L(α(a)b) = aL(b), for all a, b ∈ A.

By definition, the range of L is an ideal of A. By [16, Prop. 2.3] L is called
nondegenerate if one of the following equivalent conditions holds:

(1) the mapping α ◦ L is a conditional expectation onto α(A);
(2) α ◦ L ◦ α = α;
(3) α(L(1)) = α(1).

In that case A = kerα⊕ ImL as an orthogonal sum of ideals. When L(1) = 1
then L is nondegenerate and onto A. Thus α is injective.
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2.6. C∗-correspondences. We use [27, 32] as a general reference. A C∗-
correspondence X over A is a right Hilbert A-module together with a ∗-
homomorphism φX : A → L(X). A (Toeplitz ) representation (π, t) of X
consists of a ∗-homomorphism π : A → B(H) and a linear map t : X →
B(H), such that π(a)t(ξ) = t(φX(a)(ξ)) and t(ξ)∗t(η) = π(〈ξ, η〉X), for all
a ∈ A and ξ, η ∈ X ; by the C∗-identity we get also that t(ξ)π(a) = t(ξa).
A representation (π, t) is said to be injective if π is injective; then t is an
isometry. The C∗-algebra generated by (π, t) is the closed linear span of
t(ξ1) · · · t(ξn)t(ηm)∗ · · · t(η1)∗. Every pair (π, t) defines a ∗-homomorphism
ψt : K(X) → B, such that ψt(Θ

X
ξ,η) = t(ξ)t(η)∗ [21, Lemma 2.2].

Let K be an ideal in φ−1
X (K(X)); we say that (π, t) is K-coisometric if

ψt(φX(a)) = π(a), for a ∈ K. Following [27], the representations (π, t) that
are JX -coisometric, where JX = kerφ⊥X ∩ φ−1

X (K(X)), are called covariant
representations. The ideal JX is the largest ideal on which the restriction of
φX takes values in the compacts and is injective. When φX |JX

induces an
isomorphism onto K(X) then X is (called) a Hilbert bimodule [26].

The Toeplitz–Cuntz–Pimsner algebra TX is the universal C∗-algebra for
“all” representations of X , and the Cuntz–Pimsner algebra OX is the uni-
versal C∗-algebra for “all” covariant representations of X . The tensor algebra
T +
X is the norm-closed algebra generated by the copies of A and X in TX . For

more details see [17, 27, 35]. There is an important connection between TX
and OX established in full generality by Katsoulis and Kribs [25, Thm. 3.7]:
the C∗-envelope of T +

X is OX . As a consequence, the ideal K(F (X)JX) is the

Šilov ideal of T +
X .

For an ideal K ⊆ φ−1
X (K(X)) we denote by O(K,X) the universal C∗-

algebra for “all” K-coisometric representations of X . It is easy to deduce that
O(K,X) ≃ TX/I, where I is the ideal in TX generated by πu(a)−ψtu(k), with
a ∈ K, φX(a) = k ∈ K(X), and (πu, tu) is the universal representation of TX .
The ideal K ⊆ φ−1(K(X)) may not be contained in JX . Nevertheless, there
are necessary and sufficient conditions that guarantee this. Note that OX is
the minimal such C∗-algebra containing A.

Lemma 2.7. Let X be a correspondence over A and K an ideal of A contained
in φ−1(K(X)). Then the following are equivalent:

(1) A →֒ O(K,X);
(2) φX |K is injective;
(3) K ⊆ JX ;
(4) every JX-covariant representation is K-covariant;
(5) T +

X →֒ O(K,X).

Proof. For [(1) ⇔ (2)] see [4, Lemma 2.2]. If item (2) above holds, then
K ⊆ kerφ⊥X , hence K ⊆ JX . The implications [(3) ⇒ (4)] and [(5) ⇒ (1)] are

Münster Journal of Mathematics Vol. 6 (2013), 383–411



Dynamical Systems and Cuntz families 391

obvious. Finally assume that item (4) holds. Then the diagram

TX
q1 //

q2

$$❍
❍❍

❍❍
❍❍

❍❍
OX

O(K,X)

q3

::✉✉✉✉✉✉✉✉✉

of canonical ∗-epimorphisms commutes. By [25], the restriction of q1 to the
tensor algebra is a complete isometry, hence T +

X →֒ O(K,X). �

3. One-variable case

The reader is referred to [4, 5, 11, 16, 20, 33, 39] for examples that arise
naturally in the context, that we won’t repeat. We will write 1A ≡ 1.

3.1. The crossed products A(A,α) and A×1
α
NNN. Exel [16] defines the uni-

versal C∗-algebra A(A,α) relative to the class

FE = {(π, T ) | T isometry, and π(α(x)) = Tπ(x)T ∗, for all x ∈ A} ,

that is generated by π(A) and T . Since T is an isometry, then

Tπ(x) = π(α(x))T, for all x ∈ A.

Moreover, π(α(1)) = Tπ(1)T ∗ = π(α(1))TT ∗ = TT ∗π(α(1)).
A variation was given earlier by Stacey [39]: for a dynamical system (A,α)

with A∞ 6= (0), let A×1
α N be the universal C∗-algebra relative to the class

FS = {(π, T ) ∈ FE | π is nondegenerate} ,

generated by π(x)T n(T ∗)m for n,m ∈ Z+. Since π is nondegenerate the C∗-
algebra A×1

α N is generated by π(A) and T .
Nondegeneracy of A is not assumed in the definition of A(A,α), otherwise

A(A,α) would coincide with A ×1
α N. Thus 1 ∈ A is a projection in A(A,α).

The connection between A(A,α) and A×1
α N is established below.

Proposition 3.2. The C∗-algebra A×1
αN is ∗-isomorphic to the C∗- subalgebra

of A(A,α) generated by πu(A) and Tuπu(1), where (πu, Tu) is the universal
representation of A(A,α). Moreover, πu(1) is a unit for A×1

α N.

Proof. First note that πu(1) is a unit for C∗(πu(A), Tuπu(1)), since

πu(1) · Tuπu(1) = πu(1)πu(α(1))Tu = πu(α(1))Tu = Tuπu(1).

Hence the restriction of the identity representation on K = πu(1)Hu defines
a faithful representation of C∗(πu(A), Tuπu(1)). Moreover πu|K is nondegen-
erate for A and Tuπu(1)|K is an isometry. Therefore there is a canonical
∗-epimorphism Φ : A×1

α N → C∗(πu(A), Tuπu(1)).
On the other hand, let (π, T ) be a pair for A×1

αN, where π is nondegenerate
and T is an isometry. Then (π, T ) defines a pair also for A(A,α). Thus there
is a canonical ∗-epimorphism Ψ : A(A,α) → A×1

α N. Therefore Ψ(Tuπu(1)) =
Tπ(1) = T , since π is assumed nondegenerate. Thus the restriction of Ψ to
C∗(πu(A), Tuπu(1)) is still onto A×1

α N.
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It is straightforward that Ψ ◦ Φ = idA×1
αN, which completes the proof. �

By the following Proposition, we can restrict to injective dynamical systems.
Recall that α̇(x+Rα) = α(x) +Rα.

Proposition 3.3. The C∗-algebras A(A,α) and A(A/Rα, α̇) are ∗- isomor-
phic; analogously, A ×1

α N ≃ (A/Rα) ×1
α̇ N. Moreover, A/Rα embeds in

(A/Rα)×1
α̇ N and A(A/Rα, α̇).

Proof. The first part goes as in the proof of [22, Prop. 3.14]; in short, if x ∈
kerαn, then T nπ(x) = π(αn(x))T n = 0, hence π(x) = 0 since T is an isometry.
A limit argument then shows that π|Rα

= 0; thus (π ◦ qRα
, T ) is a pair for

A(A,α) if an only if (π, T ) is a pair for A(A/Rα, α̇).
For the second part, it suffices to prove it in the case where α is injective. To

this end let (π, U) be a representation of the usual crossed product A∞ ⋊α∞

Z. Then (π, U) defines a pair for A(A,α). Hence there is a canonical ∗-
epimorphism A(A,α) → A∞ ⋊α∞

Z, that fixes A. Thus we obtain a canonical
factorization of A →֒ A∞ →֒ A∞ ⋊α∞

Z by

A→ A×1
α N ⊆ A(A,α) → A∞ ⋊α∞

Z.

Therefore A embeds in A×1
α N. �

Proposition 3.4. Let (A,α) be a dynamical system with A unital and α in-
jective. Then the following are equivalent

(1) α(1) = 1;
(2) A×1

α N ≃ A(A,α);
(3) 1 ∈ A is a unit for A(A,α).

Proof. Let (πu, Tu) be the universal representation ofA(A,α). If item (1) above
holds then πu(1) is a unit for A(A,α), hence πu can be assumed nondegenerate
and item (2) is implied. It is obvious that item (2) implies (3). To end
the proof, assume that item (3) holds. Then for Tu ∈ A(A,α) we obtain
πu(1)Tu = Tuπu(1). Since Tu is an isometry, then

πu(α(1)) = πu(α(1))T
∗
uTu = T ∗

uπu(1)Tu = T ∗
uTuπu(1) = πu(1).

Since α is injective, πu is faithful, hence α(1) = 1. �

3.5. The Toeplitz algebra T (A,α,L) ≃ TML
. In his pioneering paper

Exel [16] examines operator algebras related to a system (A,α, L). In his
original definition, T (A,α, L) is the universal C∗-algebra relative to the class

{(π, S) | Sπ(x) = π(α(x))S, π(L(x)) = S∗π(x)S, for all x ∈ A} ,

generated by π(A) and S. A priori T (A,α, L) seems to differ from the universal
C∗-algebra subject to the same representation theory, but generated by π(A)
and π(A)S. These two objects are equivalent as π can be chosen to be unital
[4, 33].
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The existence of at least one such pair (π, S) comes from a representation
of the following C∗-correspondence. Let A be the semi-A-inner product with

x · y = xα(y), 〈x, y〉 = L(x∗y), for all x, y ∈ A,

and let ML be the Hilbert A-module associated to it. That is, ML is the
completion of the quotient A/N1, where N1 = {x ∈ A | L(y∗x) = 0, for all y ∈
A}. Along with the ∗-homomorphism φML

: A→ L(ML), such that φ(y)(x+
N1) = yx + N1, the module ML becomes the C∗- correspondence over A
associated to (A,α, L). By definition, every pair (π, S) of T (A,α, L) defines a
representation of ML.

Lemma 3.6. If ξ ∈ A then ξ +N1 = ξα(1) +N1.

Proof. By the computation

L(η∗(ξ − ξα(1))) = L(η∗ξ)− L(η∗ξα(1)) = L(η∗ξ)− L(η∗ξ) · 1 = 0,

we obtain that ξ − ξα(1) ∈ N1. �

Let MLn be the C∗-correspondence associated to (A,αn, Ln). For n = 0,
we identify ML0 with the trivial C∗-correspondence A over A. Let M∞ be
the direct sum ⊕n≥0MLn . For every n ∈ Z+, the mappings

γ : MLn → MLn+1 : x+Nn 7→ α(x) +Nn+1,

are adjointable with γ∗n(x+Nn+1) = L(x) +Nn. Define the pair (ρ, S) by

S : M∞ → M∞ : (x0, x1 +N1, . . . ) 7→ (0, γ0(x0), γ1(x1 +N1), . . . ),

ρ(y) : M∞ → M∞ : (x0, x1 +N1, . . . ) 7→ (yx0, yx1 +N1, . . . ).

We record for further use that

S∗ : M∞ → M∞ : (x0, x1 +N1, . . . ) 7→ (L(x1), L(x2) +N1, . . . ).

Then the pair (ρ, S) defines a pair for T (A,α, L). Moreover ρ is injective and
ρ(1) is the identity of L(M∞). Thus C∗(ρ(A), ρ(A)S) = C∗(ρ(A), S).

The following is proved by Brownlowe and Raeburn [4] and Larsen [33],
independently. We give an alternative short proof.

Theorem 3.7. [4, 33] The C∗-algebras T (A,α, L), TML
and C∗(ρ, S) are ∗-

isomorphic. Consequently, 1 ∈ A acts as a unit on T (A,α, L).

Proof. By universality there are canonical ∗-epimorphisms Φ1 and Φ2 such
that

TML

Φ1−→ T (A,α, L)
Φ2−→ C∗(ρ(A), ρ(A)S) = C∗(ρ, S),

where we use that ρ(1) = I. Then the ∗-epimorphism Φ = Φ2 ◦ Φ1 defines a
pair (ρ, t) for ML with

ρ(x) = Φ(x), t(x+N1) := Φ(x +N1) = ρ(x)S, for all x ∈ A.
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Note that ρ is injective and (ρ, t) admits the gauge action βz = aduz
, for

z ∈ T, where uz(0, . . . , 0, x+Nn, 0, . . . ) = zn(0, . . . , 0, x+Nn, 0, . . . ). Moreover,
for a compact operator Θx+N1,y+N1 ∈ K(ML) observe that

ψt(Θx+N1,y+N1)(a, 0, . . . ) = ρ(x)SS∗(ya, 0, . . . ) = 0,

for all a ∈ A. Hence ψt(K(ML))|A = 0. Therefore, if there was an a ∈ A such
that ρ(a) = ψt(k) for some k ∈ K(ML), then

(aa∗, 0, . . . ) = ρ(a)(a∗, 0, . . . ) = ψt(k)(a
∗, 0, . . . ) = 0,

hence a = 0. Thus the ideal {x ∈ A | ρ(x) ∈ ψt(K(ML))} is trivial. Then Φ is
a ∗-isomorphism, in view of the gauge invariance theorem for Toeplitz–Cuntz–
Pimsner algebras [17, 27]. Consequently, Φ1 and Φ2 are ∗-isomorphisms. �

3.8. Exel’s crossed product A⋊α,LNNN ≃ O(Kα,ML). In what follows we
identify T (A,α, L), TML

with C∗(ρ, S) and we will omit the symbol ρ.
A redundancy (a, k) is a pair in A×ASS∗A such that

abS = kbS, for all b ∈ A.

Equivalently, φML
(a) = k ∈ K(ML) and ρ(a)t(b + N1) = ψt(k)t(b + N1).

Exel’s crossed product A ⋊α,L N is the quotient of T (A,α, L) by the ideal I

generated by a− k, where (a, k) is a redundancy and a ∈ Aα(A)A [16].
Brownlowe and Raeburn [4, Cor. 3.6] show that A ⋊α,L N is ∗-isomorphic

to the relative Cuntz–Pimsner algebra O(Kα,ML) where

Kα := Aα(A)A ∩ φ−1
ML

(K(ML)).

(cp. remarks preceding Lemma 2.7). In [4, Thm. 4.2] it is proved that A →֒
A ⋊α,L N if and only if L is almost faithful on Kα, i.e., if x ∈ Kα and
L((xy)∗xy) = 0 for all y ∈ A, then x = 0. This is equivalent to letting
φML

|Kα
be injective. In view of Lemma 2.7, which extends [4, Lemma 2.2], we

obtain a list of other sufficient and necessary conditions. We gather all these
in the following Proposition.

Proposition 3.9. Let ML be the C∗-correspondence associated with an Exel
system (A,α, L). Then the following are equivalent:

(1) A →֒ O(Kα,ML);
(2) φML

|Kα
is injective;

(3) Kα ⊆ JML
;

(4) there is a canonical ∗-epimorphism O(Kα,ML) → OML
;

(5) T +
ML

→֒ O(Kα,ML);
(6) L is almost faithful on Kα.

In particular, for unital systems the picture is further simplified.

Proposition 3.10. Let (A,α, L) be an Exel system such that α(1) = 1. Then
the following are equivalent:

(1) A →֒ O(Kα,ML);
(2) O(Kα,ML) ≃ OML

.
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If any of the above holds, then ML is a Hilbert bimodule.

Proof. Since A →֒ OML
it suffices to show [(1) ⇒ (2)]. By α(1) = 1 we obtain

Aα(A)A = A. Hence Kα = φ−1(K(ML)), thus JML
⊆ Kα. If item (1) holds

then Kα ⊆ JML
, therefore JML

= Kα = φ−1(K(ML)). �

Remark 3.11. In [16, Sec. 4] Exel shows that for the systems (A,α, L) that
arise (uniquely) by a ∗-monomorphism with hereditary range, the C∗-algebras
A(A,α) and A ⋊α,L N coincide. But A ⋊α,L N is a quotient of the unital
C∗-algebra T (A,α, L), hence A(A,α) is unital. In view of Proposition 3.4 this
implies that α is unital, which is not the general case as stated in [16, Thm. 4.7].
The error appears in the computations of the proof of [16, Prop. 4.6], where
1 ∈ A is treated as a unit of A(A,α).

3.12. Revisiting Exel’s example. We correct the error that appears in [16,
Thm. 4.7]. In fact we do more; by following an alternate route, we shed light
also on the noninjective case (see Theorem 3.16). To simplify notation, we
identify A⋊α,LN with O(Kα,ML), and T (A,α, L), TML

with C∗(ρ, S), where
we will omit writing ρ.

Our basic assumption is that (A,α, L) satisfies

(†) α ◦ L(x) = α(1)xα(1), for all x ∈ A.

In this case, α(L(1)) = α(1) and L is nondegenerate in the sense of [16].

The choice of (†) enables us to identify Kα with Aα(A)A.

Proposition 3.13. Let an Exel system (A,α, L) that satisfies (†). Then we

obtain φ−1
ML

(KML
) = Aα(A)A + kerφML

. Therefore JML
⊆ Kα = Aα(A)A.

Proof. Trivially kerφML
⊆ φ−1

ML
(KML

). For all x, ξ ∈ A, we obtain

Θα(x)+N1,1+N1
(ξ +N1) = α(x)α(L(ξ)) +N1 = α(x)ξα(1) +N1

= α(x)ξ +N1 = φML
(α(x))(ξ +N1),

where we have used Lemma 3.6. Therefore φML
(α(A)) ⊆ K(ML), hence

Aα(A)A ⊆ φ−1
ML

(K(ML)). Now, let ξ, η, ζ ∈ A; then

Θη+N1,ζ+N1(ξ +N1) = ηα(L(ζ∗ξ)) +N1 = ηα(1)ζ∗ξα(1) +N1

= ηα(1)ζ∗ξ +N1 = φML
(ηα(1)ζ∗)(ξ +N1).

By passing to limits of linear combinations, we obtain that for every k ∈
K(ML) there is an x ∈ Aα(A)A such that φML

(x) = k. Thus, φ−1
ML

(KML
) ⊆

Aα(A)A + kerφML
. To end the proof, recall that JML

= φ−1
ML

(K(ML)) ∩

kerφ⊥ML
. Therefore

JML
= φ−1(K(ML)) ∩ kerφ⊥ML

∩ (Aα(A)A + kerφML
)

= φ−1(K(ML)) ∩ kerφ⊥ML
∩ Aα(A)A ⊆ Kα,

and Aα(A)A ⊆ Aα(A)A ∩ (Aα(A)A + kerφML
) = Kα ⊆ Aα(A)A. �
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Theorem 3.14. Let an Exel system (A,α, L) that satisfies (†). Then the
following are equivalent

(1) A →֒ O(Kα,ML);
(2) O(Kα,ML) ≃ OML

.

If any of the above holds, then ML is a Hilbert bimodule.

Proof. In view of Propositions 3.9 and 3.13, if any of items (1) or (2) holds,

then JML
= Kα = Aα(A)A which implies that they are equivalent. Then

φML
|JML

is onto K(ML), hence ML is a Hilbert bimodule. �

We want to examine the connection with A ×1
α N. Towards this, the first

step is the following Proposition.

Proposition 3.15. Let (A,α, L) be an Exel system that satisfies (†). Then
there are canonical ∗-epimorphisms such that the diagram

T (A,α, L)

φ̃

&&▲
▲▲

▲▲
▲▲

▲▲
▲

φ
// O(Kα,ML)

φ̂xxqq
qq
qq
qq
qq

A×1
α N

commutes.

Proof. Recall that A×1
α N →֒ A(A,α) by Proposition 3.2. Let (π, T ) be a pair

for A(A,α) and define S′ = π(α(1))T = Tπ(1). Then,

S′π(x) = Tπ(x) = π(α(x))T = π(α(x))S′

for all x ∈ A. Moreover,

(S′)∗π(x)S′ = T ∗π(α(1))π(x)π(α(1))T = T ∗π(α(1)xα(1))T

= T ∗π(α ◦ L(x))T = T ∗Tπ(L(x)) = π(L(x)),

for all x ∈ A. Therefore (π, S′) defines a representation of T (A,α, L), thus the

∗-epimorphism φ̃ is defined by the universal property. The rest of the proof
follows similar arguments with those of [16, Thm. 4.7]. �

Given (A,α, L) satisfying (†), one can define a new system (A/Rα, α̇, L̇)

satisfying (†), such that α̇ is injective and L̇ is a well defined (positive) operator.
Indeed, for x ∈ R(A) we obtain

∥∥αn+1(L(x))
∥∥ = ‖αn(α(1)xα(1))‖ =

∥∥αn+1(1)αn(x)αn+1(1)
∥∥ ≤ ‖αn(x)‖ ,

thus L(Rα) ⊆ Rα and L̇ is well defined.
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Theorem 3.16. Let (A,α, L) be an Exel system that satisfies (†). Then the
following diagram commutes

T (A,α, L)

��

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

// O(Kα,ML)

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

��

A×1
α N ≃ (A/Rα)×1

α̇ N

≃

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

T (A/Rα, α̇, L̇) //

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

O(Kα̇,ML̇)

and consequently, ML̇ is a Hilbert bimodule.

Proof. In view of the previous remarks, Propositions 3.3 and 3.15, and Theo-
rem 3.14, it suffices to show that A ×1

α N ≃ O(Kα,ML) when α is injective.
In this case, relation (†) for x = 1 gives that L(1) = 1. Therefore the operator
S of Theorem 3.7 becomes an isometry.

Let (π, S′) be the induced representation of O(Kα,ML) by (ρ, S). Then S′

is an isometry, as the range of the isometry S. By Proposition 3.13, we obtain
that (ρ(α(x)), Sρ(x)S∗) is a redundancy, hence π(α(x)) = S′π(x)S′∗ for all
x ∈ A. Thus (π, S′) defines a representation for O(Kα,ML), hence there is a

canonical ∗-epimorphism O(Kα,ML) → A ×1
α N, that is the inverse for φ̂ of

Proposition 3.15. �

Remark 3.17. Let the setsQ = {[relation (†)], [α(A) is hereditary]} andW =
{[L(1) = 1], [α is injective]}. It is easy to check that whenever an item from Q
and an item fromW hold, then all items inQ andW hold. The implication that
concerns us at this point is that, when α(A) is hereditary and α is injective
then the system (A,α, L) satisfies (†) and L(1) = 1. This follows readily
by the remarks before [16, Prop. 4.3], which completes the correction of [16,
Thm. 4.7] mentioned earlier. In any of these cases, the transfer operator is
uniquely determined, since α is injective.

Moreover, we have showed that in this case there is a canonical ∗-isomor-
phism OML

→ A×1
α N. Surprisingly, the converse also holds and we leave the

proof of this metamathematical remark to the reader.

Remark 3.18. The systems that we examine may not be unital. In fact this
case is trivial: when 1 = α(1) = L(1) and (†) holds, then α is injective and
α ◦ L = id; therefore α is an automorphism with α−1 = L. Hence T (A,α, L)
is the C∗-algebra generated by the universal representation of A(A,α, is)r [22],
and A×α,L N is the usual crossed product A⋊α Z.

Remark 3.19. Brownlowe, Raeburn and Vitadello [5] examine a second class
of examples of Exel systems induced by classical dynamical systems (T, φ).
For this class they show that the set of redundancies is the Katsura ideal,
moreover that C0(T )×α,L N is again the Cuntz–Pimsner algebra OML

. This
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identification is obtained in our case and we wonder whether this is true in
general.

3.20. C∗-envelopes. In this subsection we examine the C∗-envelope of the
nonselfadjoint parts of A(A,α) and A×1

α N, and the form of OML
.

3.20.1. The nonselfadjoint part of A(A,α) and A×1
α N. We remark that the

automorphic extension of the (unital) automorphism α∞ of A∞ to the multi-
plier algebra M(A∞) will be denoted by the same symbol.

Theorem 3.21. Let A ×α T +
1 := alg{πu(A), Tu} ⊆ A(A,α). Then the C∗-

envelope of A ×α T +
1 is the C∗-subalgebra C∗(B,U) of M(B) ⋊β Z, where

B = (A/Rα)∞ and β = (α̇)∞.

Proof. It suffices to show it for α injective, i.e., Rα = (0). By [39] the pair
(πu, Tu) extends to a covariant unitary pair (π, U) of (A∞, α∞). In turn a
pair (π, U) defines a pair for A(A,α). Therefore the canonical embedding
A(A,α) → M(A∞) ⋊α∞

Z defines a completely isometric homomorphism of
A×α T +

1 . It is immediate that C∗(π(A), U) = C∗(π(A∞), U) since the powers
U−nπ(x)Un generate π(A∞). Thus C∗(π(A∞), U) is a C∗-cover of A×α T +

1 .
Let {βz} be the gauge action defined on M(A∞) ⋊α∞

Z; then A×α T +
1 is

βz-invariant. Thus, if J is the Šilov ideal in C∗(π(A∞), U) and it is nontrivial
then it is also βz-invariant. Therefore J intersects non trivially the fixed point
algebra C∗(A∞, I) of C∗(π(A∞), U). Since A∞ is essential in M(A∞), then
J intersects A∞. Since A∞ is a direct limit there is an x ∈ A∞ such that
x ∈ J and αn

∞(x) ∈ A, for some n. But then π(αn
∞(x)) = Unπ(x)U−n ∈ J .

Therefore J intersects with A, hence with A×α T +
1 , which is a contradiction.

�

Recall that if p is a projection in a C∗-algebra A then the corner pAp is
called full if the only ideal of A containing pAp is A.

Theorem 3.22. Let And ×α T +
1 := alg{πu(A), Tuπu(1)} ⊆ A×1

α N. Then the
C∗-envelope of And ×α T +

1 is a full corner of B ⋊β Z, where B = (A/Rα)∞,
β = (α̇)∞.

Proof. It suffices to show it for α injective, i.e., Rα = (0). By [39, Prop. 3.3]
(or usual dilation theory) we obtain that p(A∞ ⋊α∞

Z)p ≃ A ×1
α N which we

show is C∗
env(And ×α T +

1 ). To this end, fix a pair (π, U) that integrates to a
faithful representation of A∞ ⋊α∞

Z.
As in the proof of Theorem 3.21, we can use the same gauge-invariance

argument to show that the Šilov ideal intersects with the fixed point algebra
pA∞p and consequently intersects with pAp = A, by moving backwards with
ad(Unp)∗ , which leads to a contradiction.

To prove that it is full, let an ideal I of A∞ ⋊α∞
Z containing the corner.

Then I contains a copy of A. If (ei) is a c.a.i. of A∞ then

π[0, x, α(x), . . . ] = lim
i
U∗π(ei) · π[x, α(x), . . . ] · π(ei)U ∈ I.
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Inductively A∞ ⊆ I. Therefore π(x)Un = limi π(x) · π(ei)Un ∈ I, for all
x ∈ A∞. Thus I contains the generators of A∞ ⋊α∞

Z, hence it is trivial. �

3.22.1. The tensor algebra T +
ML

. By [25] the C∗-envelope of any tensor algebra

is the Cuntz–Pimsner algebra. Under our assumptions for (A,α, L) we show
that OML

is a corner of a usual crossed product. In addition it has a special
form, which we will use in the multivariable case.

Theorem 3.23. Let an Exel system (A,α, L) that satisfies (†) and L(1) = 1.
Then OML

is a full corner of A∞ ⋊α∞
Z. In particular p(A∞ ⋊α∞

Z)p is the
closed linear span of

π(x0) +

k∑

n=0

π(xn)U
np+

k∑

n=1

pU−nπ(yn), for x0, xn, yn ∈ A.

Proof. The canonical identification OML
≃ A ×1

α N gives that T +
ML

is com-

pletely isometrically isomorphic to And ×α T +
1 . Hence the first part of the

theorem follows by Theorem 3.22 and [25]. The second part follows read-
ily by Theorem 3.14, since ML is a Hilbert bimodule. Indeed, in this case

OML
= T +

ML
+ (T +

ML
)∗. �

Remark 3.24. When (A,α, L) satisfies (†) and L(1) = 1, then αn ◦ Ln(x) =
αn(1)xαn(1), for all x ∈ A, hence pA∞p = A. Therefore the monomials
pπ(x)Unp and pU−nπ(x)p, for x ∈ A∞, that span p(A∞ ⋊α∞

Z)p are written
as π(x′)π(αn(1))Un and U−nπ(αn(1))π(x′), for x′ ∈ A. This gives an ad-hoc
proof of Theorem 3.23 and we record it for further use in Theorem 4.30.

4. Multivariable case

We wish to explore universal nonselfadjoint operator algebras that arise
from dynamical systems, subject to covariant relations induced by a Cuntz
family. The representation theory of such objects was exploited by Cuntz [9],
Murphy [36], Stacey [39], and Laca [30] for the twisted crossed product and the
crossed product of multiplicity n.

4.1. The twisted crossed product. Let α ∈ Aut(A); then the usual crossed
product A⋊α Z is defined, and we simply write (A⋊α Z)⊗On for the unique
tensor product C∗-algebra. If (πu, Uu) is the universal unitary covariant pair
for (A,α), then the twisted crossed product of A by α, denoted by A⋊α On, is
the C∗-subalgebra of (A⋊α Z)⊗On generated by πu(A) and the Cuntz family
{Uu ⊗ Si}. By convention C∗(πu, Uu) commutes with On. As a consequence,
the embedding of On in A⋊α On is not multiplicity free.

Let (π, U) acting on H1 such that C∗(π, U) ≃ A⋊α Z and let On acting on
H2. Then A⋊αOn is ∗-isomorphic to the C∗-algebra in B(H1⊗H2) generated
by π(A) ⊗ IH1 and {U ⊗ Si}. Therefore the twisted crossed product does
not depend on the choice of the covariant pair (π, U), but on the dynamical
system (A,α), in accordance with the original definition [9]. We remark that
the notation A⋊α On is due to Stacey [39] because of this fact.
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4.2. Multiplicity n crossed products. The multiplicity n crossed product
is the universal C∗-algebra generated by π(A)TνT

∗
µ such that

(1) π is a nondegenerate representation of A,
(2) {Ti} is a Toeplitz–Cuntz family, and
(3) π(α(x)) =

∑n
i=1 Tiπ(x)T

∗
i , for all x ∈ A,

and it is denoted by A×n
α N [39]. It is immediate, due to nondegeneracy, that

A×n
α N is generated by π(A) and {Ti}. Analogous to the one variable case we

remove nondegeneracy by “weighting” the isometries Ti.

Proposition 4.3. The multiplicity n crossed product A×n
αN is ∗-isomorphic to

the C∗-subalgebra C∗(πu(A), {Tu,iπu(1)}) of the universal C∗-algebra C∗(πu(A),
{Tu,i}) relative to (π, {Ti}) such that

(1) π is a representation of A,
(2) {Ti} is a Toeplitz–Cuntz family, and
(3) π(α(x)) =

∑n
i=1 Tiπ(x)T

∗
i , for all x ∈ A.

In particular, A×n
αN coincides with C∗(πu(A), {Tu,i}) if and only if α(1) = 1.

Proof. If πu(α(x)) =
∑n

i=1 Tu,iπu(x)T
∗
u,i, then πu(α(x))Tu,i = Tu,iπu(x), for

all x ∈ A and i = 1, . . . , n. Hence πu(1)Tu,iπ(1) = Tu,iπu(1) for all i = 1, . . . , n.
The proof is completed by arguments similar to those of Propositions 3.2 and
3.4. �

Remark 4.4. The set of representations of A∞⋊α∞
On are sufficient to obtain

an injective embedding of A in A×n
α N. However, they may not be enough to

obtain the norm of A ×n
α N. In other words the canonical ∗-homomorphism

A×n
αN → A∞⋊α∞

On may not be injective, as we show in the counterexample
in Subsection 4.32. Therefore there is no analogue of [39, Prop. 3.3] for n > 1.

4.5. The semicrossed product A×α T +
n . In what follows we construct an

operator algebra A ×α T +
n starting with a Banach algebra ℓ1(A,α,F+

n ). This
universal operator algebra should not be mistaken with the objects examined
in [12, 15, 18].

Let the semigroup F+
n and the linear tensor product A⊗c00(F+

n ) = span{x⊗
δµ | x ∈ A, µ ∈ F+

n }. The multiplication rule that turns A ⊗ c00(F
+
n ) into an

algebra is

(x⊗ δi) · (y ⊗ δj) = (xα(y)) ⊗ δij ,

for i, j ∈ {1, . . . , n}. Define the ℓ1-norm
∣∣∣∣∣
∑

µ

xµ ⊗ δµ

∣∣∣∣∣
1

=
∑

µ

‖xµ‖A ,

where µ is taken over a finite subset of finite paths in F+
n , and let ℓ1(A,α,F+

n ) be
the Banach algebra that comes from the ℓ1-completion of A ⊗ c00(F

+
n ). Note

that ℓ1(A,α,F+
n ) = span{x⊗ δµ | x ∈ A, µ ∈ F

+
n }

|·|1
. When α(1) = 1, then
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1 ⊗ δ∅ is the unit for ℓ1(A,α,F+
n ), and ℓ

1(A,α,F+
n ) = alg

|·|1
{x ⊗ δ∅, 1 ⊗ δµ |

x ∈ A, µ ∈ F+
n }.

Consider the class

F =
{
(π, {Ti}

n
i=1) | π : A→ B(H), Ti ∈ T +

n , π(α(x)) =

n∑

i=1

Tiπ(x)T
∗
i

}
,

If (π, {Ti}) ∈ F then Tµπ(x) = π(α|µ|(x))Tµ, for all x ∈ A, and µ ∈ F+
n .

Moreover (π, {Ti}ni=1) defines a representation ρ : ℓ1(A,α,F+
n ) → B(H), such

that ρ(x ⊗ δµ) = π(x)Tµ. Indeed, ρ is | · |1-contractive on A ⊗ c00(F
+
n ) (and

extends to ℓ1(A,α,F+
n )) since∥∥∥∥∥ρ(

∑

µ

xµ ⊗ δµ)

∥∥∥∥∥ ≤
∑

µ

‖ρ(xµ)Tµ‖ ≤
∑

µ

‖xµ‖A =

∣∣∣∣∣
∑

µ

xµ ⊗ δµ

∣∣∣∣∣
1

.

In this case we say that ρ integrates (π, {Ti}).

Definition 4.6. We denote by A×αT +
n the universal operator algebra relative

to the class F that is generated by π(x) and Tµ, for x ∈ A and µ ∈ F+
n .

Remark 4.7. The semicrossed product A ×α T +
n constructed here differs in

general from the tensor algebra relative to n ∗-endomorphisms αi of A, exam-
ined in [35, 12, 24]. Nevertheless, when αi coincide with an automorphism α,
then they are completely isometrically isomorphic.

The class F of representations is nonempty. Moreover, the existence of such
representations is equivalent to A∞ 6= (0) [39, Prop. 2]. We present such an
example, which we prove that has Fourier coefficients.

Example 4.8. Let (π, U) be the left regular representation of the dynamical
system (A∞, α∞) acting on H . Let K = H ⊗K, where K is a Hilbert space
on which On acts (faithfully). If {Si} is a Cuntz family on K, let Ti = U ⊗ Si

and π̂ = π⊗ IK . Then {Ti} is also a Cuntz family. Moreover if q : A→ A∞ is
the canonical ∗-homomorphism, then

n∑

i=1

Tiπ̂ ◦ q(c)T ∗
i =

n∑

i=1

(Uπ[c, α(c), . . . ]U∗)⊗ SiS
∗
i

= π ◦ α∞[c, α(c), . . . ]⊗ I = π̂ ◦ q(α(c)),

for i = 1, . . . , n. Hence (π̂ ◦ q, {Ti}) defines a pair in F . Note that IH ⊗ Si ∈
π̂(A∞)′; therefore, for a finite sum

∑
µ∈F π̂(xµ)Tµ, we define

Pν(
∑

µ∈F

π̂ ◦ q(xµ)Tµ) := (I ⊗ S∗
ν ) ·


∑

µ∈F

π̂ ◦ q(xµ)Tµ


 · (U−|ν| ⊗ IK)

=
∑

µ∈F

π̂ ◦ q(xµ) · (I ⊗ S∗
ν )Tµ(U

−|ν| ⊗ IK)

= π̂ ◦ q(xν) · (U
|ν| ⊗ IK)(U−|ν| ⊗ IK) = π̂ ◦ q(xν),
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since Tµ = U |µ|⊗Sµ. Thus Pν(
∑

µ∈F π̂ ◦ q(xµ)Tµ) = 0, for every ν ∈ F , if and

only if π̂ ◦ q(xν) = 0 for every ν ∈ F , if and only if xν ∈ Rα for every ν ∈ F ,
if and only if

∑
µ∈F π̂ ◦ q(xµ)Tµ = 0.

Proposition 4.9. The kernel N of the seminorm ω1 relative to F coincides
with ℓ1(Rα, α,F

+
n ).

Proof. First observe that

ℓ1(Rα, α,F
+
n ) = span|·|1{x⊗ δµ | x ∈ Rα, µ ∈ F

+
n }

can be embedded as an ideal in ℓ1(A,α,F+
n ) and that it is contained in N .

For the converse, assume that X =
∑

µ∈F xµ ⊗ δµ is in N , where F is
finite, and the sum is written in reduced form with respect to the words µ.
Let ρ be the representation of Example 4.8. By definition of N we have that
ρ(X) =

∑
µ∈F π̂ ◦ q(xµ)Tµ = 0; then xν ∈ Rα, by Example 4.8. Hence

X ∈ ℓ1(Rα, α,F
+
n ). To end the proof, note that an X ∈ N is the ℓ1-sum of

such elements and that ℓ1(Rα, α,F
+
n ) is ℓ

1-closed. �

Analogous to the one variable case [22, Prop. 3.4], we can always assume
that (A,α) is injective.

Proposition 4.10. The operator algebras A ×α T +
n and (A/Rα) ×α̇ T +

n are
completely isometrically isomorphic.

We mention that the unit 1 ∈ A may not be the unit of A ×α T +
n , since

A is not represented nondegenerately. Below we give the exact nonselfadjoint
analogue of A×n

α N.

Definition 4.11. Let And ×α T +
n be the universal operator algebra relative

to the class

Fnd =
{
(π, {Ti}

n
i=1) ∈ F | π is nondegenerate},

generated by π(x)Tµ, for x ∈ A, µ ∈ F+
n .

Due to nondegeneracy And ×α T +
n is generated separately by a copy of

A and a copy of T +
n . Moreover, the C∗-algebra generated by the universal

representation of And ×α T +
n is A ×n

α N. Analogous to the C∗-case for n = 1
we obtain the following.

Proposition 4.12. The operator algebras And ×α T +
n and (A/Rα)nd ×α̇ T +

n

are unital completely isometrically isomorphic. Moreover, And×α T +
n is unital

completely isometrically isomorphic to the subalgebra generated by πu(A) and
{Tu,iπu(1)} in A×α T +

n .

There is a considerable difference between the unital and nonunital dynam-
ical systems. One such difference is highlighted below.

Remark 4.13. Fix (π, {Ti}ni=1) ∈ F . When α(1) = 1, then π(1) is a unit for
C∗(π(A), Ti), hence π can be chosen unital. Moreover {Ti} is automatically
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a Cuntz family. Thus (π, {Ti}) ∈ F if and only if Ti ∈ O+
n and π(α(x)Ti =

Tiπ(x). Therefore, A×α T +
n is generated by A/Rα and O+

n .
Additionally, the algebras A ×α T +

n and And ×α T +
n coincide. Hence the

C∗-algebra generated by the universal representation of A ×α T +
n coincides

with A×n
α N.

Proposition 4.14. Let (A,α) be a unital dynamical system. Then every com-
pletely isometric representation ρ that integrates a family (π, {Si}) ∈ F is
maximal. Therefore A×α T +

n has the unique extension property.

Proof. Without loss of generality we can assume that α is injective. Hence by
the previous remarks the algebra A ×α T +

n is generated by A and O+
n . Let

ρ : A ×α T +
n → B(H) be a representation that integrates a pair (π, {Si}) in

F and let ν : A ×α T +
n → B(K) be a dilation of ρ. Then ν|A is a dilation of

the ∗-representation ρ|A, hence ν|A is trivial. That is H is ν(A)-reducing. It
suffices to show that ρ|O+

n
is also maximal, for then H will be ν(O+

n )-reducing.

This will imply that H is ν(A ×α T +
n )-reducing, hence ρ is maximal.

Claim. The tensor algebra T +
n has the unique extension property.

Proof of the Claim. Let ν : O+
n → B(K) be a maximal dilation of ρ, which

is a unital completely isometric map. Then ν extends to a unique (faithful)
∗-representation of On, which we will again denote by ν. Hence {ν(Si)} is also
a Cuntz family. For i = 1, . . . , n, let

ν(Si) =

[
ρ(Si) ai
0 bi

]
.

Note that the (2, 1)-entry must be zero since ρ(Si) is an isometry and ν(Si) is
a contraction. Then

ν(Si)ν(Si)
∗ =

[
ρ(Si)ρ(Si)

∗ + aiai ∗
∗ ∗

]

and
∑n

i=1 ν(Si)ν(Si)
∗ = IK , since {ν(Si)} is a Cuntz family. Thus, by equating

the (1, 1)-entries

n∑

i=1

ρ(Si)ρ(Si)
∗ + aia

∗
i = IH .

But {ρ(Si)} is in turn a Cuntz family on H , thus 0 ≤ aia
∗
i ≤

∑n
i=1 aia

∗
i = 0.

Hence ai = 0 for every i = 1, . . . , n, and ν is a trivial dilation of ρ. �

The following Corollary is immediate. Note that the operator algebra we
have constructed may not be separable (cp. Subsection 2.1).

Corollary 4.15. Let (A,α) be a unital dynamical system. Then the Choquet
boundary exists for the operator algebra A×α T +

n .

Theorem 4.16. Let (A,α) be a unital dynamical system. Then C∗
env(A ×α

T +
n ) ≃ A×n

α N.
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Proof. In view of Corollary 4.15 and Lemma 2.2, we have that the identity
representation of A ×n

α N is faithful and A ×α T +
n has the unique extension

property, thus A×n
α N ≃ C∗

env(A×α T +
n ). �

Theorem 4.17. Let (A,α) be an automorphic dynamical system. Then the
C∗-envelope of A×α T +

n is the twisted crossed product A⋊α On.

Proof. By assumption α(1) = 1, thus the C∗-algebra generated by the universal
representation of A ×α T +

n is A ×n
α N. Then [39, Prop. 3.4] completes the

proof. �

Remark 4.18. Following the results for n = 1 of [22], and the previous The-
orem 4.17, one might speculate that the C∗-envelope of A×α T +

n is (a corner
of) the twisted crossed product A∞⋊α∞

On (at least when α is injective). The
counterexample constructed in Subsection 4.32 shows that this is not true in
general, even when α is unital.

Remark 4.19. Alternatively one could define the universal object associated
to ℓ1(A,α,F+

n ) relative to the class
{
(π, {Ti}

n
i=1) | π : A→ B(H), Ti ∈ T +

n , π(α(x))Ti = Tiπ(x)
}
.

It is easy to check that the previous analysis applies to this case also.

4.20. The semicrossed product A ×t
α
T +
n

. We present the nonselfadjoint
analogue of the twisted crossed product. In the next Subsection we give Exel
systems (A,α, L) for which the class F t, that follows, is nonempty.

Definition 4.21. Let F t be the subclass of
{
(π, S, {Ti}) | S isometry, Sπ(x) = π(α(x))S, Ti ∈ T +

n

}
.

such that (π, S, {Si}) integrates to a representation ρ of ℓ1(A,α,F+
n ) with

ρ(x⊗ δi) = π(x)S ⊗ Si, for all x ∈ A, i = 1, . . . , n.

We denote by A×t
α T +

n the universal operator algebra relative to the class F t,
generated by π(x) ⊗ I and S|µ| ⊗ Tµ, for x ∈ A and µ ∈ F+

n .

Remark 4.22. We mention that the canonical map A ×α T +
n → A ×t

α T +
n

may not be a complete isometry, as we show within the counterexample of
Subsection 4.32.

Theorem 4.23. The C∗-envelope of the operator algebra A×t
α T +

n is the C∗-
subalgebra C∗(B, {U ⊗ Si}) of the twisted tensor product M(B)⋊β On, where
B = (A/Rα)∞ and β = (α̇)∞.

Proof. It is easy to deduce that A ×t
α T +

n is unital completely isometrically
isomorphic to A/Rα ⋊α̇ T +

n . Therefore we can always assume that the endo-
morphism α is injective.

Claim 1. The C∗-algebra C∗(A∞, {U ⊗ Si}) is a C∗-cover for A×t
α T +

n .
Proof of Claim 1. Let (π, S, {Ti}) ∈ F t acting on H1 ⊗ H2; then we can
extend the pair (π, S) of (A,α) to a covariant unitary pair (Π, U) (acting on
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an H3) of the dynamical system (A∞, α∞) by [39, Prop. 2.3] and dilate {Ti}
to a Cuntz family {Si} separately. Then (Π, U, {Si}) defines a representation
of A∞ ⋊α∞

On. Conversely, if (Π, U) is a covariant unitary pair of (A∞, α∞)
and {Si} a Cuntz family, then (Π|A, U, {Si}) defines a representation of A×t

α

T +
n . Hence, there is a canonical completely isometric embedding A×t

α T +
n →֒

M(A∞)⋊α∞
On.

To end the proof of Claim 1, note that π(A) ⊗ I and U ⊗ Si generate the
twisted product. Indeed, it suffices to show that they generate π(A∞)⊗ I; this
is proved by noting that

π[0, x, α(x), . . . ]⊗ I = (U∗π(x)U) ⊗ I = (U∗ ⊗ S∗
i )(π(x) ⊗ I)(U ⊗ Si),

for all x ∈ A, and then using induction, since π(A∞) = ∪nU−nπ(A)Un.

Claim 2. The representations of M(A∞)⋊α∞
On are boundary for A×t

α T +
n .

Proof of Claim 2. Let ρ ≡ (π, {U⊗Si}) be a representation of M(A∞)⋊α∞
On

acting on a Hilbert space H , and let ν be a dilation of the restriction of ρ
to A ×t

α T +
n acting on a Hilbert space K. Since ρ|A is a ∗-representation

we get that H is ν(A)-reducing. Also, {U ⊗ Si} is a Cuntz family, hence
C∗(U ⊗ Si) is isomorphic to On. Therefore, ρ defines a unital completely
isometric representation of O+

n thus, as in Proposition 4.14, it is maximal.
Hence H is reducing also for ν(O+

n ). Therefore ν is a trivial dilation, thus ρ is
maximal. �

Remark 4.24. In view of the theory developed in [22] one could define the
universal nonselfadjoint object relative to the class

F t
un =

{
(π, U, {Ti}) ∈ F t | U unitary

}
.

The proof of Theorem 4.23 shows then that it is completely isometrically iso-
morphic to A ×t

α T +
n , thus they share the same C∗-envelope. When α is

injective, U can be considered alternatively a contraction [22].
If in addition α is assumed to be an automorphism they are unital com-

pletely isometrically isomorphic to A×α T
+
n . Indeed, the latter is true because

C∗
env(A×α T +

n ) = A⋊αOn = C∗
env(A×t

α T +
n ), via a C∗-isomorphism that fixes

the nonselfadjoint parts [39, proof of Prop. 3.4].

In the definition of A×t
α T +

n we imposed that it is generated by πu(A) and
{Su ⊗ Su,i}. This is not the algebra generated by πu(x)Su ⊗ Su,i, unless α is
unital. Following the generalized C∗-crossed products’ theory, another way to
impose this is the following.

Definition 4.25. Let And×t
α T

+
n be the universal operator algebra of ℓ1(A,α,

F+
n ) relative to the class

F t
nd =

{
(π, S, {Ti}) ∈ F t | π is nondegenerate

}
.

As a consequence And×t
α T

+
n is generated by π(x)⊗ I and S|µ|⊗Tµ, for x ∈ A

and µ ∈ F+
n .
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As in Proposition 3.2 And ×t
α T +

n is unital completely isometrically isomor-
phic to the subalgebra of A ×t

α T +
n generated by πu(A) ⊗ I and the family

{Suπu(1) ⊗ Tu,i}. Indeed, this is true for the C∗-algebras generated by the
universal representations, whose restriction implies the above identification.
Therefore, if (π, U, {Si}) is a faithful representation of M(B)⋊β On as in The-
orem 4.23, then (π, Uπ(1), {Si}) integrates to a maximal completely isometric
representation of And ×t

α T +
n .

Theorem 4.26. The C∗-envelope of And ×t
α T +

n is a full corner of B ⋊β On,
where B = (A/Rα)∞, β = (α̇)∞.

Proof. For the first part, in view of the previous remarks (and the—by now—
familiar trick), it suffices to show that, when α is injective, then C∗(π(A) ⊗
I, {Uπ(1)⊗ Si}) coincides with p(A∞ ⋊α∞

On)p, where p = π(1)⊗ I.
Since Uπ(1)⊗ Si = p(U ⊗ Si)p we obtain that C∗(π(A) ⊗ I, {Uπ(1)⊗ Si})

is a C∗-subalgebra of p(A∞ ⋊α∞
On)p.

For the converse, first recall that A∞⋊α∞
On is generated by π(A∞)⊗I and

π(x)U ⊗ Si for x ∈ A∞ and i = 1, . . . , n. Hence the generators of p(A∞ ⋊α∞

On)p are p(π(A∞)⊗ I)p and

p(π(x)U ⊗ Si)p = (π(1)π(x)Uπ(1)) ⊗ Si = p(π(x)⊗ I)p · (Uπ(1)⊗ Si).

Due to that equation, it suffices to show that p(π(A∞)⊗ I)p is in C∗(πu(A)⊗
I, {Uπ(1)⊗ Si}), which follows as in the proof of Claim 1 of Theorem 4.23.

To prove that p(A∞⋊α∞
On)p is a full corner, let an ideal I of A∞⋊α∞

On

containing p(A∞ ⋊α∞
On)p. Then π(A)⊗ I ⊆ I and for an approximate unit

(ei) of A∞ and x ∈ A we obtain

π[0, x, α(x), . . . ]⊗ I = lim
i
(U∗π(ei)⊗ S∗

i ) · (π(x) ⊗ I) · (π(ei)U ⊗ Si) ∈ I.

Inductively, we get that π(A∞)⊗ I ⊆ I. Therefore,

π(x)U |µ| ⊗ Sµ = lim
i
π(x) ⊗ I · π(ei)U

|µ| ⊗ Sµ,

for every x ∈ A∞ and µ ∈ F+
n . Thus the nonzero ideal I contains the generators

of A∞ ⋊α∞
On, hence it is a trivial ideal. �

Remark 4.27. The previous theorem asserts that a generalization of [39,
Prop. 3.3] for n > 1 holds for the C∗-envelope of And ×t

α T +
n . This agrees also

with Theorem 3.22 for n = 1.

As in the one variable case, it is immediate that And ×t
α T +

n = A ×t
α T +

n

if and only if α(1A) = 1A. In the following subsection we examine a class of
nonunital systems, so that A×t

α T +
n and And ×t

α T +
n differ.

4.28. Tensor products with Exel systems. Let an Exel system (A,α, L)
and Xn be the C∗-correspondence of the Hawaiian earring graph on n edges,
over C. Let X = ML ⊗Xn be the exterior tensor product, which becomes a
C∗-correspondence over A⊗ C ≃ A in the obvious way, with φX = φML

⊗ id.
If (ρ, s) is a representation of Xn and (π, t) is a representation of ML then

(π ⊗ ρ, t⊗ s) defines a representation of ML ⊗Xn, which is injective when π
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is injective. Moreover, when identifying K(X ) with the spatial tensor product
K(ML)⊗K(Xn) by the ∗-isomorphism j, with

j
(
Θy+N1,x+N1 ⊗Θδi,δj

)
= Θ(y+N1)⊗δi,(x+N1)⊗δj ,

then ψt⊗s ◦ j = ψt ⊗ ψs. Thus, if (π, S) is a representation of ML and {Ti}

is a Toeplitz–Cuntz family then (π̂, {T̂i}) defines a representation of X , where

π̂ = π ⊗ I and T̂i = S ⊗ Ti. Hence,

T̂iπ̂(x) = (S ⊗ Ti)(π(x) ⊗ I) = (Sπ(x)) ⊗ Ti

= (π(α(x))S) ⊗ Ti = (π(α(x)) ⊗ I)(S ⊗ Ti) = π̂(α(x))T̂i.

Conversely, if (π̂, t) is a representation of X , let T̂i = t((1+N1)⊗ δi). Then

T̂iπ̂(x) = π̂(α(x))T̂i, for all i = 1, . . . , n and x ∈ A.

Lemma 4.29. With the above notations JX = JML
, where we identify A⊗C

with A.

Proof. It is immediate that kerφX = kerφML
. To show that φ−1(K(X )) =

φ−1
ML

(K(ML)), first let x ∈ A, such that φML
(x) = k ∈ K(ML). Then

φX (x) = φML
(x) ⊗ id = k ⊗

(
n∑

i=1

ΘXn

δi,δi

)
∈ K(ML)⊗K(Xn) = K(X ),

for the spatial tensor product [32, Chap. 4]. For x ∈ A such that φX (x) =
φML

(x)⊗ id ∈ K(ML)⊗K(Xn), let (ei) be a c.a.i. of K(ML). Then (ei ⊗ id)
is a c.a.i. for K(ML)⊗K(Xn). Since,

lim
i

‖eiφML
(x)− φML

(x)‖ = lim
i
‖(eiφML

(x)− φML
(x))⊗ id‖

= lim
i
‖eiφML

(x) ⊗ id− φML
(x)⊗ id‖

= lim
i
‖(ei ⊗ id)φX (x)− φX (x)‖ = 0,

we obtain that φML
(x) ∈ K(X ), and the proof is complete. �

Consequently, if (π, t) is a covariant representation of ML and (ρ, s) is a
covariant representation for Xn, i.e., {s(δi)} is a Cuntz–Krieger family, then
(π ⊗ ρ, t ⊗ s) is a covariant representation of X . Indeed, let x ∈ JX ; then
x ∈ JML

by Lemma 4.29. Thus

(π ⊗ ρ)(x) = π(x) ⊗ I = ψt (φML
(x))⊗ ψs

(
n∑

i=1

ΘXn

δi,δi

)

= ψt⊗s ◦ j (φML
(x) ⊗ id) = ψt⊗s (φX (x)) .

From now on the Exel system (A,α, L) will be assumed that satisfies the
conditions of Subsection 3.12, i.e.,

L(1) = 1 and α ◦ L(x) = α(1)xα(1), for all x ∈ A.
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Let (πu, Tu) be the universal representation of A(A,α). By Proposition 3.2
and Theorem 3.16,

C∗(πu(A), Tuπu(1)) ≃ A×1
α N ≃ A⋊α,L N ≃ OML

via a canonical mapping, and the pair (πu, Tuπu(1)) defines a faithful covariant
representation ofML that admits a gauge action {βz}. Thus, if {Si} is a Cuntz
family, then (πu⊗ id, {(Tuπu(1))⊗Si}) defines a covariant representation of X
that inherits the gauge action {βz ⊗ I} and is faithful on A. Therefore by the
gauge invariance theorem [27], the Cuntz–Pimsner algebra OX is ∗-isomorphic
to the C∗-algebra generated by (πu ⊗ id, {(Tuπu(1))⊗Si}). Note that it is the
C∗-subalgebra C∗(And ×t

α T +
n ) of C∗(A×t

α T +
n ).

The next result follows readily from the previous analysis and the results
we established in Subsection 4.20.

Theorem 4.30. Let an Exel system that satisfies (†) and L(1) = 1. Then:

(1) TX ≃ And ×t
α T +

n ;
(2) The C∗-envelope OX of T +

X is a full corner of A∞ ⋊α∞
On;

(3) If (π, U, {Si}) integrates to an injective representation of A∞ ⋊α∞
On

and p = π(1) ⊗ I, then p(A∞ ⋊α∞
On)p is the closed linear span

of the monomials
(
π(x)U |µ|−|ν|π(1)

)
⊗ SµS

∗
ν , when |µ| ≥ |ν|, and(

π(1)U |µ|−|ν|π(x)
)
⊗ SµS

∗
ν , when |µ| ≤ |ν|, for x ∈ A.

Proof. It suffices to comment on item (3). Its proof follows in the same way
as the second part of Theorem 3.23, as explained in Remark 3.24. (Recall that
p(A∞)p = A in this case.) �

Remark 4.31. We mention that in the representation theory of A ×t
α T +

n ,
And ×t

α T +
n and TX , the commutant of On is nontrivial. This provided an

isometry S that commutes with the isometries Si, hence we could extend each
(π, S) to a unitary pair (Π, U) without losing control on the isometries Si. The
counterexample that follows shows why this step is crucial in order to prove a
connection with the twisted tensor product of (A∞, α∞).

4.32. Counterexample. Let A = On acting faithfully on some H and let us
denote by Si its generators. Define the ∗-endomorphism α of On by

α(x) =

n∑

i=1

SixS
∗
i , for all x ∈ A.

This dynamical system is unital and injective. Therefore A ×n
α N is exactly

C∗(πu(A), {Su,i}) of Proposition 4.3.
First we show that the canonical ∗-epimorphism q : A×n

α N → A∞ ⋊α∞
On

is not injective (cp. Remark 4.4). To this end, fix a family (σ⊗I, {U⊗Ti}) that
integrates to a faithful representation of A∞⋊α∞

On. Then the representation
implies a number of new relations; for example

(U ⊗ T1)
∗(σ(x) ⊗ I)(U ⊗ T2) = (U∗σ(x)U) ⊗ (T ∗

1 T2) = 0, for all x ∈ A.
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Thus, if q were a ∗-isomorphism, then for all families (π, {T̂i}) of A ×n
α N we

would have that T̂1
∗
π(x)T̂2 = 0. In particular this should be true for the family

(id, {Si}). But

S∗
1 id(S1)S2 = S∗

1S1S2 = S2 6= 0.

In turn the representation that integrates (id, {Si}) is also not faithful. If it
were, then A×n

α N ≃ C∗(id, {Si}), and the latter is On since it contains and it
is contained in On. Thus, the ∗-epimorphism q above should be faithful, being
a representation of the simple C∗-algebra On, which leads to a contradiction.

By Proposition 4.14 every representation of A×α T +
n is maximal. Therefore

the C∗-algebra A×n
α N generated by the universal representation of A×α T +

n

is C∗
env(A×α T +

n ) ≃ A×n
α N.

Thus the canonical embedding A×α T +
n → A∞ ⋊α∞

On is completely con-
tractive, but not completely isometric. Otherwise, by Proposition 4.14 it would
extend to a ∗-isomorphism A ×n

α N → A∞ ⋊α∞
On, which is a contradiction.

This settles Remark 4.18.
Finally, referring to Remark 4.22, if A×t

α T +
n were completely isometrically

isomorphic to A ×α T +
n via the canonical embedding, then they would have

A∞⋊α∞
On as the same C∗-envelope. Therefore A×n

αN ≃ A∞⋊α∞
On, which

again is a contradiction.
Another consequence of this counterexample is described in the following

Remark.

Remark 4.33. For (A,α) as above, consider ℓ1(A,α,F+
n ) as a ‖·‖1-dense sub-

algebra of A×α T +
n . Then the homomorphism ρ : ℓ1(A,α,F+

n ) → A∞ ⋊α∞
On

is completely contractive. Moreover, by Example 4.8 it admits a Fourier trans-
form, which implies that ρ is also injective.

However, the homomorphism ρ :
(
ℓ1(A,α,F+

n ), ‖·‖1
)
→ A∞ ⋊α∞

On is not
completely isometric. If it were, then it would extend to a completely isometry
to its ‖·‖1-closure A ×α T +

n , and we have already argued that this leads to a
contradiction.
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