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Abstract. We introduce the notion of a generalized spin representation of the maximal
compact subalgebra k of a symmetrizable Kac–Moody algebra g in order to show that, if
defined over a formally real field, every such k has a nontrivial reductive finite-dimensional
quotient. The appendix illustrates how to compute the isomorphism types of these quotients
for the real En series. In passing this provides an elementary way of determining the isomor-
phism types of the maximal compact subalgebras of the semisimple split real Lie algebras of
types E6, E7, E8.

Introduction

During the last decade the family of Kac–Moody algebras of type En(R)
has received considerable attention because of its importance in M-theory;
see [6, 11, 19, 26, 28]. By [4, 7] the (so-called) maximal compact subalge-
bra k = Fixω of the real split Kac–Moody algebra g = g(E10)(R) with re-
spect to the Cartan–Chevalley involution ω admits a 32-dimensional complex
representation which extends the spin representation of its regular subalge-
bra so10(R). This implies that the (infinite-dimensional) Lie algebra k has a
nontrivial finite-dimensional quotient, in fact a semisimple finite-dimensional
quotient (see Theorem 3.14). Since k is anisotropic with respect to the invari-
ant bilinear form of the Kac–Moody algebra g, it actually contains an ideal
isomorphic to this finite-dimensional quotient.

In this article we show that the existence of nontrivial finite-dimensional rep-
resentations is not peculiar to the maximal compact subalgebra of g(E10)(R)
but is shared by all maximal compact subalgebras of symmetrizable Kac–
Moody algebras over arbitrary fields of characteristic 0. To this end we intro-
duce the notion of a generalized spin representation (Definitions 3.6 and 3.13),
which we inductively show to exist for arbitrary symmetrizable Kac–Moody al-
gebras and which, in the case of formally real fields, affords a compact, whence
reductive, and often even a semisimple image (Theorem 3.14).
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Our results presented in this article are generalizations of the results con-
cerning the 1

2 -spin representations described in [4, 7]. The key observation

is Remark 3.7 that in the simply-laced case a 1
2 -spin representation can be

described by linear operators Ai for each vertex i of the diagram that satisfy

(i) A2
i = − 1

4 · id,
(ii) AiAj = AjAi if the vertices i, j do not form an edge of the diagram,
(iii) AiAj = −AjAi if the vertices i, j form an edge of the diagram.

On the other hand, the 3
2 -spin representations of [4, 7] and the 5

2 - and
7
2 -spin

representations of [18] are still elusive, as the algebraic identities that need to
be satisfied by the corresponding linear operators are more involved.

Note that our terminology of maximal compact subalgebra is misleading. For
one, in the infinite-dimensional situation there is no compact group associated
to a maximal compact subalgebra. Rather, over the real numbers, the maximal
compact subalgebra is related to the group K studied in [8, 15]. This group
naturally carries a non-locally compact non-metrizable kω-topology (cp. [12]).
Moreover, our construction only involves the Cartan–Chevalley involution and
no field involution. Therefore, over the complex numbers, what we call a
maximal compact subalgebra is not even anisotropic.

However, this terminology does not lead to serious ambiguities as our main
focus lies on split Lie algebras over formally real fields. Our main structure-
theoretic results in Section 3 below will consequently be obtained over formally
real fields; the main future application of our result is over the real numbers.

1. Preliminaries

In this section we collect several basic facts about Kac–Moody algebras.
We refer the reader to [14, Chap. 1] and [22, Chap. 1] for proofs and further
details.

1.1. Kac–Moody algebras. Let k be a field of characteristic 0, let A =
(aij) ∈ Z

n×n be a generalized Cartan matrix and let g = gA denote the corre-
sponding Kac–Moody algebra over k. This means that

aii = 2, aij ≤ 0 and aij = 0 ⇔ aji = 0,

while g is the quotient of the free Lie algebra over k generated by ei, fi, hi,
i = 1, . . . , n, subject to the relations

[hi, hj ] = 0, [hi, ej] = aijej , [hi, fj ] = −aijfj

for all 1 ≤ i, j ≤ n, and

[ei, fj ] = 0, [ei, fi] = hi, (ad ei)
−aij+1(ej) = 0, (ad fi)

−aij+1(fj) = 0

for all i 6= j.
A generalized Cartan matrix is called simply laced if the off-diagonal entries

of A are either 0 or −1; it is called symmetrizable if there exists a diagonal
matrix Λ such that ΛA is symmetric. By abuse of terminology, we will say
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that g is simply laced, resp. symmetrizable, if its generalized Cartan matrix is
simply laced, resp. symmetrizable.

Let h := 〈h1, . . . , hn〉, n+ := 〈e1, . . . , en〉 and n− := 〈f1, . . . , fn〉 denote the
standard subalgebras of g. Then there is a decomposition as vector spaces

g = n− ⊕ h⊕ n+,

see [14, §1.3, p. 7]. The defining relations of g imply that h is n-dimensional
abelian and normalizes n+ and n−. In fact, it acts by linear transformations
on these vector spaces. Therefore, for each element α ∈ h∗ of the dual space it
is meaningful to define the eigenspaces

gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h}.
The relations [hi, ej ] = aijej , 1 ≤ i, j ≤ n, imply that each ej is contained in
such an eigenspace, which we denote by gαj

; the corresponding element of h∗

is denoted by αj (cp. [14, §1.1]). Note that g−αj
contains fj .

The diagram of a simply-laced Kac–Moody algebra gA is the graph D =
(V,E) on vertices α1, . . . , αn with αi and αj connected by an edge if and only
if aij = −1.

Let Q :=
⊕n

i=1 Zαi denote a free Z-module of rank n and Q+ :=
⊕n

i=1 Z+αi

the set of nonnegative integral linear combinations. By [14, Thm. 1.2 (d),
Ex. 1.2] we have

g =
⊕

α∈Q

gα = h⊕
⊕

α∈Q\{0}
gα =

⊕

α∈Q+\{0}
g−α ⊕ h⊕

⊕

α∈Q+\{0}
gα.

Therefore, g has a Q-grading by declaring

deg hi := 0, deg ei := αi, deg fi := −αi

for i = 1, . . . , n, i.e.,

g =
⊕

α∈Q

gα and [gα, gβ] ⊆ gα+β .

Let ∆ := {α ∈ Q \ {0} | gα 6= 0}. Then ∆ = ∆+ ∪ ∆−, where ∆+ :=
∆ ∩ (Q+ \ {0}) and ∆− := −∆+. An element α ∈ ∆ is called a root and gα
a root space. A root α ∈ ∆ is called positive if it belongs to ∆+, otherwise
negative. A root of the form α = ±αi is called simple.

Since the adjoint representation ad : g → End(g) is integrable (see [14, §3.5]),
the extended Weyl group W ∗ ≤ Aut g can be defined as

W ∗ := 〈s∗i | i = 1, . . . , n〉,
where

s∗i := sadi := exp ad fi · exp ad(−ei) · exp ad fi,
cp. [14, §3.8]; note that W ∗ ≤ Aut g by [14, Lem. 3.8 (b)]. For α ∈ ∆ and
w ∈ W ∗ there exists a unique w · α ∈ ∆ such that w(gα) = gw·α, by [14,
Lem. 3.8 (a)]. A root α is called real if there is a w ∈ W such that w · α is
simple, otherwise it is called imaginary. Let ∆re denote the set of real roots.
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For α =
∑n

i=1 aiαi ∈ ∆, the height of α is defined as htα :=
∑n

i=1 ai. For
n ∈ N let

(n+)n :=
⊕

α∈∆+, htα=n

gα .

This is a Z-grading of n+ and extends to a Z-grading of g, the principal grading
(cp. [14, §1.5]).

1.2. The maximal compact subalgebra. Let g be a Kac–Moody algebra
over a field k of characteristic 0. Let ω ∈ Aut(g) denote the Cartan–Chevalley

involution characterized by ω(ei) = −fi, ω(fi) = −ei and ω(hi) = −hi (cp. [14,
(1.3.4)]). Observe that ω(gα) = g−α.

Let k := k(g) := {X ∈ g | ω(X) = X} denote the fixed point subalgebra,
which—in analogy to the situation of finite-dimensional semisimple split real
Lie algebras—is called the maximal compact subalgebra of g. For example, if
g = sln(R), then ω(A) = −AT and k = son(R). In this case, son(R) is the Lie
algebra of the maximal compact subgroup SOn(R) of SLn(R). See also [20,
§IV.4].

Over non-real closed fields, especially over the complex numbers, our ter-
minology is a bit unfortunate and misleading. However, our main results in
Section 3 below and future applications are over real closed fields.

A theorem of Berman [2] allows one to give a presentation of these. We
point out that Berman’s result in fact deals with a much more general class
of so-called involutory algebras by also allowing other involutions of g of the
second kind (in the sense of [16, §4.6]). Note that Berman instead of our
involution ω uses the involution η given by η(ei) = fi, η(fi) = ei, η(hi) = −hi

as the foundation of his investigations so that in order to apply his result one
still has to relate the two involutions to one another.

Theorem 1.3 (cp. [2, Thm. 1.31]). Let k be a field of characteristic 0. Let

A ∈ Zn×n be a simply-laced generalized Cartan matrix, let gA denote the corre-

sponding Kac–Moody algebra, and let k denote the maximal compact subalgebra

of g. Then k is isomorphic to the quotient of the free Lie algebra over k gen-

erated by X1, . . . , Xn subject to the relations

[Xi, [Xi, Xj ]] = −Xj if the vertices vi, vj are connected by an edge,

[Xi, Xj ] = 0 otherwise

via the map Xi 7→ ei − fi.

In Theorem 1.8 below we state and prove a general version of this result
that applies to the maximal compact subalgebra of an arbitrary symmetrizable
Kac–Moody algebra over a field of characteristic 0. Our motivation for splitting
off the simply-laced case is that it is considerably easier to understand than
the general case. Furthermore, the study of generalized spin representations
in the simply-laced case is key to these representations in general.
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Proof of Theorem 1.3. Let η ∈ Aut g denote the involution characterized by

η(ei) = fi, η(fi) = ei and η(hi) = −hi

and let l := Fix η denote the subalgebra of fixed points of η. By [2, Thm. 1.31],
the Lie algebra l is isomorphic to the quotient of the free Lie algebra over k
generated by Y1, . . . , Yn subject to the relations

[Yi, [Yi, Yj ]] = Yj if the vertices vi, vj are connected by an edge,

[Yi, Yj ] = 0 otherwise

via the map Yi 7→ ei + fi.
Let I :=

√
−1 denote a square root of −1 and let L := k(I), gL := g⊗k L.

There is a Lie algebra automorphism ϕ ∈ Aut(gL) determined by

ei 7→ I · ei, fi 7→ −I · fi and hi 7→ hi.

This automorphism ϕ conjugates η to ω, i.e. ω = ϕ−1 ◦ η ◦ ϕ, and hence the
subalgebras Fix η and Fixω are isomorphic over L. As Xi is mapped to I · Yi

under this isomorphism, the claim follows. �

Remark 1.4. Suppose k = C. We can exponentiate the subalgebra of g

spanned by ei, fi, hi to a subgroup Gi of Aut g which is isomorphic to SL2(C)
or PSL2(C). Then Xi identifies with

(

0 1
−1 0

)

in sl2 and therefore exp(ξXi) is
equal to the image of

( cos ξ sin ξ
− sin ξ cos ξ

)

in Gi. In particular, exp(−π
2Xi) is sent

to s∗i . It follows that s
∗
i and ω are commuting automorphisms of g.

For the case of an arbitrary ground field, ω induces a Cartan–Chevalley
involution on the standard type A1 subgroup Gi of Aut g whose Lie algebra
is spanned by ei, fi, hi. The fixed point subgroup of Gi for the Cartan–
Chevalley involution is either SO2(k) or SO2(k)/{±I2}, depending on whether
Gi is isomorphic to SL2 or PSL2. Since this subgroup clearly contains s∗i , it
follows that s∗i commutes with ω.

1.5. Rank-two Kac–Moody algebras. Let g be the Kac–Moody algebra
with Cartan matrix

(

2 −r
−s 2

)

, where r, s ∈ N. We map g into a simply-laced
Kac–Moody algebra as follows: Let D be a complete bipartite graph on r and
s vertices, labelled α(i)

1 and α(j)
2 with 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let g̃ be a

Kac–Moody Lie algebra with simply-laced diagram D and label the generators
correspondingly: e(i)1 , f (i)

1 , h(i)
1 and e(j)2 , f (j)

2 , h(j)
2 . We remark that there is an

action of Sym(r) (resp. Sym(s)) on g̃ by permuting the roots α(i)
1 (resp. α(j)

2 ).
Let

E1 =
r

∑

i=1

e
(i)
1 , F1 =

r
∑

i=1

f
(i)
1 , H1 = [E1, F1],

E2 =

s
∑

j=1

e
(j)
2 , F2 =

s
∑

j=1

f
(j)
2 , H2 = [E2, F2].
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Then it is straight-forward to check that

[E1, F2] = 0 = [E2, F1] = [H1, H2],

(adE1)
r+1(E2) = 0 = (adE2)

s+1(E1),

(adF1)
r+1(F2) = (adF2)

s+1(F1) = 0.

Thus there is a well-defined Lie algebra homomorphism ϕ̃ from g to g̃, sending
each of e1, e2, f1, f2, h1, h2 to its corresponding upper-case letter. Since g has
no nonzero ideals intersecting trivially with h, it follows that ϕ̃ is injective. It
is clear from the definitions that ϕ̃ induces an injective homomorphism from
the extended Weyl group of g to that of g̃ by sending s∗1 to (s(1)1 )∗ . . . (s(r)1 )∗,
and similarly for s∗2.

Remark 1.6. This construction is related to the notion of pinning1 for split
semisimple Lie algebras. Given a split semisimple Lie algebra g̃ over a field
k of characteristic zero, let h̃ be a splitting Cartan subalgebra. A pinning of
(g̃, h̃) consists of a basis Π of the roots of g̃ relative to h̃, together with a choice
{xα : α ∈ Π} of nonzero elements in each simple positive root space. If g̃ has a
presentation as in Section 1.1 then we can take Π = {α1, . . . , αn} and xαi

= ei
for 1 ≤ i ≤ n. If a pinning of (g̃, h̃) is fixed, then a pinned automorphism is an

automorphism which stabilizes h̃ and the Borel subalgebra of g̃ corresponding
to Π, and which permutes the elements xα, α ∈ Π. Clearly, the group of
pinned automorphisms is isomorphic to the group Aut(Π) of automorphisms
of the Dynkin diagram of g̃. As follows from [3, VIII.3 Cor. 1 and VIII.4],

the group Aut(g̃) is the semi-direct product of Aut(Π) and G̃(k), where G̃
is the adjoint type semisimple group with Lie algebra g̃. The corresponding
result is also true in the Kac–Moody case [27, §6, Thm. 2 (c)]. When g̃ has
generalized Cartan matrix

(

2 −r
−s 2

)

, one obtains that the automorphism group
is (Sym(r)×Sym(s))⋉ G̃ if r 6= s and is (Sym(r) ≀Sym(2))⋉ G̃ if r = s, where

G̃ is an adjoint Kac–Moody group corresponding to g̃. (We exclude here the
affine cases r = s = 2 and {r, s} = {1, 4}, where the picture is slightly more
complicated.)

If g̃ has finite type, then there are no nontrivial pinned automorphisms unless
g̃ is simply laced. Furthermore, a simple Lie algebra of type Bn (resp. Cn, F4,
G2) can be realized as the fixed point subalgebra for a pinned automorphism
of a Lie algebra of type Dn+1 (resp. A2n−1, E6, D4). In our case we can only
say that g is a subalgebra of the fixed-point subalgebra of g̃.

Let ω̃ (resp. ω) denote the Cartan–Chevalley involution on g̃ (resp. g).

Clearly ϕ̃ ◦ω = ω̃ ◦ ϕ̃, so ϕ̃ induces a homomorphism from k = k(g) to k̃ = k(g̃).

1French “épinglage”, see [1, Exposé XXIII]. Although this is translated as “framing”
in [3], it is clear from the footnote to [1, Exposé XXIII, Def. 1.1] (where a maximal torus
is the body, and opposite Borel subgroups are the wings, of a butterfly) that “pinning” is
more appropriate. It seems to have become the standard terminology in English.
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Following the proof of Theorem 1.3, let

Y1 = e1 + f1, Y
(i)
1 = e

(i)
1 + f

(i)
1 for 1 ≤ i ≤ r,

Y2 = e2 + f2, Y
(j)
2 = e

(j)
2 + f

(j)
2 for 1 ≤ j ≤ s.

Then

ϕ̃(Y1) =
r

∑

i=1

Ỹ
(i)
1

and similarly for Y2.
Since α(i)

1 and α(j)
2 are connected by a simple edge, we have

(1)
(

(adY
(i)
1 )2 − 1

)

(Y
(j)
2 ) = 0.

Now the space spanned by Y (i)
1 for 1 ≤ i ≤ r is conjugate to the subspace

of h̃ spanned by h(i)
1 for 1 ≤ i ≤ r. Thus equation (1) can be restated by

saying that Y (j)
2 is a sum of simultaneous eigenvectors for adY (i)

1 , with each
such eigenvalue being ±1. It follows that Y (j)

2 is contained in the sum of
eigenspaces for ad ϕ̃(Y1) in g̃ with eigenvalues r, r − 2, . . . ,−r. Hence

( r
∏

i=0

(

ad ϕ̃(Y1)− (r − 2i)
)

)

(ϕ̃(Y2)) = 0.

Setting Xi = ei − fi for i = 1, 2 and conjugating Yi to Xi as in the proof
of Theorem 1.3, we deduce that Pr(adX1)(X2) = 0 and Ps(adX2)(X1) = 0,
where

Pm(t) =

{

(t2 +m2)(t2 + (m− 2)2) · · · (t2 + 1) if m is odd,

(t2 +m2)(t2 + (m− 2)2) · · · (t2 + 4)t if m is even.

1.7. The general symmetrizable case. Now suppose g is an arbitrary sym-
metrizable Kac–Moody algebra with n × n generalized Cartan matrix A =
(aij)1≤i,j≤n. For 1 ≤ i ≤ n let Xi = ei− fi ∈ k. On restricting to the rank-two
subalgebra of g generated by ei, ej, fi, fj, where 1 ≤ i 6= j ≤ n, we obtain the
relation

P−aij
(adXi)(Xj) = 0.

As in the simply-laced case, we can use Berman’s theorem [2, Thm. 1.31] to
prove that these relations generate all of the relations in k. For the sake of
completeness, we reproduce a proof (which also applies in the simply-laced
case).

Theorem 1.8. The maximal compact subalgebra k of g has generators X1, . . . ,
Xn and, for any 1 ≤ i 6= j ≤ n, the following relations:

(

P−aij
(adXi)

)

(Xj) = 0.

Proof. By the Gabber–Kac theorem [14, Thm. 9.11] the ideal of relations sat-
isfied by e1, . . . , en is generated by the terms (ad ei)

−aij+1(ej) = 0. Let L be
the Lie algebra on generators x1, . . . , xn with relations P−aij

(adxi)(xj) = 0

Münster Journal of Mathematics Vol. 8 (2015), 181–210
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for 1 ≤ i 6= j ≤ n. Then there is a Lie algebra homomorphism π : L → k,
sending xi to Xi = ei − fi.

For α, β ∈ Q+ we write α ≤ β when β −α ∈ Q+. We note that both L and
k are filtered by Q+, that is, there exist subspaces L(α) of L such that

• L =
⋃

α∈Q+
L(α),

• L(α) ⊂ L(β) whenever α ≤ β, and
• [L(α),L(β)] ⊆ L(α+β),

and similarly for k. Specifically, k(α) = (
∑

−α≤β≤α gβ)∩ k and L(α) is the span
of all commutators

[xi1 , [xi2 , [. . . [xir−1
, xir ] . . .]]],

where αi1 + · · ·+αir ≤ α. These filtrations are compatible, i.e. π(L(α)) ⊂ k(α).
For α ∈ Q+, let L<α :=

∑

β<α L(β) and similarly for k. The corresponding

graded Lie algebra of L is the vector space

grL :=
∑

α∈Q+

L(α)/L<α

with the Lie bracket induced by that on L. For 1 ≤ i ≤ n let xi denote the
image of xi in L(αi)/L<αi

⊂ grL. By the definition of the polynomials Pm,

we have (adxi)
−aij+1(xj) = 0 for 1 ≤ i 6= j ≤ n. It follows that there is a

surjective homomorphism n+ → grL sending ei to xi. On the other hand,
k(α)/k<α is spanned by (gα ⊕ g−α) ∩ k so is of dimension dim gα. (In fact,
gr k ∼= n+, see the remarks after Proposition 2.6 below.)

Now we can prove the theorem as follows. First of all, we claim that the
homomorphism π : L → k is surjective. To prove our claim it will suffice to
show that π(L(α)) = k(α) for all α ∈ ∆+. We note that gα is spanned by
elements of the form yα = [ei, yα−αi

] where yα−αi
∈ gα−αi

and αi can be
any simple root. By an obvious induction hypothesis, we may assume that
k(α−αi) ⊂ π(L(α−αi)) and k(α−2αi) ⊂ π(L(α−2αi)). Then

yα + ω(yα) = [ei − fi, yα−αi
+ ω(yα−αi

)] + [fi, yα−αi
] + ω([fi, yα−αi

]).

Since

[ei − fi, yα−αi
+ ω(yα−αi

)] ∈ π([xi,L(α−αi)]),

[fi, yα−αi
] + ω([fi, yα−αi

]) ∈ π(L(α−2αi)),

it follows that yα + ω(yα) ∈ π(L(α)). For injectivity, we remark that the
inequalities

dim gα ≥ dimL(α)/L<α ≥ dim k(α)/k<α = dim gα

establish that kerπ ∩ L(α) = {0}. �

Remark 1.9. Suppose A =
(

2 −r
−s 2

)

where r, s 6= 0. It is easy to see that if we
quotient k by the ideal generated by [X1, [X1, X2]]+ r2X2 and [X2, [X2, X1]]+
s2X1 then we obtain an epimorphism k → so3. This corresponds to repeatedly
applying Construction 2.8 (a) below to the complete bipartite graph to obtain
a diagram of type A2.
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In what follows, we suppose that the generalized Cartan matrix A is inde-
composable. Then there is a well-defined, unique up to scalar multiplication
length function | · | on the simple roots such that aij/aji = |αj |2/|αi|2 whenever
aij 6= 0. After scaling we may assume that |αi|2 ∈ N for any i, and that the
square lengths |αi|2 have no common factor.

Definition 1.10. A simply-laced cover diagram of g (or just a cover diagram

for short) is a simply-laced diagram D with ni vertices α
(1)
i , . . . , α(ni)

i for each
simple root αi of g (where ni are some positive integers), and such that each
α(k)
i is connected to exactly |aij | of the vertices α(l)

j for j 6= i and to none of
the other vertices α(l)

i .

We remark that the ni are related by the formula ni/nj = aij/aji whenever
aij 6= 0, hence ni = M/|αi|2 for some constantM . It follows that M is divisible
by all |αi|2. Moreover, each ni must be divisible by any nonzero value |aij |,
so that M is divisible by lcmj 6=k:ajk 6=0(|αj |2 · |ajk|). In the special case that

M = lcmj 6=k:ajk 6=0(|αj |2 · |ajk|) we call the diagram to be of minimal rank.
Clearly, one can construct a minimal-rank simply-laced cover diagram for g

by setting

ni =
lcmj 6=k:ajk 6=0(|αj |2 · |ajk|)

|α2
i |

for all i and for each pair (i, j) with aij < 0, arbitrarily dividing the ver-
tices α(1)

i , . . . , α(ni)
i (resp. α(1)

j , . . . , α(nj)
j ) into m = ni/|aij | = nj/|aji| subsets

S1, . . . , Sm (resp. S′
1, . . . , S

′
m) of |aij | (resp. |aji|) vertices with every vertex in

Sk joined to every vertex in S′
k.

As the following examples show, not every connected cover diagram is of
minimal rank, and two minimal-rank cover diagrams need not be isomorphic.

Example 1.11. (a) The Kac–Moody algebra which has generalized Cartan
matrix





2 −1 −1
−2 2 −2
−2 −2 2





has (at least) the following two simply-laced cover diagrams:

b

b

a

c

c

a

a

b

b b

b

c

c c

c
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(b) If g has symmetrizable Cartan matrix




2 −3 −6
−5 2 −5
−2 −1 2



 ,

then under the assumptions above we have |α1|2 = 5, |α2|2 = 3 and |α3|2 = 15.
Thus lcmj 6=k:ajk 6=0(|αj |2 · |ajk|) = 30 and therefore n1 = 6, n2 = 10, n3 = 2.
Note that α(1)

3 and α(2)
3 are connected to all of the vertices α(1)

1 , . . . , α(6)
1 , but

each to only half of α(1)
2 , . . . , α(10)

2 . Similarly, the vertices α(i)
2 also divide

into two groups of five, each connecting to three of the vertices α(1)
1 , . . . , α(6)

1 .
After renumbering we may assume that α(1)

1 , α(2)
1 , α(3)

1 are connected to all of
α(1)
2 , . . . , α(5)

2 . It is not hard to see that there are three isomorphism classes of
minimal-rank cover diagrams for g, given by diagrams in which α(1)

3 connects
to none, one or two of the vertices α(1)

2 , . . . , α(5)
2 .

Remark 1.12. If g is of finite (resp. affine) type then there is a unique choice of
connected simply-laced cover diagram for g, which is also finite (resp. affine).
Specifically, for the finite type Lie algebras of type Bn, Cn, F4 and G2 one
obtains simply-laced cover diagrams of type Dn+1, A2n−1, E6 and D4, and
similarly for the corresponding (untwisted) affine types. The twisted affine
types all have simply-laced cover diagrams which are of affine type D except
for the dual of affine F4, which has simply-laced cover E+

7 . If g is an arbitrary
Kac–Moody Lie algebra of rank two then there exists a unique choice of simply-
laced cover diagram, constructed in Section 1.5.

If the generalized Cartan matrix of g is not indecomposable then a minimal-
rank simply-laced cover diagram for g is one which has the smallest possible
number of vertices. Such a diagram can be constructed as the union of the
(minimal-rank) simply-laced cover diagrams for the simple summands of g.

Let g be an arbitrary symmetrizable Kac–Moody algebra and let g̃ be the
Kac–Moody algebra associated to some simply-laced cover diagram for g. Let
e(k)i , f (k)

i , h(k)
i be the simple root elements corresponding to the vertex α(k)

i ,
for 1 ≤ k ≤ ni. As in the rank-two case there is a natural embedding ϕ̃ : g → g̃

which sends ei (resp. fi) to
∑ni

k=1 e
(k)
i (resp.

∑ni

k=1 f
(k)
i ) and which induces a

map from the extended Weyl group of g to that of g̃. Clearly, there is also a
corresponding embedding k →֒ k̃.

2. Some algebraic properties of k

In this section we collect some consequences of Berman’s presentation of the
maximal compact subalgebra of a Kac–Moody algebra.

2.1. Automorphisms. For i = 1, . . . , n let εi ∈ {±1}. Then there is an auto-
morphism ϕε of k characterized by ϕ(Xi) = εiXi, called a sign automorphism.

If π ∈ Sym(n) is a permutation which preserves the generalized Cartan
matrix of g (i.e., aπ(i)π(j) = aij for all i, j) then there is an induced automor-
phism ϕπ of k satisfying ϕπ(Xi) = Xπ(i). Such an automorphism is called a
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graph automorphism. (In the simply-laced case π corresponds exactly to an
automorphism of the diagram of g, i.e., a permutation of the vertices which
preserves adjacency.)

Lemma 2.2. Let g be a Kac–Moody algebra over a field k of characteristic 0.

(a) For i = 1, . . . , n, the element s∗i ∈ W ∗ commutes with ω.
(b) Every w ∈ W ∗ induces an automorphism π(w) of k.

(c) If the Kac–Moody algebra g is simply laced, the automorphism π(s∗i ) in-

duced by s∗i via the isomorphism given in Theorem 1.3 satisfies

Xi 7→ Xi, Xj 7→
{

Xj if (i, j) 6∈ E,

[Xi, Xj] if (i, j) ∈ E.

Proof. Statement (a) has been proved in Remark 1.4. By (a), each s∗i stabilizes
k. Statement (b) therefore follows immediately from [14, Lem. 3.8 (b)].

Concerning (c), a calculation in sl2(k) shows that s∗i (ei) = −fi. A cal-
culation in sl3(k) shows s∗i (ej) = [ei, ej] if (i, j) ∈ E, and a calculation in
sl2(k) ⊕ sl2(k) shows s∗i (ej) = ej if (i, j) 6∈ E. More calculations (or the use
of assertion (a)) show, furthermore, s∗i (fi) = −ei and s∗i (fj) = −[fi, fj] if
(i, j) ∈ E, and s∗i (fj) = fj if (i, j) 6∈ E. In particular,

s∗i (ej − fj) = s∗i (ej)− s∗i (fj) = [ei, ej ] + [fi, fj] = [ei − fi, ej − fj ].

Statement (c) follows. �

For w ∈ W ∗, the induced automorphism π(w) ∈ Aut k is called a Weyl group

automorphism.

Remark 2.3. (a) Let

ϕ+ : n+ → k, x 7→ x+ ω(x)

be the canonical k-linear bijection (cp. [2, p. 3169]), and write kα := ϕ+(gα).
Observe that for the analogous k-linear bijection

ϕ− : n− → k, x 7→ x+ ω(x)

one has kα = ϕ+(gα) = ϕ−(g−α) = k−α.
It follows from Lemma 2.2 (a) that π(s)(kα) = ks·α. Hence, by induction

and by the definition of the set of real roots, for any positive real root α ∈ ∆+

there is a Weyl group automorphism π(w) and a positive simple root αi such
that π(w)(kα) = kαi

= kXi.
(b) The set of subspaces {kγ | γ ∈ ∆re ∩∆+} is invariant under the action

of the group of Weyl group automorphisms. It can be identified with the walls
of the Coxeter complex of the Weyl group W (cp. [14, Rem. 3.8]).

Remark 2.4. If g is simply laced then for i, j in the same connected com-
ponent of the diagram of k there is an automorphism such that ϕ(Xi) = Xj.
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This is because, if (i, j) is an edge, then

π(s∗i s
∗
j )(Xi) = π(s∗i )([Xj , Xi])

= [π(s∗i )(Xj), π(s
∗
i )(Xi)]

= [[Xi, Xj ], Xi]

= Xj,

the first and third equation being consequences of Lemma 2.2, and the last one
of Theorem 1.3. Thus, the claim follows by induction.

This can be used as follows: Let k be the maximal compact subalgebra of
a Kac–Moody algebra of type AE4 (see Section 4). Then the generator X4 is
contained in a subalgebra isomorphic to the maximal compact subalgebra of a
Kac–Moody algebra of type A+

2 . Indeed, let ϕ be a Weyl group automorphism
such that ϕ(X3) = X4. Then ϕ(〈X1, X2, X3〉) is as required, as by Theorem 1.3
the Lie algebra 〈X1, X2, X3〉 equals the maximal compact subalgebra of the
Kac–Moody algebra with positive simple roots α1, α2, α3.

2.5. A contraction of k. Let g be a symmetrizable Kac–Moody algebra over
R with Chevalley generators ei, fi, hi, i = 1, . . . , n. For ε > 0 define ωε to be
the Lie algebra automorphism satisfying

ωε(ei) = −εfi, ωε(fi) = −1

ε
ei, ωε(hi) = −hi;

moreover, set kε := Fixωε. Observe that k = k1 and that Xε
i := ei − εfi ∈ kε

for i = 1, . . . , n. Moreover, the automorphism θε of g given by ei 7→ 1√
ε
ei and

fi 7→
√
εfi for all i satisfies

θε(Xi) =
1√
ε
Xε

i , ωε = θ2ε ◦ ω = θε ◦ ω ◦ θ−1
ε .

Thus θε maps k isomorphically onto kε. By applying θε to P−aij
(adXi)(Xj)

(using the notation of Theorem 1.8), we obtain the relations

P ε
−aij

(adXε
i )(X

ε
j ) = 0 where P ε

m(t) = ε
m+1

2 Pm

( t√
ε

)

that is,

P ε
m(t) =

{

(t2 +m2ε) · · · (t2 + ε) for m odd,

(t2 +m2ε) · · · (t2 + 4ε)t for m even.

In particular, [Xε
i , [X

ε
i , X

ε
j ]] = −εXε

j if aij = −1.
Since θε maps k isomorphically onto kε, we have:

Proposition 2.6. The subalgebra kε is isomorphic to the quotient of the free

Lie algebra over k generated by X1, . . . , Xn subject to the relations

P ε
−aij

(adXi)(Xj) = 0

via the map Xi 7→ ei − εfi.
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Note that, if we set ε = 0 in the above presentation, the resulting algebra
is isomorphic to n+ by the Gabber–Kac theorem [14, Thm. 9.11]. This means
that n+ is a contraction of the maximal compact subalgebra k = k1 in the sense
of [9].

2.7. Quotients. Let k be a field of characteristic 0 and g a Kac–Moody alge-
bra over k with simply-laced diagram D. Due to the Coxeter-like presentation
of the maximal compact subalgebra k it is possible to exhibit quotients of k if
D has a certain shape.

For a graph D, let k(D) denote the maximal compact subalgebra of the
Kac–Moody algebra g over k with diagram D.

Construction 2.8. Suppose that there are distinct vertices vi, vj of the dia-
gram D such that any vertex vr distinct from vi, vj is connected to vi if and
only if vr is connected to vj .

(a) If vi and vj are not connected by an edge, let D′ be the diagram ob-
tained from D by deleting the vertex vj . Let k′ := k(D′) and X ′

1, . . . , X
′
n

its Berman generators. Then there is a well-defined epimorphism of Lie
algebras ϕ : k → k′ determined by ϕ(Xr) := X ′

r for r 6= j and ϕ(Xj) := X ′
i.

(b) If vi and vj are connected by an edge, let D′ be the diagram obtained from
D by deleting all edges emanating from vj except for the edge (vi, vj). As
above, let k′ := k(D′) and X ′

1, . . . , X
′
n its Berman generators. Then there

is a well-defined epimorphism of Lie algebras ϕ : k → k′ determined by
ϕ(Xr) := X ′

r for r 6= j and ϕ(Xj) := [X ′
i, X

′
j].

This can be checked by using the Weyl automorphisms introduced in
Lemma 2.2. For instance, for all r 6= i, j with (vr , vj) ∈ ED (which is
equivalent to (vr, vi) ∈ ED), one has
[

ϕ(Xj), [ϕ(Xj), ϕ(Xr)]
]

=
[

[X ′
i, X

′
j ], [[X

′
i, X

′
j ], X

′
r]
]

=
[

−π(s∗j )(X
′
i), [−π(s∗j )(X

′
i), π(s

∗
j )(X

′
r)]

]

= π(s∗j )[X
′
i, [X

′
i, X

′
r]]

= π(s∗j )(−X ′
r)

= −X ′
r

= ϕ(−Xr)

= ϕ[Xj , [Xj , Xr]],

the second and fifth equation being consequences of Lemma 2.2, and the
fourth and seventh of Theorem 1.3.

Case (a) (resp. (b)) of Construction 2.8 corresponds to factoring k modulo
the ideal generated by (Xi −Xj) (resp. by all terms of the form [Xr, [Xi, Xj]]
where r 6= i, j).

Example 2.9. (a) The preceding discussion gives a sequence of epimorphisms
of real Lie algebras k(D+

4 ) ։ k(D4) ։ k(A3) = so4(R) ։ k(A2) = so3(R).
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k(D+
4 ) k(D4) k(A3) = so4(R) k(A2) = so3(R)

This sequence can be extended further: Let

Γn =
(

{1, . . . , n}, {(1, k) | 2 ≤ k ≤ n}
)

denote the star diagram on n vertices and let kn denote the maximal compact
subalgebra of the Kac–Moody algebra gn with Dynkin diagram Γn. Then there
are epimorphisms kn → kn−1.

(b) Denoting by K4 the complete graph on four vertices, there similarly is
a sequence of epimorphisms k(K4) ։ k(AE4) ։ k(A4).

3. Generalized spin representations

3.1. Generalized spin representations of k(E10(R)). Let us recall the
extension of the spin representation of k(sl10(R)) to k(E10)(R) as described in
[4, 7] (also [17]).

Example 3.2. Let V be a k-vector space and q : V → k a quadratic form with
associated bilinear form b. Then the Clifford algebra C := C(V, q) is defined
as C := T (V )/〈vw + wv − 2b(v, w)〉 where T (V ) is the tensor algebra of V .

Now let V = R
10 with standard basis vectors vi, let q = x2

1 + · · ·+ x2
10 and

let C = C(V, q). Then in C we have

v2i = 1 and vivj = −vjvi.

Since C is an associative algebra, it becomes a Lie algebra by setting [A,B] :=
AB −BA. Let the diagram of g(E10)(R) be labelled as

12

123

23 34 45 56 56 78 89 910

and define a Lie algebra homomorphism ρ : k → C using these labels, i.e., via

X1 7→ 1

2
v1v2, X2 7→ 1

2
v1v2v3, X3 7→ 1

2
v2v3,

X4 7→ 1

2
v3v4, X5 7→ 1

2
v4v5, X6 7→ 1

2
v5v6,

X7 7→ 1

2
v6v7, X8 7→ 1

2
v7v8, X9 7→ 1

2
v8v9, X10 7→ 1

2
v9v10,

where Xi denotes the Berman generator corresponding to the root αi, enumer-
ated in Bourbaki style as in Section 4. Observe that each Ai := ρ(Xi) satisfies
A2

i = − 1
4 id. Here we would like to remark that (v1v2v3)

2 = (v2v3)
2 = −1
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depends on v2i = 1; for parity reasons, this would not be true in the Clifford
algebra C(V,−q), as then (v1v2v3)

2 = −(v2v3)
2 = 1.

Using the criterion established in Remark 3.7 below, one checks easily that
ρ indeed is a Lie algebra homomorphism, i.e., that the defining relations of k
from Theorem 1.3 are respected. Indeed, one just needs to establish

(i) A2
i = − 1

4 · ids,
(ii) AiAj = AjAi if (i, j) 6∈ E,
(iii) AiAj = −AjAi if (i, j) ∈ E.

We have already observed (i). Assertions (ii) and (iii) are obvious for i, j 6= 2.
Moreover, one quickly computes

(v1v2v3)(v3v4) = −(v3v4)(v1v2v3)

and

(v1v2v3)(vk1
vk2

) = (vk1
vk2

)(v1v2v3)

if {k1, k2} is a set of two elements that is either a subset of {1, 2, 3} or disjoint
from {1, 2, 3}. Assertions (ii) and (iii) follow.

By [10, Lem. 20.9] and [25, Prop. 2.4] the Clifford algebra C splits over C
as C⊗RC

∼= C
32×32. Hence ρ affords a 32-dimensional complex representation

of k(E10)(R). The restriction of this representation to the maximal compact
subalgebra of the A9-subdiagram, k(A9)(R) = so10(R), coincides with the spin
representation of so10 (see, e.g., [10, Chap. 20]), i.e., ρ extends the classical
spin representation.

Let ι ∈ AutC denote the involution (known as parity automorphism) in-
duced by V → V : v 7→ −v. Let C0 := Fix ι and C1 := {w ∈ C | ι(w) = −w}
denote the even and the odd part of C. Then C0 and C1 are invariant subspaces
under the spin representation of so10 since im ρ ⊆ C0 (multiplication with a
product of the vi of even length does not change the parity) and these subspaces
are irreducible nonisomorphic representations of so10 (see [10, Chap. 20]).

The remaining Berman generator X2 of k(E10) is sent to an element which
interchanges C0 and C1.

Remark 3.3. A calculation shows that im ρ is the linear span of all ele-
ments of the form vi1 · · · vik , where {i1, . . . , ik} = I ⊆ {1, . . . , 10} with |I| ∈
{2, 3, 6, 7, 10}. Therefore, dim im(ρ) = 45 + 120 + 210 + 120 + 1 = 496. Since
im(ρ) ≤ C ∼= R32×32 by [25, §2.2.3] and since im(ρ) is compact and semisimple
by Theorem 3.14, this dimension dim im(ρ) = 496 implies im(ρ) ∼= so32(R) (see
also [5]).

The existence of Example 3.2 is not peculiar to the diagram E10, it can be
generalized to arbitrary diagrams En in the obvious way. A careful analysis
of dimensions combined with the Cartan–Bott periodicity of Clifford algebras
allows one to determine the isomorphism types of the quotients for the whole
En series. This is carried out in the appendix. A key observation is that the
cardinality |I| from above in general has to be equal to 2 or 3 modulo 4 (see
Lemma A.6).
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Remark 3.4. Let ρ : so10(R) → Cn×n be a representation. To extend ρ to a
representation of k(E10), it suffices to find a matrix X ∈ Cn×n such that for
Ai := ρ(Xi), 1 ≤ i ≤ 10, i 6= 2, the following equations are satisfied (where we
again use the labelling of the diagram E10 as given in Section 4):

[Ai, X ] = 0 for 1 ≤ i ≤ 10, i 6= 2, 4,

[A4, [A4, X ]] = −X,

[X, [X,A4]] = −A4.

Theorem 1.3 implies that ρ can be extended to k(E10) by setting ρ(X2) := X .
The first two sets of equations define a linear subspace, the third set of

equations yields a family of quadratic equations. With the help of a Gröbner
basis one can compute that in case of the spin representation, this variety is
isomorphic to C×, i.e., the extension is unique up to a scalar.

3.5. Generalized spin representations for the simply-laced case.
Throughout this section, let k be a field of characteristic 0, let g be a Kac–
Moody algebra over k with simply-laced diagram and let k be its maximal
compact subalgebra.

Let L := k(I), where I is a square root of −1. Denote by ids ∈ Ls×s the
identity matrix.

Definition 3.6. A representation ρ : k → End(Ls) is called a generalized spin

representation if the images of the Berman generators from Theorem 1.3 satisfy

ρ(Xi)
2 = −1

4
ids for i = 1, . . . , n.

Remark 3.7. (a) Since ρ is assumed to be a representation, it follows from the
defining relations that ρ(Xi) and ρ(Xj) commute if (i, j) 6∈ E. On the other
hand, if (i, j) ∈ E, then A := ρ(Xi) and B := ρ(Xj) anticommute. Indeed, we
have

−B = [A, [A,B]] = A2B − 2ABA+BA2 = −1

2
B − 2ABA,

where the first equation is due to Theorem 1.3. The claim now follows after
multiplying with A−1 = −4A ⇐⇒ A2 = − 1

4 ids.
(b) Conversely, suppose that there are matrices Ai ∈ Ls×s satisfying

(i) A2
i = − 1

4 · ids,
(ii) AiAj = AjAi if (i, j) 6∈ E,
(iii) AiAj = −AjAi if (i, j) ∈ E.

Then, by reversing the argument in the above computation, the assignment
Xi 7→ Ai gives rise to a representation of k.

Remark 3.8. Let ρ be a generalized spin representation of k and set Si :=
2I · ρ(Xi). Let W be a Coxeter group defined by the presentation

W = 〈s1, . . . , sn | (sisj)mij = 1〉,
where mii = 1 and mij = 2 if (i, j) 6∈ E, while mij ∈ {3, 4} if (i, j) ∈ E. Then
the assignment si 7→ Si gives a representation of W .
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Write k≤r := 〈X1, . . . , Xr〉.

Theorem 3.9. Let 1 ≤ r < n. Let ρ : k≤r → End(Ls) be a generalized spin

representation.

(a) If Xr+1 centralizes k≤r, then ρ can be extended to a generalized spin rep-

resentation ρ′ : k≤r+1 → End(Ls) by setting ρ′(Xr+1) :=
1
2I · ids.

(b) If Xr+1 does not centralize k≤r, then ρ can be extended to a generalized

spin representation ρ′ : k≤r+1 → End(Ls ⊕ Ls) as follows. Define the sign

automorphism s0 : k≤r → Ls via

s0(Xi) :=

{

Xi if (i, r + 1) 6∈ E,

−Xi if (i, r + 1) ∈ E,

let

ρ′|k≤r
:= ρ⊕ ρ ◦ s0

and

ρ′(Xr+1) :=
1

2
I · ids ⊗

(

0 1
1 0

)

.

Proof. If Xr+1 centralizes k≤r, it is clear that ρ′ is well-defined and that
ρ′(Xr+1)

2 = − 1
4 ids.

In the second case it is clear that ρ′|k≤r is a generalized spin representation
of k≤r which extends ρ. It is easy to check that ρ′(Xi) commutes with ρ′(Xr+1)
if (i, r+1) 6∈ E, and that ρ′(Xi) anticommutes with ρ′(Xr+1) if (i, r+1) ∈ E.
Remark 3.7 therefore implies that ρ′ is a generalized spin representation. �

For a graph G = (V,E), a subset M ⊆ V is called a coclique if the subgraph
of G induced on M does not contain any edges, i.e., if no two elements m1, m2

in M are connected by an edge.

Corollary 3.10. Let n be the cardinality of the diagram of g and let r be

the size of a maximal coclique of that diagram. Then there exists a 2n−r-

dimensional generalized spin representation of k. Furthermore, if the diagram

is irreducible, then there exists a 2n−1-dimensional maximal generalized spin

representation of k.

Proof. Up to a change of labelling the set M := {α1, . . . , αr} forms a maximal
coclique. The map

ρ : k≤r → End(L1), Xi 7→
1

2
I · id1

is a generalized spin representation. By Theorem 3.9, the representation ρ can
be extended inductively to a generalized spin representation of k; the dimension
doubles at each step because M was assumed to be a maximal coclique.

For the second claim it suffices to order the vertices of the diagram in such
a way that two consecutive vertices are adjacent. �
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Remark 3.11. An inductive construction of the basic spin representations
of the symmetric group similar to the one in Theorem 3.9 has independently
been obtained by Maas [24]. It is likely that by a combination of the methods
of [24] and of the present article, a similar construction of generalized (basic)
spin representations is possible for any (simply-laced) Coxeter group.

3.12. Generalized spin representations for symmetrizable Kac–
Moody algebras. In this section let g be an arbitrary symmetrizable Kac–
Moody Lie algebra with maximal compact subalgebra k, and let ni be the
number of vertices associated to the root αi in a minimal-rank simply-laced
cover diagram for g. As above, we assume the ground field k has characteristic
zero.

Definition 3.13. A generalized spin representation for k is a Lie algebra ho-
momorphism ρ : k → End(Ls) such that each of the Berman generators Xi

(see Theorem 1.8) satisfies
(

ρ(Xi)
2 +

n2
i

4
ids

)(

ρ(Xi)
2 +

(ni − 2)2

4
ids

)

. . .
(

ρ(Xi)
2 + ids

)

ρ(Xi) = 0

if ni is even, and
(

ρ(Xi)
2 +

n2
i

4
ids

)(

ρ(Xi)
2 +

(ni − 2)2

4
ids

)

. . .

(

ρ(Xi)
2 +

1

4
ids

)

= 0

if ni is odd; i.e., P
1/4
ni (ρ(Xi)) = 0 (in the notation of Proposition 2.6).

Another way of saying this is that ρ(Xi) is semisimple with eigenvalues
belonging to the set {(ni−2j)/2 I | 0 ≤ j ≤ ni}. When the generalized Cartan
matrix of g is simply laced, this definition clearly coincides with Definition 3.6.

Theorem 3.14. Let L = k(I) where I2 = −1. Let g be an arbitrary sym-

metrizable Kac–Moody Lie algebra with maximal compact subalgebra k. Then

there exists a generalized spin representation ρ : k → End(Ls).
Moreover, if k is formally real, then ρ can be considered as a representation

k → End(k2s) with im ρ compact and, therefore, reductive. Furthermore, in

this case im ρ is semisimple, if for all i there exists j 6= i such that aji is odd.

Finally, in this case k ∼= ker ρ⊕ im ρ.

Note that the condition in the next-to-final sentence of the theorem is satis-
fied if, for example, g has a simply-laced diagram which has no isolated nodes.
It will follow from the proof that the theorem is actually applicable to all gen-
eralized spin representations discussed in Theorem 3.9 and Corollary 3.10, in
particular the standard generalized spin representation from Example 3.2.

Proof. To see that k has a generalized spin representation, let g̃ be the Kac–
Moody algebra associated to some minimal-rank simply-laced cover diagram
for g and let ϕ̃ : g → g̃ be the Lie algebra embedding described in Section 1.7.
Then it is clear from the earlier discussion that, if ρ̃ : k̃ → End(Ls) is a
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generalized spin representation for k̃, then ρ = ρ̃ ◦ ϕ̃|k is a generalized spin
representation for k. (It is, however, not clear that any generalized spin repre-
sentation for k arises in this way.) Thus the first statement follows immediately
from Corollary 3.10.

For the second statement it will suffice to prove that there exists a general-
ized spin representation ρ : k → End(Ls) such that, with respect to an appro-
priate choice of k-basis for Ls, each of the images ρ(Xi) is a skew-symmetric
2s × 2s matrix over k and, thus, ρ can be interpreted as a homomorphism
k → so2s(k). Since we can construct generalized spin representations for k by
restricting from those for the Lie algebra associated to a simply-laced cover
diagram, it will clearly suffice to show that the representation constructed in
Theorem 3.9 can be realized by using skew-symmetric matrices only. For the
extension of the representation in part (a) of Theorem 3.9 this is obvious, as

L ∼=
{(

a b
−b a

)

| a, b ∈ k

}

as k-algebras, whence I is represented by the skew-symmetric matrix
(

0 1
−1 0

)

.
For the extension of the representation in part (b) of Theorem 3.9, observe
that

(

1 0
0 I

)(

0 I
I 0

)(

1 0
0 −I

)

=

(

0 1
−1 0

)

so that after a change of basis we have instead

ρ′(Xr+1) =
1

2
ids ⊗

(

0 1
−1 0

)

(while ρ′|k≤r remains unchanged). Therefore, if the representation of k≤r con-
sists of skew-symmetric matrices over k, one can ensure that the representation
of k≤r+1 also consists of skew-symmetric matrices over k. Thus im(ρ) is com-
pact, whence reductive.

For the statement concerning semisimplicity observe that k is perfect. In-
deed, by hypothesis, for each generator Xi of k, there is some j such that aji
is odd, and therefore the constant term in the polynomial P−aji

is nonzero.
Since P−aji

(adXj)(Xi) = 0 by Theorem 1.8, it follows that Xi is contained in

the linear span of (adXj)
2l(Xi), l ≥ 1. Thus, the image im(ρ) is perfect and,

by the above, reductive. The claim is now obvious, as a perfect direct sum of
a semisimple and an abelian Lie algebra necessarily is semisimple.

For the final statement observe that k is anisotropic with respect to the
invariant bilinear form of the Kac–Moody algebra g and so (ker ρ)⊥ ∼= im ρ is
an ideal of k, where ⊥ denotes the orthogonality relation with respect to the
invariant bilinear form. �

Let C denote the class of all generalized spin representations of k. We check
some closure properties of C.
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Proposition 3.15. (a) C is closed under direct sums, quotients, duals and

taking subrepresentations.

(b) If the generalized Cartan matrix of g is simply laced and ρ1, ρ2, ρ3 ∈ C,
then so is ρ : Xi 7→ 4ρ1(Xi)⊗ ρ2(Xi)⊗ ρ3(Xi).

(c) More generally, if the generalized Cartan matrix of g is simply laced and

ρ1, ρ2 ∈ C, then so is ρ := 2Iρ1 ⊗ ρ2, where I is a primitive fourth root of

unity.

(d) If ρ ∈ C and ϕ is either a sign, graph or Weyl group automorphism of k,

then ρ ◦ ϕ ∈ C.

Proof. The first three assertions can be easily verified. The fourth assertion
is clear if ϕ is a graph or a sign automorphism. The remaining claim follows

from Remark 1.4, since if ρ(Xj) has eigenvalues rI
2 , (r−2)I

2 , . . . ,− rI
2 then so

does ρ(exp(ξ adXi)(Xj)) = exp(ξρ(Xi))(ρ(Xj)). �

4. Some Dynkin diagrams

We give the list of relevant Dynkin diagrams we use in the main text.

A+
n

1 2

n+ 1

n− 1 n

D+
n

1

2

3 n− 1 n

n+ 1

E+
6

1

2

3 4 5 6

7

E+
7

1

2

3 4 5 6 78

E+
8 = E9

1

2

3 4 5 6 7 8 9
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E++
8 = E10

1

2

3 4 5 6 7 8 9 10

A++
n−2 = AEn

1 2

n− 1

n− 3 n− 2 n
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Appendix: Cartan–Bott periodicity for the real En series
(by Max Horn and Ralf Köhl)

In this appendix we continue the investigation of the generalized spin rep-
resentations introduced in the main text. We focus on the En series and use
the original description of the generalized spin representation from [4, 7] via
Clifford algebras (see Example 3.2). The En series is traditionally only defined
for n ∈ {6, 7, 8}. However, using the Bourbaki style labeling shown in Fig-
ure 1, it naturally extends to arbitrary n ≥ 3. Using this description, one has
E3 = A2 ⊕A1, E4 = A4, E5 = D5 (see Figure 2).

An elementary combinatorial counting argument using binomial coefficients
allows us to determine lower bounds for the R-dimension of the images of the
generalized spin representation. These images have to be compact, whence
reductive by Theorem 3.14 and even semisimple, if the diagram is irreducible.
One therefore obtains an upper bound for their R-dimension via the maximal
compact Lie subalgebras of the Clifford algebras. As it turns out, the lower and
the upper bounds coincide, providing the following Cartan–Bott periodicity.

Theorem A (Cartan–Bott periodicity of the En series). Let n ∈ N with n ≥ 4,
let k be the maximal compact Lie subalgebra of the split real Kac–Moody Lie

algebra of type En, let C = C(Rn, q) be the Clifford algebra with respect to the

standard positive definite quadratic form q, and let ρ : k → C be the standard

generalized spin representation. Then im(ρ) is isomorphic to
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(a) so(2
n
2 ) ≤ R⊗R M(2

n
2 ,R) if n ≡ 0 (mod 8),

(b) so(2
n−1

2 )⊕ so(2
n−1

2 ) ≤ (R⊕ R)⊗R M(2
n−1

2 ,R) if n ≡ 1 (mod 8),

(c) so(2
n
2 ) ≤ M(2,R)⊗R M(2

n−2

2 ,R) if n ≡ 2 (mod 8),

(d) su(2
n−1

2 ) ≤ M(2,C)⊗R M(2
n−3

2 ,R) if n ≡ 3 (mod 8),

(e) sp(2
n−2

2 ) ≤ M(2,H)⊗R M(2
n−4

2 ,R) if n ≡ 4 (mod 8),

(f) sp(2
n−3

2 )⊕sp(2
n−3

2 )≤ (M(2,H)⊕M(2,H))⊗RM(2
n−5

2 ,R) if n ≡ 5(mod 8),

(g) sp(2
n−2

2 ) ≤ M(4,H)⊗R M(2
n−6

2 ,R) if n ≡ 6 (mod 8),

(h) su(2
n−1

2 ) ≤ M(8,C)⊗R M(2
n−7

2 ,R) if n ≡ 7 (mod 8),

i.e., im(ρ) is a semisimple maximal compact Lie subalgebra of C.

Along the way we arrive at a structural explanation for the well-known
isomorphism types of the maximal compact Lie subalgebras of the semisimple
split real Lie algebras of types E3 = A2 ⊕A1, E4 = A4, E5 = D5, E6, E7, E8

(cp., e.g., [13, p. 518, Tab. V]).

Theorem B. The maximal compact Lie subalgebras of the semisimple split

real Lie algebras of types A2⊕A1, A4, D5, E6, E7, E8 are isomorphic to u(2),
sp(2) ∼= so(5), sp(2)⊕ sp(2) ∼= so(5)⊕ so(5), sp(4), su(8), so(16), respectively.

A.1. Cartan–Bott periodicity of Clifford algebras. Let N = {1, 2, 3, . . .}
be the set of natural numbers, and let R, C, resp. H denote the reals, complex
numbers, resp. quaternions. For n ∈ N and a division ring D, denote by
M(n,D) the D-algebra of n× n matrices over D.

Let V be an R-vector space and q : V → R a quadratic form with associated
bilinear form b. Then the Clifford algebra C(V, q) is defined as

C(V, q) := T (V )/〈vw + wv − 2b(v, w)〉,
where T (V ) is the tensor algebra of V ; cp. [21, §4.3], [23, Chap. 1, §1].

Let V = Rn with standard basis vectors vi, let q = x2
1 + · · ·+ x2

n. Then in
C(V, q) we have v2i = 1 and vivj = −vjvi.

Proposition A.2 (Cartan–Bott periodicity). For n ≥ 2, the Clifford algebra

C(Rn, q) is isomorphic to the following algebra:

(a) R⊗R M(2
n
2 ,R) if n ≡ 0 (mod 8),

(b) (R⊕ R)⊗R M(2
n−1

2 ,R) if n ≡ 1 (mod 8),

(c) M(2,R)⊗R M(2
n−2

2 ,R) if n ≡ 2 (mod 8),

(d) M(2,C)⊗R M(2
n−3

2 ,R) if n ≡ 3 (mod 8),

(e) M(2,H)⊗R M(2
n−4

2 ,R) if n ≡ 4 (mod 8),

(f) (M(2,H)⊕M(2,H))⊗R M(2
n−5

2 ,R) if n ≡ 5 (mod 8),

(g) M(4,H)⊗R M(2
n−6

2 ,R) if n ≡ 6 (mod 8),

(h) M(8,C)⊗R M(2
n−7

2 ,R) if n ≡ 7 (mod 8).

Proof. See, e.g., [21, Prop. 4.4.1, Tab. 4.4.1]. �

Since C(V, q) is an associative algebra, it becomes a Lie algebra by setting
[A,B] := AB−BA. With this in mind, Proposition A.2 implies the following.
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En

1

2

3 4 5 6 n

Figure 1. The Dynkin diagram of type En.

E3 = A2 ⊕A1
1

2

3

E4 = A4
1

2

3 4

E5 = D5
1

2

3 4 5

E6
1

2

3 4 5 6

E7
1

2

3 4 5 6 7

E8
1

2

3 4 5 6 7 8

Figure 2. The Dynkin diagrams of types E3 to E8.
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Corollary A.3. For n ≥ 2, the maximal semisimple compact Lie subalgebra

of the Clifford algebra C(Rn, q) is isomorphic to the following Lie algebra:

(a) so(2
n
2 ) if n ≡ 0 (mod 8),

(b) so(2
n−1

2 )⊕ so(2
n−1

2 ) if n ≡ 1 (mod 8),
(c) so(2

n
2 ) if n ≡ 2 (mod 8),

(d) su(2
n−1

2 ) if n ≡ 3 (mod 8),

(e) sp(2
n−2

2 ) if n ≡ 4 (mod 8),

(f) sp(2
n−3

2 )⊕ sp(2
n−3

2 ) if n ≡ 5 (mod 8),

(g) sp(2
n−2

2 ) if n ≡ 6 (mod 8),

(h) su(2
n−1

2 ) if n ≡ 7 (mod 8).

A.4. A lower bound on the dimension of a subalgebra.

Definition A.5. For n ≥ 3 let m be the Lie subalgebra of C(Rn, q) generated
by v1v2v3 and by vivi+1, 1 ≤ i < n.

Lemma A.6. Let n ≥ 3. Then m contains all products of the form vj1vj2 · · · vjk
for 2 ≤ k ≤ n and k ≡ 2, 3 (mod 4) with pairwise distinct jt ∈ {1, . . . , n}, with
the possible exception of v1v2 · · · vn if n ≡ 3 (mod 4).

Proof. It is well known that all products vj1vj2 , j1 6= j2, are contained in m:
Indeed, Λ2Rn ∼= so(n) (cp., e.g., [23, Prop. 6.1]) is generated as a Lie algebra
by the vivi+1, 1 ≤ i < n (cp., e.g., [2, Thm. 1.31] and Theorem 1.3 of the main
text).

Moreover, for pairwise distinct jt, 1 ≤ t ≤ k + 1, one has

[vj1vj2 , vj2vj3 · · · vjk+1
] = 2vj1vj3 · · · vjk+1

.

Since re-ordering of the factors simply yields scalar multiples, this shows in-
ductively that, as long as k + 1 ≤ n, once an arbitrary factor of the form
vj1vj2 · · · vjk is contained in the Lie subalgebra, all factors of that form are
contained in the Lie subalgebra. This statement is also true in the situation
k = n, because in that case all factors of that form are scalar multiples of one
another.

We prove the claim of the lemma by induction over k. For k = 2 and
k = 3, this is obvious. Suppose the claim holds for k ≡ 3 (mod 4), so that the
next value for k to consider is k + 3 ≡ 2 (mod 4). By induction hypothesis
v4v5 · · · vk+3 ∈ m and

0 6= [v1v2v3, v4v5 · · · vk+3] = 2v1v2v3v4 · · · vk+3.

If on the other hand the claim holds for k ≡ 2 (mod 4), then the next value for
k to consider is k+1 ≡ 3 (mod 4). If k+2 ≤ n, then by induction hypothesis
v3v4 · · · vk+2 ∈ m and

0 6= [v1v2v3, v3v4 · · · vk+2] = 2v1v2v4 · · · vk+2.

That is, the presence of all elements of the form vj1vj2vj3 with pairwise distinct
jt ∈ {1, . . . , n} inductively allows us to construct all elements of the form
vj1vj2 · · · vjk for k ≡ 2, 3 (mod 4) with pairwise distinct jt ∈ {1, . . . , n} for all
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k ≤ n, with the possible exception of the situation k = n ≡ 3 (mod 4), as the
element vk+2 does not exist in that case. �

Remark A.7. It will turn out later, as a consequence of the proof of Theo-
rem A based on dimension arguments, that the above elements in fact generate
m as an R-vector space and that for n ≡ 3 (mod 4) the element v1v2 · · · vn in-
deed is not contained in m, unless of course n = 3.

Definition A.8. For k ∈ {0, 1, 2, 3}, let

δk : N → N, n 7→
n
∑

i=0,
i≡k (mod4)

(

n

i

)

.

Consequence A.9. Let n ≥ 3. Then

dimm ≥
{

δ2(n) + δ3(n) if n 6≡ 3 (mod 4),

δ2(n) + δ3(n)− 1 if n ≡ 3 (mod 4).

A.10. Combinatorics of binomial coefficients. We now turn the lower
bound from Consequence A.9 into a numerically explicit bound by deriving a
closed formula in n for the functions δk.

Proposition A.11. Let n ∈ N and k ∈ {0, 1, 2, 3}.
(a) If n ≡ 0 (mod 4), then

δk(n) =

{

2n−2 for k ∈ {1, 3},
2n−2 + (−1)

n
4
+ k

2 2
n
2
−1 for k ∈ {0, 2}.

(b) If n ≡ 1 (mod 4), then

δk(n) =

{

2n−2 + (−1)
n−1

4 2
n−3

2 for k ∈ {0, 1},
2n−2 − (−1)

n−1

4 2
n−3

2 for k ∈ {2, 3}.

(c) If n ≡ 2 (mod 4), then

δk(n) =

{

2n−2 for k ∈ {0, 2},
2n−2 + (−1)

n−2

4
+ k−1

2 2
n
2
−1 for k ∈ {1, 3}.

(d) If n ≡ 3 (mod 4), then

δk(n) =

{

2n−2 − (−1)
n−3

4 2
n−3

2 for k ∈ {0, 3},
2n−2 + (−1)

n−3

4 2
n−3

2 for k ∈ {1, 2}.

Proof. For a, n ∈ N the binomial theorem implies

(1 + ia)n =

3
∑

k=0

iakδk(n),
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where i ∈ C denotes the imaginary unit. Evaluation of this formula for a ∈
{0, 1, 2, 3} yields the following system of four identities:

δ0(n) + δ1(n) + δ2(n) + δ3(n) = 2n,(2)

δ0(n) + iδ1(n)− δ2(n)− iδ3(n) = (1 + i)n = 2
n
2 · en2πi

8 ,(3)

δ0(n)− δ1(n) + δ2(n)− δ3(n) = 0,(4)

δ0(n)− iδ1(n)− δ2(n) + iδ3(n) = (1 − i)n = 2
n
2 · e−n2πi

8 .(5)

These four identities imply

δ0(n) + δ2(n) = 2n−1 by ((2) + (4))/2,(6)

δ0(n)− δ2(n) = 2
n−2

2 (e
n2πi

8 + e−
n2πi

8 ) by ((3) + (5))/2,(7)

δ1(n) + δ3(n) = 2n−1 by ((2)− (4))/2,(8)

δ1(n)− δ3(n) = −2
n−2

2 i(e
n2πi

8 − e−
n2πi

8 ) by ((3)− (5))/(2i).(9)

One readily computes δ0(n), δ2(n) from (6), (7) and δ1(n), δ3(n) from (8), (9).
�

Combining this with Consequence A.9 yields the following result.

Consequence A.12. Let n ∈ N and n ≥ 2.

(a) If n ≡ 0 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 − 2
n
2
−1 + 2n−2 = 2

n−2

2 (2
n
2 − 1)

= dimR(so(2
n
2 )).

(b) If n ≡ 1 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2(2n−2 − 2
n−3

2 ) = 2
n−1

2 (2
n−1

2 − 1)

= dimR(so(2
n−1

2 )⊕ so(2
n−1

2 )).

(c) If n ≡ 2 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2n−2 − 2
n
2
−1 = 2

n−2

2 (2
n
2 − 1)

= dimR(so(2
n
2 )).

(d) If n ≡ 3 (mod 8), then

dimm+ 1 ≥ δ2(n) + δ3(n) = 2n−2 + 2
n−3

2 + 2n−2 − 2
n−3

2 = 2n−1

= dimR(su(2
n−1

2 )) + 1.

(e) If n ≡ 4 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2
n
2
−1 + 2n−2 = 2

n−2

2 (2
n
2 + 1)

= dimR(sp(2
n−2

2 )).
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(f) If n ≡ 5 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2(2n−2 + 2
n−3

2 ) = 2
n−1

2 (2
n−1

2 + 1)

= dimR(sp(2
n−3

2 )⊕ sp(2
n−3

2 )).

(g) If n ≡ 6 (mod 8), then

dimm ≥ δ2(n) + δ3(n) = 2n−2 + 2n−2 + 2
n
2
−1 = 2

n−2

2 (2
n
2 + 1)

= dimR(sp(2
n−2

2 )).

(h) If n ≡ 7 (mod 8), then

dimm+ 1 ≥ δ2(n) + δ3(n) = 2n−2 − 2
n−3

2 + 2n−2 + 2
n−3

2 = 2n−1

= dimR(su(2
n−1

2 )) + 1.

A.13. Generalized spin representations of the split real En series and
the resulting quotients. The example of a generalized spin representation
of the maximal compact subalgebra of the split real Kac–Moody Lie algebra of
type E10 described in [4] and [7] (see Example 3.2 in the main text) generalizes
directly to the whole En series as follows.

Let n ∈ N, let g be the split real Kac–Moody Lie algebra of type En,
let k be its maximal compact subalgebra, and let Xi, 1 ≤ i ≤ n, be the
Berman generators of k (cp. [2, Thm. 1.31] and Theorem 1.3 in the main text)
enumerated in Bourbaki style as shown in Figure 1, i.e., X1, X3, X4, . . . , Xn

belong to the An−1 subdiagram, generating so(n), and X2 to the additional
node. As in Section A.1 let q be the standard positive definite quadratic form
on Rn and let C = C(Rn, q) be the corresponding Clifford algebra, considered
as a Lie algebra.

Proposition A.14. Let n ≥ 3. The assignment

Xj 7→











1
2v1v2 for j = 1,
1
2v1v2v3 for j = 2,
1
2vj−1vj for 3 ≤ j ≤ n

defines a Lie algebra homomorphism ρ from k to the Lie subalgebra m of C
generated by v1v2v3 and by vivi+1, 1 ≤ i < n, called the standard generalized
spin representation of k.

Proof. The proof is based on the criterion established in Remark 3.7 and is
exactly the same as in the E10 case discussed in Example 3.2. �

Proof of Theorem A. By Theorem 3.14 and since En is simply laced and con-
nected for n ≥ 4, the image m of ρ is semisimple and compact. By Lemma A.6
and Consequence A.12, the dimension dimR(m) is at least as large as the di-
mension of the maximal semisimple compact Lie subalgebra of C as given in
Corollary A.3. The claim follows. �
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Proof of Theorem B. Let g be a semisimple split real Lie algebra of type E4 =
A4, E5 = D5, E6, E7 or E8, and let g = k⊕a⊕n be its Iwasawa decomposition.
Since dimR(k) = dimR(n), from the combinatorics of the respective root system
we conclude that the maximal compact Lie subalgebra k has dimension

10 =
4 · 5
2

=
2

4
2 · (2 4

2 + 1)

2
= dimR(sp(2)) = dimR(so(5)) if n = 4,

20 = 2 · 10 = dimR(sp(2)⊕ sp(2)) = dimR(so(5)⊕ so(5)) if n = 5,

36 = 4 · 9 = 2
6−2

2 · (2 6
2 + 1) = dimR(sp(4)) if n = 6,

63 = 26 − 1 = dimR(su(8)) if n = 7,

120 =
16 · 15

2
=

2
8
2 · (2 8

2 − 1)

2
= dimR(so(16)) if n = 8.

For n ≥ 4 we may now apply Theorem A and deduce that the standard gen-
eralized spin representation ρ has to be injective in these cases.

This leaves the case E3 = A2 ⊕ A1. Since this diagram is not irreducible,
Theorem 3.14 only implies that im(ρ) = m is compact but not that it is
semisimple (and, indeed, it is not). However, n = 3 is also an exceptional
case for Lemma A.6: In this case dimR(m) = 4, as v1v2, v1v3, v2v3, v1v2v3
form an R-basis of m. On the other hand, the Clifford algebra C is isomorphic
to M(2,C), hence k ∼= u(2), and this has dimension 4. Thus ρ is also injective
when n = 3. The claim follows. �
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1964. MR0207705

[2] S. Berman, On generators and relations for certain involutory subalgebras of Kac-Moody
Lie algebras, Comm. Algebra 17 (1989), no. 12, 3165–3185. MR1030614

[3] N. Bourbaki, Lie groups and Lie algebras. Chapters 7–9, translated from the 1975 and
1982 French originals by Andrew Pressley, Elem. Math. (Berlin), Springer, Berlin, 2005.
MR2109105

[4] T. Damour, A. Kleinschmidt and H. Nicolai, Hidden symmetries and the fermionic
sector of eleven-dimensional supergravity, Phys. Lett. B 634 (2006), no. 2-3, 319–324.
MR2202945

[5] T. Damour, A. Kleinschmidt and H. Nicolai, K(E10), supergravity and fermions, J.
High Energy Phys. 2006, no. 8, 046, 40 pp. (electronic). MR2249924

[6] S. de Buyl, Kac–Moody algebras in M-theory, Ph.D. thesis, Université Libre de Brux-
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