
WESTFÄLISCHE

WILHELMS-UNIVERSITÄT

MÜNSTER

Diplomarbeit

Topic: Numerical Methods for
Equilibrium Models in General Markets

submitted by: Anna Weisweiler 1

submitted at: May 8, 2008

Supervising Tutor: Professor Dr. Martin Burger

1email: annaweisweiler@gmx.de

Contents

1 Introduction 1

2 Theory 2
2.1 The Main Problem . 2
2.2 Existence of a Solution . 4

2.2.1 Proof of Proposition 1 . 8
2.2.2 Proof of Proposition 2 . 9
2.2.3 Proof of Proposition 3 . 13

2.3 Motivation and Discretization . 19
2.4 The Main Implementation . 21

3 Application I 22
3.1 Derivation of the Problem . 22
3.2 Numerical Solution in MATLAB . 29

4 Application II 32
4.1 Derivation of the Problem . 32
4.2 General Form and Discretization . 38
4.3 Numerical Solution in MATLAB . 41

5 Results 44
5.1 General Convergence Test . 44
5.2 Results for Application I . 46
5.3 Results for Application II . 53

A Appendix 55
A.1 List of Parameters . 55
A.2 MATLAB Implementations . 58

A.2.1 The Implementation of Chapter 2 . 58
A.2.2 The Implementation of Chapter 3 . 62
A.2.3 The Implementation of Chapter 4 . 69

A.3 Acknowledgment . 77

I

Chapter 1

Introduction

The intention of this diploma thesis is to solve the iterative problem of two algebraic equa-
tions and a few linear partial differential equations (PDE’s). Solving this problem means
economically generating the market equilibrium. In this case every market participant acts
optimally and the market is cleared.

This problem appears in a paper by Vito D. Gala 1 and in a paper by Nicolae Gârleanu and
Stavros Panageas 2. Hence, one can consider this paper as a type of extention to the papers
[1] and [2].
Both papers conctruct a general equilibrium. Paper [1] considers all firms in one block and
divides agents into two groups of different risk aversions. Furthermore, paper [2] considers
every individual firm and one representative investor.

The second chapter contains the theory of the main problem, that consists of a system of
differential equations and two algebraic equations in two variables. Moreover, the proof of
the existence of a solution, the discretization of the problem and the corresponding program
that is constructed with MATLAB are also presented in chapter 2.
The third chapter is about the application of paper [1]. There the problem of paper [1] and
its numerical solution in MATLAB is described.
The fourth chapter includes the application of paper [2] and the numerical solution of the
problem given by paper [2].
The results are given in chapter five.
Moreover, a list of parameters used in this paper and all implementations constructed with
MATLAB are provided in the appendix.

1cf. [2]
2cf. [1]

1

Chapter 2

Theory

In this chapter I present the main problem, its discretization, and the corresponding imple-
mentation constructed with the programming language MATLAB. The proof of the existence
of a solution of the stationary equation, whose idea is used in the iteration of the implemen-
tation, is given in this chapter, too.

2.1 The Main Problem

Usually only one kind of agent and a single property is considered, which leads to only one
differential equation. We consider heterogeneous agents (i.e. several groups). In order to
describe this problem, we have to examine several differential equations. Hence, we consider
a system of two or three differential equations and a system of two algebraic equations, which
are coupled in a nonlinear way.

The typical structure of such problems is the following system of differential equations for Φ,
Ψ and Θ:

−a0(x)Φ′′(x) + a1(F (x))Φ′(x) + a2(G(x))Φ(x) = a3(x), x ∈ (0, L) (2.1)
−b0(x)Ψ′′(x) + b1(F (x))Ψ′(x) + b2(F (x), G(x))Ψ(x) = b3(x), x ∈ (0, L) (2.2)
−c0(x)Θ′′(x) + c1(F (x))Θ′(x) + c2(F (x), G(x))Θ(x) = c3(x), x ∈ (0, L) (2.3)

where the functions F and G satisfy the following equations:

d1(x)F (x) + d2(x)G(x) = d3(Φ(x),Ψ(x),Θ(x)), x ∈ (0, L) (2.4)
e1(x)F (x) + e2(x)G(x) = e3(Φ(x),Ψ(x),Θ(x)), x ∈ (0, L) (2.5)

2

In typical economic applications the diffusion coefficients a0, b0, and c0 disappear at the
boundary, i.e. the boundary conditions are included implicitly in equations (2.1), (2.2), and
(2.3). Hence, equations (2.1) - (2.3) are called degenerate elliptic equations and we cannot
apply standard results. Thus, the analysis is difficult and we have to pay attention to the
appropriate numerical solution of the problem.

We discretize the differential equations (2.1), (2.2), and (2.3) by using upwind techniques1.
That means using backward differencing for a1 > 0 (b1 > 0, c1 > 0) and forward differencing
for the opposite case (coefficients < 0).

Moreover, the damping is important to achieve convergence of the system. Instead of solving
the equation

−a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = d(x)

we solve for the following equation with the damping parameter τ > 0 (similarly for τ < 0)

−a(x)u′′new(x) + b(x)u′new(x) + c(x)unew(x) + τunew(x) = d(x) + τuold(x)

in order to perform one iteration step.
The last equation can be derived from the parabolic equation

∂u

∂t
− a(x)

∂2u

∂x2
(x) + b(x)

∂u

∂x
(x) + c(x)u(x) = d(x),

where ∂u
∂t can be approximated by u−uold

τ with τ = 1
τ and uold from the previous iteration

step. (See also the next section.)

1cf. [3, p. 13]

3

2.2 Existence of a Solution

In the following section we verify the existence of a solution by a fixed point approach, which
is later used for the numerical solution of the problem, too.

The fixed point form is given by

(u1, u2, u3) = A(v1, v2, v3) (2.6)

using the fixed point mapping

A : C ([0, L])3 → C ([0, L])3

(v1, v2, v3) 7→ (u1, u2, u3)

where (u1, u2, u3) are the solutions of the following equations:

−a0(x)u′′1(x) + a1(F (x))u′1(x) + a2(G(x))u1(x) + τu1(x) = a3(x) + τv1(x) (2.7)
−b0(x)u′′2(x) + b1(F (x))u′2(x) + b2(F (x), G(x))u2(x)τu2(x) = b3(x) + τv2(x) (2.8)
−c0(x)u′′3(x) + c1(F (x))u′3(x) + c2(F (x), G(x))u3(x)τu3(x) = c3(x) + τv3(x) (2.9)

And the functions F and G are computed by:

d1(x)F (x) + d2(x)G(x) = d3(v1(x), v2(x), v3(x)) (2.10)
e1(x)F (x) + e2(x)G(x) = e3(v1(x), v2(x), v3(x)) (2.11)

For the following proofs we define a reasonable assumption:

4

Assumption 1:

All coefficients have to be continuous.

ai, bi, ci, di, ei ∈ C([0, L]), (2.12)

and the coefficients a0, b0, c0 satisfy:

a0(x) ≥ 0 x ∈ [0, L] (2.13)
b0(x) ≥ 0 x ∈ [0, L] (2.14)
c0(x) ≥ 0 x ∈ [0, L] (2.15)

Furthermore, the coefficients a0, b0, c0 and a1, b1, c1 satisfy the following boundary
conditions:

a0(0) = a0(L) = 0 (2.16)
b0(0) = b0(L) = 0 (2.17)
c0(0) = c0(L) = 0 (2.18)

a1(F (0)) < 0 (2.19)
a1(F (L)) > 0 (2.20)
b1(F (0)) < 0 (2.21)
b1(F (L)) > 0 (2.22)
c1(F (0)) < 0 (2.23)
c1(F (L)) > 0 (2.24)

Moreover, the matrix B has to be regular for all x ∈ (0, L)

B =
(
d1(x) d2(x)
e1(x) e2(x)

)
and the condition number of B has to be uniformly bounded in x.

We want to prove the folowing theorem:

Theorem 1:

Let Assumption 1 hold. Then there exists a solution of equations (2.1) - (2.5).

5

Proof of Theorem 1:

The proof is done by Schauder’s Fixed Point Theorem2 using the fixed point mapping
A that is described above.
The fixed point operator A is compact and maps a ball into itself, which follows from Propo-
sition 1, Proposition 2, and Proposition 3 in the next section. Thus, we only have to show
that the fixed point mapping is continuous.

We know from Assumption 1 that all coefficients are continuous in [0, L]. Hence, the following
mappings are continuous as well:

F (x) 7→ a1(F (x)) (2.25)
F (x) 7→ b1(F (x)) (2.26)
F (x) 7→ c1(F (x)) (2.27)
G(x) 7→ a2(G(x)) (2.28)
F (x) 7→ b2(F (x), G(x)) (2.29)
G(x) 7→ b2(G(x), G(x)) (2.30)
F (x) 7→ c2(F (x), G(x)) (2.31)
G(x) 7→ c2(G(x), G(x)) (2.32)

Thus, the mapping described by equations (2.7) - (2.9) is continuous:

(F,G) 7→ (u1, u2, u3) (2.33)

Moreover, we know from the assumptions on matrix B that the inverse B−1 exists and is
continuous. Hence, the mapping described by equations (2.10) - (2.11) is continuous as well:

(v1, v2, v3) 7→ (F,G) (2.34)

Thus, we have shown that the fixed point mapping A is continuous.

Hence, we show the following main proposition, related to the stationary equation in
Ω = (0, L):

−ai(x)u′′i (x) + bi(x)u′i(x) + ci(x)ui(x) + τui(x) = di(x) + τvi(x) (2.35)

2cf. [4, p. 502, Theorem 3] and Theorem 2 next section

6

Proposition 1:

Suppose ui satisfies equation (2.35) in Ω = (0, L), ai, bi, ci, di ∈ C([0, L]), ai(x) ≥
0, ci(x) ≥ 0, τ > 0, and the following boundary values:

ai(0) = ai(L) = 0
bi(0) < 0
bi(L) > 0

Then there exists a unique solution ui ∈ C1([0, L]) of the stationary equation
(2.35).

7

2.2.1 Proof of Proposition 1

For the proof we need Schauder’s Fixed Point Theorem3 that is given by:

Theorem 2:

Suppose X is a real Banach space, M ⊂ X is compact and convex and
A : M →M is continuous.
Then A has a fixed point in M.

Proof of Proposition 1:

We define M = {u ∈ X | ‖ui‖∞ ≤ Ki, ‖u′i‖∞ ≤ K̃i} with positive constants Ki and K̃i.
M is compact and convex in L∞, because the first derivative of u is also bounded in L∞.
Note that the space of all continuous functions defined on a closed interval is a Banach space
with the supremum norm.

Hence, we will show the next two propositions in the following subsections:

Proposition 2:

Suppose ui satisfies equation (2.35). Then there exists Ki > 0 such that for
‖vi‖∞ ≤ Ki the following estimate holds:

‖ui‖∞ ≤ Ki

Proposition 3:

Suppose ui satisfies equation (2.35). Then there exists K̃i > 0 such that for
‖vi‖∞ ≤ K̃i the following estimate holds:

‖u′i‖∞ ≤ K̃i

After showing these requirements for Schauder’s Fixed Point Theorem, we can define the
mapping A in the following way:

A : M →M with A(v) = u and u is a solution of (2.35)

With Schauder’s Fixed Point Theorem it follows that A has a fixed point in M.

From this follows the existence of a solution ui(x) of (2.35) with τ = 0.

In order to show uniqueness we apply the Maximum Principle to the difference of two solu-
tions of equation (2.35).

3cf. [4, p. 502, Theorem 3]

8

2.2.2 Proof of Proposition 2

First of all we have to show ‖ui‖∞ ≤ Ki. For this sake we need the Maximum Principle4.

Theorem 3:

If u(x) satisfies the differential inequality

Lu = u′′ + g(x)u′ + h(x)u ≥ 0

in an interval (a, b) with h(x) ≤ 0, if g and h are bounded on every closed subin-
terval, and if u assumes a nonnegative maximum value K at an interior point,
then u(x) ≡ K.

Proof of Proposition 2:

We define

L̃ui(x) = −ai(x)u′′i (x) + bi(x)u′i(x) + (ci(x) + τ)ui(x) (2.36)
fi(x) = di(x) + τvi(x) (2.37)

with ai(x) ≥ 0 and ai = 0 at the boundary values, ci(x) ≥ 0, τ ≥ 0, bi < 0 at the left bound-
ary point and bi > 0 at the right boundary point, which is a suitable assumption satisfied in
practice.

Fist we concider the case L̃ui(x) ≤ 0:

If we apply the Maximum Principle, three cases can occur:

• In the first case ui is a positive constant. We can apply this to equation (2.36). From
the fact that the first and the second derivative of ui is zero and from (ci(x) + τ) ≥ 0
follows that L̃ui(x) ≥ 0, which is inconsistent to L̃ui(x) ≤ 0.

• The second case denotes ui(x) ≤ 0.

4cf. [5, p. 64, Theorem 6]

9

• In the last case ui has no local maximum at an interior point of the interval. This can
also be disproved:
Assume that ui(x) > 0 and consider equation (2.35) at the boundary. Because of ai = 0
at the boundary, equation L̃ui(x) ≤ 0 reduces to the following inequality:

bi(x)u′i(x) + (ci(x) + τ)ui(x) ≤ 0

From (ci(x) + τ) ≥ 0 and ui(x) > 0 we know that −(ci(x) + τ)ui(x) ≤ 0 holds. So we
obtain the next inequality:

bi(x)u′i(x) ≤ 0

At the left boundary value bi < 0 holds. Thus, we have u′i(x) ≥ 0 at the left part of the
interval. Hence, u′i(x) ≤ 0 holds analogically for bi > 0 at the right part of the interval.
From this it follows for an interior point x:

ui(x) ≥ the boundary values of ui

We have assumed that ui(x) > 0, so ui has a positive maximum at an interior point.
This is inconsistent to the case we consider. Thus, this case is also disproved.

Hence, L̃ui(x) ≤ 0 and the Maximum Principle leads to ui(x) ≤ 0.

Now we consider the case L̃ui(x) ≥ 0:

If we apply the Maximum Principle, there can also occur three cases:

• In the first case ui is a negative constant. We can apply this to equation (2.36) and
analogically obtain L̃ui(x) ≤ 0, which is inconsistent to L̃ui(x) ≥ 0.

• The second case denotes ui(x) ≥ 0.

10

• In the last case ui has no local minimum at an interior point of the interval. This can
also be disproved as in the case L̃ui(x) ≤ 0:
Assume that ui(x) < 0 and consider equation (2.35) at the boundary. Because of ai = 0
at the boundary, (ci(x) + τ) ≥ 0 and ui(x) < 0 equation L̃ui(x) ≥ 0 reduces to the
following inequality:

bi(x)u′i(x) ≥ 0

Due to the assumptions of b at the boundary values, we obtain u′i(x) ≤ 0 at the left
part of the interval and u′i(x) ≥ 0 at the right part of the interval. From this it follows
for an interior point x:

ui(x) ≤ the boundary values of ui

We have assumed that ui(x) < 0, so ui has a negative minimum at an interior point.
That is inconsistent to this case, so it is disproved.

Thus, L̃ui(x) ≥ 0 leads to ui(x) ≥ 0.

Hence, we can now derive the estimate ‖ui‖∞ ≤ Ki.

In the case L̃ui(x) ≤ 0 we define

ũi(x) = ui(x)−Ki (2.38)

where Ki is a positive constant. Moreover, we have shown that ui(x) ≤ 0 follows from
L̃ui(x) ≤ 0. If we apply this to ũi(x), we obtain:

ui(x) ≤ Ki (2.39)

We can show that Ki depends on di(x) and ci(x) by calculating the following equation with
(2.37):

L̃ũi(x) = fi(x)− L̃Ki (2.40)

Rearranging leads to

L̃ũi(x) = ci(x)
(
di(x)
ci(x)

−Ki

)
+ τ(vi(x)−Ki) (2.41)

11

Because of ci(x) ≥ 0, τ ≥ 0 and L̃ũi(x) ≤ 0 the following inequalities have to hold:

max
(
di(x)
ci(x)

)
≤ Ki (2.42)

vi(x) ≤ Ki (2.43)

Moreover, in the case L̃ui(x) ≥ 0 we define

ũi(x) = ui(x) +Ki (2.44)

where Ki is a positive constant. Furthermore, we have shown that ui(x) ≥ 0 follows from
L̃ui(x) ≥ 0. If we apply this to ũi(x), we obtain:

−Ki ≤ ui(x) (2.45)

We can show in an analogous way to the case L̃ui(x) ≤ 0 that Ki depends on di(x) and ci(x).
Hence, we obtain the next inequalities:

−Ki ≤ min
(
di(x)
ci(x)

)
(2.46)

−Ki ≤ vi(x) (2.47)

Combining (2.39) and (2.45) leads to the desired estimate ‖ui‖∞ ≤ Ki.

12

2.2.3 Proof of Proposition 3

In the following we show the bound on u′i in the supremum norm.

For this sake we divide the considered interval into three parts.

Proof of Proposition 3:

First of all we want to verify the estimate for the left part of the interval:

We define wi(x) = u′i(x). Hence, equation (2.35) leads to the following equation for wi:

ai(x)w′i(x) = bi(x)wi(x) + (ci(x) + τ)ui(x)− di(x)− τvi(x) (2.48)

In the case wi(x) > 0, we define wi(x) = w̃i(x) + γ with γ > 0 sufficiently large such that

bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) < 0 (2.49)

holds with the antiderivative Fi(x) of w̃i(x). It is possible to choose γ like that, because
bi(0) < 0.

For w̃i(x) equation (2.48) reads as follows:

ai(x)w̃′i(x) = bi(x)w̃i(x) + bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) (2.50)

From (2.49) we obtain the next inequality:

ai(x)w̃′i(x) < bi(x)w̃i(x) (2.51)

In the case w̃i(x) > 0 rearranging leads to

w̃′i(x)
w̃i(x)

<
bi(x)
ai(x)

(2.52)

We obtain the following inequality, because bi < 0 at the left boundary value.

w̃′i(x)
w̃i(x)

< 0 (2.53)

13

Hence, it follows for the derivative of the logarithm that

[log(w̃i(x))]′ < 0 (2.54)

From the monotonicity of the logarithm we obtain

w̃i(x) < w̃i(0) (2.55)

where x is an interior point of the interval.
This leads to the following:

wi(x) < wi(0) (2.56)

In the case w̃i(x) ≤ 0 we obtain:

wi(x) ≤ γ (2.57)

Combining (2.56) and (2.57) leads to the following estimate:

0 ≤ wi(x) ≤ max (γ,wi(0)) (2.58)

In the case wi(x) < 0, we define wi(x) = w̃i(x)− γ with γ > 0 sufficiently large such that

−bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) > 0 (2.59)

holds with the antiderivative Fi(x) of w̃i(x). It is possible to choose γ like that, because
bi(0) < 0.
For w̃i(x) equation (2.48) reads as follows:

ai(x)w̃′i(x) = bi(x)w̃i(x)− bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) (2.60)

From (2.59) we obtain the next inequality:

ai(x)w̃′i(x) > bi(x)w̃i(x) (2.61)

14

In the case w̃i(x) < 0 rearranging leads to

w̃′i(x)
w̃i(x)

<
bi(x)
ai(x)

(2.62)

We obtain the following inequality, because bi < 0 at the left boundary value.

w̃′i(x)
w̃i(x)

< 0 (2.63)

Moreover, it follows for the derivative of the logarithm that

[log(−w̃i(x))]′ < 0 (2.64)

From the monotonicity of the logarithm we obtain

−w̃i(x) < −w̃i(0) (2.65)

where x is an interior point of the interval. This is equivalent to the following inequality:

w̃i(x) > w̃i(0) (2.66)

In the case w̃i(x) ≥ 0 we obtain:

wi(x) ≥ −γ (2.67)

Combining (2.66) and (2.67) leads to the following estimate:

0 ≥ wi(x) ≥ max (−γ,wi(0)) (2.68)

Combining (2.58) and (2.68) we obtain:

|wi(x)| ≤ max (γ, |wi(0)|) (2.69)

15

Furthermore, we have to verify the estimate for the right part of the interval:

This part is analogous to the one above. There are just a few differences:

• bi > 0 at the right boundary value

• In the case wi(x) > 0 we choose γ > 0 sufficiently large such that

bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) > 0

• In the case wi(x) < 0 we choose γ > 0 sufficiently large such that

−bi(x)γ + (ci(x) + τ)Fi(x)− di(x)− τvi(x) < 0

After this we obtain the following estimate

|wi(x)| ≤ max (γ, |wi(L)|) (2.70)

where L is the right boundary value of the interval.

Finally, we have to show the estimate for the central part of the interval:

For this proof we need the Gronwall Lemma5:

Lemma 1:

Let u(t) be a continuous function defined on a closed interval J = [0, T]. If u(t)
satisfies in J the inequality

u(t) ≤ α+ β

∫ t

0
u(s) ds

with β > 0 and an arbitrary constant α. Then the following inequality holds in J:

u(t) ≤ αeβt

5cf. [6, p. 361, Lemma 12.27]

16

Consider equation (2.35), define wi(x) = u′i(x) and set di(x) + τvi(x)− (ci(x) + τ)ui(x) = C
with a constant C. Hence,

ai(x)w′i(x) = bi(x)wi(x)− C (2.71)

where for interior points of the interval it holds ai(x) ≥ δ > 0 with a positive constant δ.
We conclude

w′i(x) ≤ bi(x)
ai(x)

wi −
C

ai(x)
(2.72)

This inequality also holds as equality, but we only need the inequality. We can write this
inequality in the following way:

wi(x) ≤ α1i + β1i

∫ x

0
wi(s) ds (2.73)

With Gronwall’s Lemma we obtain:

u′i(x) = wi(x) ≤ α1i e
β1ix (2.74)

Now we define wi(x) = −u′i(x). Hence,

ai(x)w′i(x) = bi(x)wi(x) + C (2.75)

where for interior points of the interval it holds ai(x) ≥ δ > 0 with a positive constant δ.
It follows that

w′i(x) ≤ bi(x)
ai(x)

wi +
C

ai(x)
(2.76)

This inequality also holds as equality, but we only need the inequality. We can write this
inequality in the following way:

wi(x) ≤ α2i + β2i

∫ x
0 wi(s) ds (2.77)

With Gronwall’s Lemma we obtain:

wi(x) ≤ α2i e
β2ix (2.78)

17

Moreover, this inequality is equivalent to the following one:

−u′i(x) ≤ α2i e
β2ix (2.79)

i.e.

u′i(x) ≥ −α2i e
β2ix (2.80)

With (2.74) and (2.78) we obtain the following estimate:

|wi(x)| ≤ Ci (2.81)

Ci = max
(
α1 e

β1x, α2 e
β2x
)

(2.82)

Combining (2.69), (2.70), and (2.81) we obtain the desired estimate

‖u′i‖∞ ≤ K̃i (2.83)

where K̃i = max (|wi(0)|, |wi(L)|, Ci, γ).

18

2.3 Motivation and Discretization

We can solve the problem of equations (2.1) - (2.5) by a numerical algorithm. That means
we first have to compute F and G from equations (2.4), (2.5) and from initial values of Φ, Ψ,
and Θ. Afterwards we can evaluate new values of Φ, Ψ, and Θ from equations (2.1) - (2.3).
This iteration continues until convergence is achieved.
For calculating Φ, Ψ, and Θ we need the finite difference method. This discretisation is now
explained by equation (2.1).

We want to apply the discretization e.g. to equation (2.1). Hence, at each point j with
j = 1, 2, ..., n we obtain the following equation:

a0(x)[∂2
xxΦ]j + a1(F (x))[∂xΦ]j + a2(G(x))Φj = a3(x) (2.84)

Thus, we need the discretization of Φ′′(x) = ∂2
xxΦ(x) and Φ′(x) = ∂xΦ(x). For the discretiza-

tion of the first derivatives we use upwind techniques6 as described in chapter 2.1.
Thus, we obtain a M-matrix7 and the discrete Maximum Principle is fulfilled. This can also
be proven by Schauder’s Fixed Point Theorem.

The derivative of second order with respect to x is approximated by:

[∂2
xxΦ]j =

Φj+1 − 2Φj + Φj−1

h
(2.85)

The derivative of first order with respect to x is discretized for a1(F (x)) < 0 by forward
differencing:

[∂xΦ]j =
Φj+1 − Φj

h
(2.86)

Moreover, the derivative of first order with respect to x for a1(F (x)) > 0 is approximated by
backward differencing:

[∂xΦ]j =
Φj − Φj−1

h
(2.87)

6cf. [3, p. 13]
7cf. [3, Section 2.3.3, p. 25]

19

This leads to the following discretization of equation (2.1):

a3(x) =
[
a0(x)
h2

+
min (a1(F (x)), 0)

h

]
Φj+1(x)

+
[
a2(G(x))− 2a0(x)

h2
+

max (a1(F (x)), 0)
h

− min (a1(F (x)), 0)
h

]
Φj(x)

+
[
a0(x)
h
− max (a1(F (x)), 0)

h

]
Φj−1(x) (2.88)

We can rewrite this equation in matrix form

AΦ(x) = a3(x) (2.89)

where the first sub diagonal of matrix A is denoted by r, the main diagonal of matrix A is
denoted by s and the first super diagonal of matrix A is denoted by t.

r =
a0(x)
h
− max (a1(F (x)), 0)

h
(2.90)

s = a2(G(x))− 2a0(x)
h2

+
max (a1(F (x)), 0)

h
− min (a1(F (x)), 0)

h
(2.91)

t =
a0(x)
h2

+
min (a1(F (x)), 0)

h
(2.92)

Hence, the described problem can be computed by the implementation that is given in the
next section.

20

2.4 The Main Implementation

In the following we describe the implementation Iteration that solves two equations for F
and G and a system of three linear differential equations for U,V, and W.

First we need inital values of U, V, and W to solve equations (2.7) - (2.9). With these values
we are able to compute F and G from equations (2.10) and (2.11).

That means we compute the vector o which consists of F and G one below the other

o(x) =
(
F (x)
G(x)

)
= B−1

(
d3(x)
e3(x)

)

with matrix B of Assumption 1.

Thereafter, we have to calculate U, V, W and F, G in turn until convergence is achieved.

For the calculation of U, V, and W we have to define the damped coefficients as follows:

ã2 = a2 + τ (2.93)
ã3 = a3 + τU (2.94)
b̃2 = b2 + τ (2.95)
b̃3 = b3 + τV (2.96)
c̃2 = c2 + τ (2.97)
c̃3 = c3 + τW (2.98)

where τ denotes the damping factor.

Moreover the computation of U, V, and W result from the function DGLfunction, where
U, V, and W are calculated by the following equations:

U = A−1 ã3 (2.99)
V = A−1 b̃3 (2.100)
W = A−1 c̃3 (2.101)

where matrix A is described by equations (2.90), (2.91) and (2.92) with the dumping coeffi-
cients ã2, b̃2, and c̃2 instead of a2, b2, and c2.

The complete implementation is included in the appendix.

21

Chapter 3

Application I

The paper [1] by Gârleanu and Panageas constructs a general equilibrium. In the model all
firms are concentrated in one block and agents are divided into less risk-averse and more
risk-averse agents. Therefore the authors investigate one representative firm and two types
of agents denoted by type A and type B agents.
There exist many relations to other papers. For example, the authors denote their paper
as an extension of the perpetual youth model of Blanchard1. In contrast to Blanchard the
model of Gârleanu and Panageas is stochastic. Besides this model is similar to Campbell and
Cochrane2, but with different economic mechanisms and justification.
This paper includes four main differences to other papers: First of all, they integrate agents
with finite lifespans. Furthermore, the agent’s ability to work declines with age. Moreover,
agents may have different preferences, and finally, consumption and dividends are not equal.

3.1 Derivation of the Problem

In the following we describe the problem of paper [1] by the required equations.

The consumption share Xt is given by the stochastic process

dXt = µXdt+ σXdBt (3.1)

where Bt is a Brownian motion and µX , σX are the drift and diffusion coefficients of the
process.

1cf. [7]
2cf. [8]

22

Moreover, the process of the stochastic discount factor ξt is defined as:

dξt = −rtξtdt− κtξtdBt (3.2)

where rt is the interest rate at time t and κt denotes the Sharpe ratio at time t.

Furthermore, the stochastic output Yt is given by the following equations:

Yt = Ztf(Ht) (3.3)
dZt
Zt

= µZdt+ σZdBt, with positive constants µZ and σZ (3.4)

where Ht denotes the agent’s aggregate hours worked at time t, Zt stands for the exogenous
productivity process, and f(Ht) is an increasing and concave function on Ht.

The functions gt = g(Xt), ωt and the prevailing wage (equilibrium wage) wt = w(Xt) are
defined as follows:

g(Xt) =
Yt
Zt

(3.5)

w(Xt) = Ztω(Xt) (3.6)

ωt =
wt
Zt

(3.7)

Moreover, the following equation is important to compute the diffusion coefficient σX , the
Sharpe ratio κt, the drift coefficient µX and the interest rate rt. This equation follows from
equation (34)3 in [1].

XtYt = v

∫ t

−∞
πe
−
(
π+

ρA
γA

)
(t−s)

βAs Zsgs

(
Ztωt
Zsωs

) (1−ψA)(γA−1)

γA

(
ξt
ξs

)− 1
γA

ds (3.8)

3cf. [1, p. 14, Equation (34)]

23

Hence, π is the constant hazard rate of death. Beyond it v refers the mass of type A agents, ρA
stands for the subjective discount rate of type A agents, γA denotes the relative risk aversion
of type A agents and ψA controls the relative importance of leisure and consumption of type
A agents. Furthermore, βAt = βA(Xt) will be determined later.

For the following calculations we need Ito’s Lemma4:

Lemma 2:

Suppose u(t, s1, ..., sd) is a continuous function on [t0, T] × Rd with continuous
partial derivatives ut, usi and usi,sj , i, j ≤ d.
Furthermore, d one-dimensional stochastic processes Si(t) in [t0, T] are given by:

dSi(t) = fi(t)dt+ gi(t)dWt, i = 1, 2, ..., d

Thus, the one-dimensional process Vt = u(t, S1(t), ..., Sd(t)) is also described in
[t0, T] by a stochastic differential:

dVt =

ut +
d∑
i=1

usifi +
1
2

d∑
i=1

d∑
j=1

usisjgigj

 dt+

(
d∑
i=1

usigi

)
dWt

Moreover, the product rule for u = s1s2 and d = 2 is given by:

d(S1(t)S2(t)) = S1(t)dS2(t) + S2(t)dS1(t) + dS1(t)dS2(t)
= S1(t)dS2(t) + S2(t)dS1(t) + g1(t)g2(t)dt

Computing dwt and d
(
waξb

)
leads to the equation for D

(
waξb

)
. We compute d

(
waξb

)
by

Ito’s Lemma and the product rule of Ito’s Lemma:

d(waξb) = d(wa)ξb + wad(ξb) + d(wa)d(ξb) (3.9)
= ...

= waξb (µ̃dt+ σ̃dB) with (3.10)

µ̃ = a

(
µZ +

σ2
Z

2
(a− 1) +

ω′

ω
(µX + aσZσX − κbσX)− bκσZ

)
+
σ2
X

2

(
a(a− 1)

(
ω′

ω

)2

+ a
ω′′

ω

)
− b

(
r +

κ2

2
(1− b)

)
(3.11)

σ̃ = aσZ + a
ω′

ω
σX − bκ (3.12)

4cf. [9, p. 104,105, (5.3.11) and (5.4.1)]

24

Hence, D
(
waξb

)
is the quotient of the drift term of d

(
waξb

)
and waξb:

D
(
waξb

)
= a

(
µZ +

σ2
Z

2
(a− 1) +

ω′

ω
(µX + aσZσX − κbσX)− bκσZ

)
+
σ2
X

2

(
a(a− 1)

(
ω′

ω

)2

+ a
ω′′

ω

)
− b

(
r +

κ2

2
(1− b)

)
(3.13)

Now we can apply the d-operator on both sides of (3.8). Equation (3.14) contains the diffusion
term of the application of the d-operator to equation (3.8) divided by XtYt.

σX
Xt

+ σZ +
g′

g
σX =

(1− ψA)(γA − 1)
γA

(
ω′

ω
σX + σZ

)
κt
γA

(3.14)

Afterwards equation (3.15) is the quotient of the drift term of the application of the d-operator
to equation (3.8) and Yt.

µX +
(
µZ +

g′

g
(µX + σXσZ) +

σ2
X

2
g′′

g

)
Xt +

(
g′

g
σX + σZ

)
σX

= Xt

[
D

(
w

(1−ψA)(γA−1)

γA
t ξ

− 1
γA

t

)
−
(
π +

ρA
γA

)]
+ vπβAt (3.15)

In the following we derive the other equations that we need for the calculation of the diffusion
coefficient σX , the Sharpe ratio κt, the drift coefficient µX and the interest rate rt. This
equations will follow from equation (38)5 in [1], which is given by:

Ztg(Xt) =
∫ t

−∞
πe
−
(
π+

ρA
γA

)
(t−s)

vβAs Zsgs

(
Ztωt
Zsωs

) (1−ψA)(γA−1)

γA

(
ξt
ξs

)− 1
γA

ds (3.16)

+
∫ t

−∞
πe
−
(
π+

ρB
γB

)
(t−s)(1− v)βBs Zsgs

(
Ztωt
Zsωs

) (1−ψB)(γB−1)

γB

(
ξt
ξs

)− 1
γB

ds

5cf. [1, p. 15, Equation (38)]

25

Equation (3.17) implies the diffusion term of the application of the d-operator to equation
(3.16) divided by Yt

σZ +
g′

g
σX = Xt

[
κt
γA

+
(1− ψA)(γA − 1)

γA

(
ω′

ω
σX + σZ

)]
+(1−Xt)

[
κt
γB

+
(1− ψB)(γB − 1)

γB

(
ω′

ω
σX + σZ

)]
(3.17)

and equation (3.18) implies the drift term of the application of the d-operator to equation
(3.16) divided by Yt.

µZ +
g′

g
(µX + σXσZ) +

1
2
g′′

g
σ2
X = vπβAt +Xt

[
D

(
w

(1−ψA)(γA−1)

γA ξ
− 1
γA

)
−
(
π +

ρA
γA

)]
+(1− v)πβBt + (1−Xt)

[
D

(
w

(1−ψB)(γB−1)

γB ξ
− 1
γB

)
−
(
π +

ρB
γB

)]
(3.18)

From Lemma 1 in [1] it follows that φA solves the differential equation (3.19).

0 =
σ2
X

2
(
φA
)′′

+
(
φA
)′

(µX + σX(σY − κ)) + φA(µY − r − σY κ− π − χ)

+ψA
π + χ

π

ω

g
(3.19)

The function ζi(Xt) solves the differential equation (3.20), where the following notations are
used: φB(Xt) = ψB

ψA
φA(Xt), βi(Xt) = φi(Xt)

ζi(Xt)
, i ∈ {A,B}

−1 =
σ2
X

2
(ζi)′′ +

(
µX + σX

(1− ψi)(γi − 1)
γi

(
σZ +

ω′

ω
σX

)
− σX

γi − 1
γi

κ

)
(ζi)′

+

[
D

(
w

(1−ψi)(γi−1)

γi
t ζ

1− 1
γi

t

)
−
(
π +

ρi
γi

)]
ζi (3.20)

Moreover, parameter µY and σY are given by:

µY = µZ +
g′

g
(µX + σXσZ) +

σ2
X

2
g′′

g
(3.21)

σY = σZ +
g′

g
σX (3.22)

26

We can identify equations (3.15) and (3.18) as a special case of equations (2.4) and (2.5) by
setting µX = F (X) and r = G(X). Similarly, we can identify equation (3.19) and (3.20) with
the three differential equations (2.1), (2.2), and (2.3) by setting additionally φA = Φ, ζA = Ψ
and ζB = Θ. Rearranging (3.15), (3.18), (3.19), and (3.20) and omitting the index t leads to:

d1 = 1 +X
g′

g
− (1− ψA)(γA − 1)

γA
X
ω′

ω
(3.23)

d2 = −X
γA

(3.24)

d3 = X

[
D̂

(
(1− ψA)(γA − 1)

γA
,− 1

γA

)
−
(
π +

ρA
γA

)
− µZ −

g′

g
σZσX −

g′′

g

σ2
X

2

]
−g
′

g
σ2
X − σZσX + vπ

Φ
Ψ

(3.25)

e1 =
g′

g
−X (1− ψA)(γA − 1)

γA

ω′

ω
− (1−X)

(1− ψB)(γB − 1)
γB

ω′

ω
(3.26)

e2 = −X
γA
− 1−X

γB
(3.27)

e3 = vπ
Φ
Ψ

+ (1− v)π
ψB
ψA

Φ
Θ

+X

[
D̂

(
(1− ψA)(γA − 1)

γA
,− 1

γA

)
−
(
π +

ρA
γA

)]
(3.28)

+(1−X)
[
D̂

(
(1− ψB)(γB − 1)

γB
,− 1

γB

)
−
(
π +

ρB
γB

)]
− µZ −

g′

g
σXσZ −

σ2
X

2
g′′

g

a0 =
σ2
X

2
(3.29)

a1 = F + σX(σY − κ) (3.30)
a2 = µY − g − σY κ− π − χ (3.31)

a3 = −ψA
π + χ

π

ω

g
(3.32)

b0 =
σ2
X

2
(3.33)

b1 = F + σX
(1− ψA)(γA − 1)

γA

(
σZ +

ω′

ω
σX

)
− σX

γA − 1
γA

κ (3.34)

b2 = D

(
w

(1−ψA)(γA−1)

γA ξ
1− 1

γA

)
−
(
π +

ρA
γA

)
(3.35)

b3 = −1 (3.36)

c0 =
σ2
X

2
(3.37)

c1 = F + σX
(1− ψB)(γB − 1)

γB

(
σZ +

ω′

ω
σX

)
− σX

γB − 1
γB

κ (3.38)

c2 = D

(
w

(1−ψB)(γB−1)

γB ξ
1− 1

γB

)
−
(
π +

ρB
γB

)
(3.39)

c3 = −1 (3.40)

27

In the equations above, the differential operator D̂(a, b) is defined in the following way:

D̂(a, b) = D
(
waξb

)
− aω

′

ω
F (X) + bG(X) (3.41)

28

3.2 Numerical Solution in MATLAB

In this section we describe the implementation IterationGarleanu.
The problem in the previous section is analogous to the problem in Chapter 2. Thus, we use
the same discretization as in Chapter 2.3.

The required parameters of paper [1] are given as follows:

µZ = 0.018 ψB = 0.95
σZ = 0.041 ρA = 0.001
v = 0.1 ρB = 0.3
π = 0.01 β1 = 0.99
χ = 0.018 β2 = 0.81
γA = 3 β3 = −0.5
γB = 18 β4 = 0.3
ψA = 1

For computing Φ, Ψ and Θ, we still need to estimate f , g, g′, g′′, ω, ω′, ω′′, σX , κ, µY , and σY .

The function g is defined by f(H) and the function ω by f ′(H). Hence, we have to compute
H and f first. For both H and f , we need to define α(H) as a function of H. The following
equations from paper [1] help to compute α, H, and f , where N denotes the cumulative
distribution function of the standard normal distribution.

α(H(X)) = (β1 − β2)N (β3(X − β4)) + β2 (3.42)

Ht = 1− Ht

α(Ht)

(
(1− ψA)
ψA

Xt +
(1− ψB)
ψB

(1−Xt)
)

(3.43)

f ′(H) =
α(H)f(H)

H
, f(0) = 0 (3.44)

We have to solve equation (3.44) numerically by the function ffunction which computes f
and f ′ with the calculation of α and H.
Hence, we solve the differential equation (3.44) in the interval [0.001,1] with f(0.001) = 0.001
as an approximation for [0,1] and f(0) = 0. Furthermore, we compute the derivative f ′ from
equation (3.44) which is done by the function dffunction. Moreover, we need to evaluate f
and f ′ at the value of H.

The following component of the program IterationGarleanu evaluates α, f , f ′ and H by
the function ffunction and furthermore defines ω and g.

29

[f, f ′] = ffunction(ψA, ψB, X, β1, β2, β3, β4);
ω = f ′;
g = f ;

We have evaluated f , g, and ω, and can now define g′, g′′, ω′, and ω′′ where g′, ω′ use back-
ward differencing and g′′, ω′′ use the difference quotient for the second derivative.

Thus, we still need σX , κ, µY , and σY for the numerical solution. The parameters σX and κ
both satisfy the equations (3.14) and (3.17). Hence, we can transform this equations into the
following form:

a11σX + a12κ = f1 (3.45)
a21σX + a22κ = f2 (3.46)

where the coefficients are given by:

a11 =
1
X

+
g′

g
− (1− ψA)(γA − 1)

γA

ω′

ω
(3.47)

a12 = − 1
γA

(3.48)

a21 =
g′

g
−X (1− ψA)(γA − 1)

γA

ω′

ω
− (1−X)

(1− ψB)(γB − 1)
γB

ω′

ω
(3.49)

a22 = −X
γA
− 1−X

γB
(3.50)

f1 =
(

(1− ψA)(γA − 1)
γA

− 1
)
σZ (3.51)

f2 =
(
X

(1− ψA)(γA − 1)
γA

− 1 + (1−X)
(1− ψB)(γB − 1)

γB

)
σZ (3.52)

It is not permitted to divide by zero. Hence, we have to modify equation (3.47) as follows:

a11 =
1

max (X, ε)
+
g′

g
− (1− ψA)(γA − 1)

γA

ω′

ω
(3.53)

30

In the numerical implementation we use ε = 10−10.
Hence, we can solve the linear system of equations which follows from equations (3.45) and
(3.46).

This is realized in the function skfunction. We access this function in the main implemen-
tation in the following way:

[σX , κ] = skfunction(n,X, g, g′, ω, ω′, γA, γB, ψA, ψB, σZ);

The parameters σY and µY can now easily be computed from equations (3.21) and (3.22).
But we have to take into consideration that µY also depends on F . Hence, we have to com-
pute µY in every iteration step.

Thus, all requirements for the general approach are fulfilled. Moreover, the damping coeffi-
cients are defined anologous to equations (2.93) - (2.98) in Chapter 2.4.

ã2 = a2 + τ (3.54)
ã3 = a3 + τU (3.55)
b̃2 = b2 + τ (3.56)
b̃3 = b3 + τV (3.57)
c̃2 = c2 + τ (3.58)
c̃3 = c3 + τW (3.59)

where τ denotes the damping coefficient and U, V, and W stand for the variables of the three
differential equations.

Note that the notations of the damping coefficients in the implementation are of opposite signs.

The discretization has an analogous structure as the original PDE (cf. (2.1) - (2.5)). Hence,
one could show by analogous methods that a discrete solution exists and the iteration con-
verges. Thus, the problem in this chapter can be implemented with MATLAB using the
implementation discussed in the previous chapter with the modifications outlined in this sec-
tion.
The complete implementations are included in the appendix.

31

Chapter 4

Application II

The paper [2] by Vito D. Gala also presents a general equilibrium model. The author examines
a set of heterogeneous firms that are infinitely-lived. Thus, every individual firm is considered
in this set. Furthermore, all investors are combined into one representative investor.
This model is developed of the work of Gomes, Kogan, and Zhang1, who have constructed a
multiple-firm general equilibrium model. In contrast to that paper the author of [2] models
firms not projects.

4.1 Derivation of the Problem

In the following we describe the problem of paper [2] by the required equations.
In this paper q, the component of the firm marginal q that is common to all firms, and q̂,
which denotes an extra contribution to the market value of firm capital, are the two variables
that can be identified with the functions F and G in Chapter 2.

Furthermore, we need the following equations of paper [2] to describe the problem of this
paper:

qi = xq(a, ω) + [xi − x]q̂(a, ω) (4.1)
c∗(a, ω) = eaω + f − î

−
(
n− 1
αn

)n−1(
g(a, ω, n− 1, 1) +

(
n− 1
n

)
g(a, ω, n, 1)

)
(4.2)

g(a, ω,m1,m2) = q̂m1

m1∑
k=0

Γ(m1 + 1)ΓU (k + v, θx̃)
Γ(m1 + 1− k)Γ(k +m2)Γ(v)

(−x̃)m1−k θ−k (4.3)

x̃ =
1− x(q − q̂)

q̂
(4.4)

1cf. [10]

32

where qi = q(a, ω, xi) denotes the firm marginal and c∗(a, ω) stands for the consumption pol-
icy rate. Moreover, x denotes the firm specific productivity, a stands for the economy wide
productivity and ω refers the capital-weighted average of the firm specific productivities. Fur-
thermore, î is the minimum investment rate, γ denotes the risk aversion coefficient, f stands
for the time-invariant component of the productivity, α refers the adjustment cost parameter,
n denotes the degree of curvature of the adjustment cost function, x̃ denotes the investment
threshold and x is the long-run mean of the idiosyncratic productivity.

Moreover, the functions Γ(a) and ΓU (a, z) are defined as

Γ(a) =
∫ ∞

0
xa−1e−xdx (4.5)

ΓU (a, z) =
∫ ∞
z

xa−1e−xdx

=
∫ ∞

0
xa−1e−xdx−

∫ z

0
xa−1e−xdx

= Γ(a)−
∫ z

0
xa−1e−xdx

= Γ(a)
(

1− 1
Γ(a)

∫ z

0
xa−1e−xdx

)
(4.6)

where

Γinc =
1

Γ(a)

∫ z

0
xa−1e−xdx (4.7)

is called incomplete gamma function.

Hence, we can define the system of algebraic equations that is given by equations (75) and
(76)2 in paper [2]:

qt = c∗(at, ωt)γΦ(at, ωt) (4.8)
q̂t = c∗(at, ωt)γΦ̂(at, ωt) (4.9)

2cf. [2, p. 38, Equations (75), (76)]

33

Furthermore, the system of partial differential equations is given by equations (79) and (80)3

in paper [2]:

(
ρ+ (1− γ)

(
δ − î

)
+ γ

(
n− 1
αn

)n−1

g(a, ω, n− 1, 1)

)
Φ−D

[
Φ
]

=
ea + x−1

(
f − î

)
c∗(a, ω)γ

(4.10)(
ρ+ κx + (1− γ)

(
δ − î

)
+ γ

(
n− 1
αn

)n−1

g(a, ω, n− 1, 1)

)
Φ̂−D

[
Φ̂
]

=
ea

c∗(a, ω)γ
(4.11)

The infinitesimal generator of the stochastic processes a and ω is defined by the next equation:

D [Φ] = κa(a− a)∂aΦ +
1
2
σ2
a∂

2
aaΦ + µω(a, ω)∂ωΦ (4.12)

Although ρ denotes the time preference parameter, δ stands for the economic depreciation
rate, κx is the rate of mean reversion of the idiosyncratic productivity, κa is the rate of mean
reversion of the productivity variable, a refers the long-run mean of the aggregate productiv-
ity and σa denotes the volatility of the aggregate productivity. Moreover, we will see later
that µω(a, ω) is the drift term of the stochastic process ω.

In order to solve the equilibrium we have to modify these equations. This yields to equations
(118a), (118b), (119), and (120)4 in paper [2]:

At each node i × j with i = 1, 2, ..., I and j = 1, 2, ..., J we have a discretized system of two
algebraic equations.

qi,j = (ci,j)γΦi,j (4.13)

q̂i,j = (ci,j)γΦ̂i,j (4.14)

3cf. [2, p. 38, Equations (79), (80)]
4cf. [2, p. 47, Equations (118a), (118b), (119), (120)]

34

This equations can be solved iteratively in combination with the next system of differential
equations for Φi,j and Φ̂i,j .

(
ρ+ (1− γ)

(
δ − î

)
+ γ

(
n− 1
αn

)n−1

gi,j

)
Φi,j − D̂

[
Φi,j

]
=
eai + x−1

(
f − î

)
(ci,j)γ

(4.15)(
ρ+ κx + (1− γ)

(
δ − î

)
+ γ

(
n− 1
αn

)n−1

gi,j

)
Φ̂i,j − D̂

[
Φ̂i,j

]
=

eai

(ci,j)γ
(4.16)

The functions ci,j , gi,j and the finite-difference approximation D̂ [Φi,j] are given by the fol-
lowing equations:

ci,j = c∗(ai, ωj) (4.17)
gi,j = g(ai, ωj , n− 1, 1) (4.18)

D̂[Φi,j] = κa(a− ai)[∂aΦ]i,j +
1
2
σ2
a[∂

2
aaΦ]i,j + µω(ai, ωj)[∂ωΦ]i,j (4.19)

Furthermore, we discretize the derivatives of Φ. For the discretization of the first derivatives
we use upwind techniques5 as described in Chapter 2.1.

The derivative of second order with respect to a is discretized by:

[∂2
aaΦ]i,j =

Φi+1,j − 2Φi,j + Φi−1,j

h2
a

(4.20)

The derivative of first order with respect to a is approximated for −κa(a−ai) < 0 by forward
differencing:

[∂aΦ]i,j =
Φi+1,j − Φi,j

ha
(4.21)

5cf. [3, p. 13]

35

Furthermore, the derivative of first order with respect to a for −κa(a− ai) > 0 is discretized
by backward differencing:

[∂aΦ]i,j =
Φi,j − Φi−1,j

ha
(4.22)

In an analogous way the derivative of first order with respect to ω for −µω(ai, ωj) < 0 is
approximated by forward differencing:

[∂ωΦ]i,j =
Φi,j+1 − Φi,j

hω
(4.23)

Moreover, the derivative of first order with respect to ω is approximated for −µω(ai, ωj) > 0
by backward differencing:

[∂ωΦ]i,j =
Φi,j − Φi,j−1

hω
(4.24)

Thus, for fixed j and i = 1, 2, ..., I we can rewrite equations (4.15) and (4.16) in the following
way

Ai,jΦi,j +BiΦi+1,j + CiΦi−1,j = F i,j (4.25)

Âi,jΦ̂i,j +BiΦ̂i+1,j + CiΦ̂i−1,j = F̂i,j (4.26)

where the coefficients are given by

Ai,j = ρ+ (1− γ)
(
δ − î

)
+ γ

(
n− 1
αn

)n−1

gi,j +
σ2
a

h2
a

+ max
(
−κa(a− ai)

ha
, 0
)
−min

(
−κa(a− ai)

ha
, 0
)

(4.27)

Âi,j = ρ+ κx + (1− γ)
(
δ − î

)
+ γ

(
n− 1
αn

)n−1

gi,j +
σ2
a

h2
a

+ max
(
−κa(a− ai)

ha
, 0
)
−min

(
−κa(a− ai)

ha
, 0
)

(4.28)

36

Bi = min
(
−κa(a− ai)

ha
, 0
)
− σ2

a

2h2
a

(4.29)

Ci = − max
(
−κa(a− ai)

ha
, 0
)
− σ2

a

2h2
a

(4.30)

F i,j =
(
eai + x−1

(
f − î

))
(ci,j)−γ + µω(ai, ωj)

[
∂ωΦ

]old
i,j

(4.31)

F̂i,j = eai(ci,j)−γ + µω(ai, ωj)
[
∂ωΦ̂

]old
i,j

(4.32)

and where
[
∂ωΦ

]old
i,j

and
[
∂ωΦ̂

]old
i,j

are given by the suitable difference quotiont (4.23) or (4.24)

with Φ and Φ̂ of the previous iteration step.

37

4.2 General Form and Discretization

The general form of the system of partial differential equations is given for each unknown Φ
in the form:

−1
2
σ2
a∂

2
aaΦ + β(a, ω)∂aΦ + ε(a, ω)∂ωΦ + λ(a, ω)Φ = χ(a, ω) (4.33)

At each node i× j with i = 1, 2, ..., I and j = 1, 2, ..., J we obtain the following equation:

−1
2
σ2
a[∂

2
aaΦ]i,j + β(ai, ωj)[∂aΦ]i,j + ε(ai, ωj)[∂ωΦ]i,j + λ(ai, ωj)Φi,j = χ(ai, ωj) (4.34)

Moreover, we discretize the derivatives of Φ. For the discretization of the first derivatives we
use upwind techniques6 as described in Chapter 2.1.

The derivative of second order with respect to a is discretized by:

[∂2
aaΦ]i,j =

Φi+1,j − 2Φi,j + Φi−1,j

h2
a

(4.35)

The derivative of first order with respect to a is approximated for β(ai, ωj) < 0 by forward
differencing:

[∂aΦ]i,j =
Φi+1,j − Φi,j

ha
(4.36)

Moreover, the derivative of first order with respect to a for β(ai, ωj) > 0 is discretized by
backward differencing:

[∂aΦ]i,j =
Φi,j − Φi−1,j

ha
(4.37)

6cf. [3, p. 13]

38

In an analogous way the derivative of first order with respect to ω is approximated for
ε(ai, ωj) < 0 by forward differencing:

[∂ωΦ]i,j =
Φi,j+1 − Φi,j

hω
(4.38)

Furthermore, the derivative of first order with respect to ω for ε(ai, ωj) > 0 is discretized by
backward differencing:

[∂ωΦ]i,j =
Φi,j − Φi,j−1

hω
(4.39)

We use implicit and explicit discretization in the course of the iteration. I.e., we use the value
of Φ from the previous iteration step in (4.39).

This leads to the following discretized problem to be solved in each iteration step

Ãi,jΦi,j + B̃i,jΦi+1,j + C̃i,jΦi−1,j = F̃i,j (4.40)

where the coefficients are given by

Ãi,j = λ(ai, ωj) +
σ2
a

h2
a

+ max
(
β(ai, ωj)

ha
, 0
)
−min

(
β(ai, ωj)

ha
, 0
)

+ τ (4.41)

B̃i,j = min
(
β(ai, ωj)

ha
, 0
)
− σ2

a

2h2
a

(4.42)

C̃i,j = − max
(
β(ai, ωj)

ha
, 0
)
− σ2

a

2h2
a

(4.43)

F̃i,j = χ(ai, ωj)− ε(ai, ωj)[∂ωΦ]oldi,j + τΦoldi,j (4.44)

and where [∂ωΦ]oldi,j is given by the suitable difference quotient (4.38) or (4.39) with Φ of the
previous iteration step. Moreover, the damping factor is denoted by τ .

39

If we choose the parameter as done in the next section, we will get problems with the im-
plementation. Thus, the following changes have to be realized to generate a more general
implementation:

γ = 1 (4.45)
ci,j = 0.5 for all i, j (4.46)

µω(ai, ωj) = 1 for all i, j (4.47)
β(ai, ωj) = −κa(a− ai) (4.48)
ε(ai, ωj) = −µω(ai, ωj) (4.49)
λ1(ai, ωj) = ρ for the first Φ (4.50)
λ2(ai, ωj) = ρ+ κx for the second Φ (4.51)
χ(ai, ωj) = eai (4.52)

With this changes the implementation can be carried out as described in the next section. The
program with the modifications outlined in this section is called IterationGala general. It
is also included in the appendix.

40

4.3 Numerical Solution in MATLAB

In the following section we describe the implementation IterationGala.
The main difference to the previous chapters is that we have now two processes a and ω, and
hence partial differential equations with two variables. Thus, we have two increments ha and
hω in the discretization of these partial differential equations.

The required parameters of paper [2] are given as follows:

γ = 14 a = −2.22
ρ = 0.01 κa = 0.27
α = 2 σa = 0.05
n = 2 x = 1
δ = 0.13 κx = 0.15
î = 0.12 σx = 0.27
f = 0.12

For the computation of Φ, Φ̂, q, and q̂ we have to evaluate the functions g(a, ω,m1,m2),
µω(a, ω), and c(a, ω). For these functions we need to compute the parameters θ, v, x̃, and i.
The equations of the parameters x̃, θ, and v derive from page 33 and 34 of paper [2].

x̃ =
1− x(q − q̂)

q̂
(4.53)

θ =
2κx
σ2
x

(4.54)

v =
2κxx
σ2
x

(4.55)

Thus, we can compute g(a, ω,m1,m2) from equation (4.3), which is done by the function
gijfunction. Furthermore, ΓU (k + v, θx̃) is defined by equation (4.6).

Hence, we can define the missing parameters c(a, ω), i, and µω(a, ω) by using equation (4.2)
and equations (20), (23)7 in paper [2]:

i = î+
(
n− 1
αn

)n−1

g(a, ω, n− 1, 1) (4.56)

µω =
(
κx + i− î

)
(x− ω) + (i− î)θ−1 g(a, ω, n− 1, 0)

g(a, ω, n− 1, 1)
(4.57)

7cf. [2, p. 12, Equations (20), (23)]

41

In order to compute Φ and Φ̂ from equations (4.25) and (4.26), we have to calculate the deriva-
tive [∂ωΦ]oldi,j of the previous value of Φ. This is realized by the function dPhidw function:

Hence, we obtain the desired derivative denoted by the variable y:

y = AΦ (4.58)

where A is a three-diagonal matrix with the first sub diagonal r, the main diagonal s and the
first super diagonal t:

r = −max (sign(−µ), 0)
1
hω

(4.59)

s = [max (sign(−µ), 0) + min (sign(−µ), 0)]
1
hω

(4.60)

t = −min (sign(−µ), 0)
1
hω

(4.61)

As above, the damped coefficients are defined in the following way:

Ã1 = A+ τ (4.62)

Ã2 = Â+ τ (4.63)

F̃1 = F + τΦ (4.64)

F̃2 = F̂ + τ Φ̂ (4.65)

Hence, we can compute the sulutions Φ and Φ̂ from equations (4.25) and (4.26). This is
realized by the function DGLfunction Gala:

Thus, we obtain Φ by solving a linear system of equations:

Φ = M−1 F̃ (4.66)

where Φ is a variable for Φ or Φ̂ and F̃ stands for F̃1 or F̃2.

Moreover, M is a three-diagonal matrix with the first sub diagonal C, the main diagonal Ã
and the first super diagonal B, where Ã denotes Ã1 or Ã2, B stands for equation (4.29) and
C denotes equation (4.30).

42

Note that B, C are vectors and Ã1, Ã2, F̃1, F̃2 are matrices. Hence, Ã and F̃ consists only of
the jth column of the matrix and we have to use the function DGLfunction Gala for every j.

Moreover, we compute q and q̂ from equations (4.13) and (4.14).
Hence, we can calculate Φ, Φ̂ and q, q̂ in turn until convergence is achieved.

The complete implementations are included in the appendix.

43

Chapter 5

Results

This chapter contains the numerical results related to the problems of Chapter 2, 3, and 4.
All computations reported in the following were performed in MATLAB.

5.1 General Convergence Test

The following two diagrams illustrate that the program of Chapter 2 is convergent. The
diagrams are generated by the program Iteration with step size h = 0.01 and the damping
factor τ = 30. The implementation is also convergent for a smaller τ around 5.
Furthermore, we have realized several tests with different step sizes h and different damping
factors τ , which yielded similar results.

Figure 5.1: These graphics illustrate the Euclidean norms of vectors of U,V, and W.

44

Figure 5.2: A plot of the residual norm of the linear system of equations for F and G versus
the number of iterations is illustrated.

Figure 5.1 illustrates the convergence of the solution of the problem in Chapter 2 by plotting
the following Euclidean norms for the number of iterations p = 1, ..., 50:

‖Up − Up−1‖2 (5.1)
‖V p − V p−1‖2 (5.2)
‖W p −W p−1‖2 (5.3)

Figure 5.2 demonstrates that the solution really converge to the right result. We compute
the vector Np by the following equation with matrix B of Assumption 1 in Chapter 2.2:

Np =

∥∥∥∥∥Bp

(
F
G

)p
−
(
d3

e3

)p−1
∥∥∥∥∥

2

Then we generate the Euklidean norm ‖Np‖2.

45

5.2 Results for Application I

The next two graphics illustrate that the iteration of paper [1] of Chapter 3 is numerical stable
and convergent. The diagrams are generated by the program IterationGarleanu with step
size h = 0.01 and the damping factor τ = 10.
Moreover, we have realized several tests with different step sizes h and different damping
factors τ and have yielded similar results.

Figure 5.3: This graphics illustrate the Euclidean norms of vectors of U, V, and W.

Figure 5.3 illustrates the convergence of the solution of the problem in Chapter 3 by plotting
the following Euclidean norms for p = 1, ..., 1500:

‖Up − Up−1‖2 (5.4)
‖V p − V p−1‖2 (5.5)
‖W p −W p−1‖2 (5.6)

46

Figure 5.4: This diagram depicts the residual norm of the linear system of equations for F
and G versus the number of iterations.

Figure 5.4 illustrates that the solution converge to the right result. We compute the vector
Np by the following equation with matrix B of Assumption 1 in Chapter 2.2 and d3, e3, and
the entries of B of Chapter 3.1:

Np =

∥∥∥∥∥Bp

(
F
G

)p
−
(
d3

e3

)p−1
∥∥∥∥∥

2

Then we generate the Euklidean norm ‖Np‖2.

Moreover, the relative errors of the results U, V, W, and e in 1500 iterations are given by
the next graphics. There e denotes the residual norm of the linear system of equations for
F and G as in the previous diagram. The graph is plotted versus the number of calculated
errors (index of grid size). The first error is computed by the Euclidean norm of the difference
between the results of step size h0 = 0.1 and h1 = 0.025 divided by the Euclidean norm of
the result. For the second error we need the results of step size h1 = 0.025 and h2 = 0.00625,
and for the third error we use the results of step size h2 = 0.00625 and h3 = 0.0015625.

47

Figure 5.5: This graph depicts the relative errors of U, V, and W versus the index of grid
size.

Figure 5.5 illustrates the relative errors of the solutions U, V, and W of Chapter 3 versus the
index of grid size. The relative errors are given by:

‖U z+1 − U z‖2
‖U z‖2

(5.7)

‖V z+1 − V z‖2
‖V z‖2

(5.8)

‖W z+1 −W z‖2
‖W z‖2

(5.9)

where z is the index of grid size.

48

Figure 5.6: This diagram illustrates the relative error of e versus the index of grid size.

Figure 5.6 depicts the relative error of the residual norm of the linear system of equations for
F and G versus the index of grid size. The residual norm is denoted by e and the described
relative error is given by:

‖ez+1 − ez‖2
‖ez‖2

(5.10)

with

e = ‖N1500‖2 (5.11)

49

The following graphics illustrate the Sharpe ratio κ and the volatility σX of X after 1500
iterations, which appear exactly as in the paper [1] of Gârleanu and Panageas.

Figure 5.7: The diagram illustrates κ as a function of X.

Figure 5.8: The graphic depicts σX as a function of X.

50

The next diagrams illustrate the two variables F and G, which correspond to the drift rate
µX of X and the interest rate r. These graphics also result from 1500 iterations. The results
for µX and r are in the same order of magnitude as the results in [1], but their form looks
slightly different. In particular the interest rate r in this figure is convex and concave in [1].
Due to our convergence studies we are confident of the correctness of our results.

Figure 5.9: The graphic depicts F (X) = µX as a function of X.

Figure 5.9 illustrates the drift rate µX of X as a function of X. The drift rate also corresponds
to the variable F .

51

Figure 5.10: This diagram illustrates G(X) = r as a function of X.

Figure 5.10 depicts the interest rate r as a function of X. The interest rate also corresponds
to the variable G.
In this diagram the interest rate r is convex and not concave as in paper [1].

52

5.3 Results for Application II

The following two graphics illustrate the convergence of the solution of the general implemen-
tation of paper [2] in Chapter 4. The diagrams are generated by the program IterationGala general
with Q = Ω = 1, I = 10, J = 20, and the damping factor τ = 10.
We have also realized several tests with different step sizes h and different damping factors τ
and have yielded similar results.

Figure 5.11: This graphics illustrate the Euclidean norms of Φ and Φ̂ versus the number of
iterations.

Figure 5.11 depicts the convergence of the solutions Φ and Φ̂ of the problem in Chapter 4 by
plotting the following Euclidean norms for p = 1, ..., 50:

‖Φp − Φp−1‖2 (5.12)
‖Φ̂p − Φ̂p−1‖2 (5.13)

53

Figure 5.12: This diagram depicts the Euclidean norms of q and q̂ versus the number of
iterations.

Figure 5.12 illustrates the convergence of the solutions q and q̂ of the problem in Chapter 4
by plotting the following Euclidean norms for p = 1, ..., 50:

‖qp − qp−1‖2 (5.14)
‖q̂p − q̂p−1‖2 (5.15)

54

Appendix A

A.1 List of Parameters

This section contains a list of parameters that are used in the previous chapters. The param-
eter definitions used in Chapter 3 result from paper [1] and the parameter definitions used in
Chapter 4 result from paper [2].

Parameter Chapter 2 Definition

h step size
x vector with entries of [0,1]
n dimension of x
tau, τ damping parameter

55

Parameter Chapter 3 Definition

Xt consumption share of type A agents
Yt stochastic output
v mass of agents of type A
π constant hazard rate of death
ρA subjective discount rate of type A agents
ρB subjective discount rate of type B agents
γA relative risk aversion for type A agents
γB relative risk aversion for type B agents
ψA controls the relative importance of leisure and consumption of

type A agents
ψB analogue for type B agents
βAt defined by φA(Xt)

ζA(Xt)

βBt defined by φB(Xt)
ζB(Xt)

Zt exogenous productivity process
gt g(Xt) defined by Yt

Zt
ωt defined by wt

Zt
wt prevailing wage
ξt stochastic discount factor
µX drift coefficient of dXt

σX diffusion coefficient of dXt

µZ drift coefficient of dZt
Zt

σZ diffusion coefficient of dZt
Zt

κ Sharpe ratio
r interest rate
χ agent’s endowment of hours declines exponentially over the live-

cycle at the rate χ
β1, β2 constants that control the range of α
β3, β4 constants that control the steepness of the function α
Ht agent’s aggregate hours worked at time t

56

Parameter Chapter 4 Definition

i index of the value of a
j index of the value of ω
a economy wide productivity (exogenous productivity index)
x firm specific productivity
ω capital-weighted average of the firm specific productivities (en-

dogenous productivity index)
q firm marginal
q component of the marginal q common to all firms
q̂ extra contribution to the market value of firm capital
c consumption policy rate, denoted with c(a, ω)
γ risk aversion coefficient
ρ time preference parameter
α adjustment cost parameter
n degree of curvature of the adjustment cost function
δ economic depreciation rate
î minimum investment rate
f the time-invariant component of productivity
a long-run mean of the aggregate productivity
κa rate of mean reversion of the productivity variable
σa volatility of aggregate productivity
x long-run mean of the idiosyncratic productivity
x̃ investment threshold defined by 1−x(q−q̂)

q̂

κx rate of mean reversion of the idiosyncratic productivity
σx volatility of the idiosyncratic productivity
ΓU (a, z) defined by

∫∞
z xa−1e−xdx

Γ(a) well-known Γ-function Γ(a) =
∫∞
0 xa−1e−xdx

ha increment of a
hω increment of ω

57

A.2 MATLAB Implementations

This section includes programs that are all constructed with the programming language MAT-
LAB.

A.2.1 The Implementation of Chapter 2

The following program Iteration solves the main problem in Chapter 2.

clear all;
close all;

h = 0.01;
n = 1/h + 1;
x = 0:h:1;
x = x′;
f = zeros (n, 1);
g = zeros (n, 1);
tau = 30;

% initial values for u, v, and w:
u = x;
v = 3 * x;
w = x;

% coefficients of the algebraic equations:
d1 = ones (n, 1);
d2 = zeros (n, 1);
e1 = zeros (n, 1);
e2 = ones (n, 1);

% computation of f and g:
d3 = d3function (u, v, w);
e3 = e3function (u, v, w);
for k = 1:n

B = [d1(k) d2(k); e1(k) e2(k)];
o = B\[d3(k); e3(k)];
f(k) = o(1);
g(k) = o(2);

end

58

% iteration loop:
p = input (′Enter the number of iterations:′);
for j = 1:p

% definition of the coefficients of the differential equations:
a0 = (x − 0) .* (x − 1);
a1 = a1function (f);
a2 = a2function (g);
a3 = ones (n, 1) * (−1);
b0 = − (x − 0) .* ((x − 1) .̂ 2);
b1 = b1function (f);
b2 = b2function (f, g);
b3 = ones (n, 1);
c0 = (x − 0) .* ((x − 1) .̂ 3);
c1 = c1function (f);
c2 = c2function (f, g);
c3 = ones (n, 1) * 2;

% definition of the damping coefficients:
a2 = a2 + tau;
a3 = a3 + tau * u;
b2 = b2 + tau;
b3 = b3 + tau * v;
c2 = c2 + tau;
c3 = c3 + tau * w;

uk = u;
vk = v;
wk = w;
dk = d3;
ek = e3;

% computation of u, v, and w:
a = a0; b = a1; c = a2; d = a3;
u = DGLfunction (h, n, a, b, c, d);
a = b0; b = b1; c = b2; d = b3;
v = DGLfunction (h, n, a, b, c, d);
a = c0; b = c1; c = c2; d = c3;
w = DGLfunction (h, n, a, b, c, d);

% computation of f und g:
d3 = d3function (u, v, w);
e3 = e3function (u, v, w);
for k = 1:n

B = [d1(k) d2(k); e1(k) e2(k)];
o = B\[d3(k); e3(k)];

59

f(k) = o(1);
g(k) = o(2);
e(k) = norm (B * [f(k); g(k)] − [dk(k); ek(k)]);

end

% computation of the norms:
l(j) = norm (u − uk);
m(j) = norm (v − vk);
q(j) = norm (w − wk);
y(j) = norm (e);

end

% plots of the norms in the number of iterations:
figure (1)
z = 1:p;
hold on
plot (z, l, ′r′)
plot (z, m, ′b′)
plot (z, q, ′y′)
hold off
xlabel (′iterations p′)
ylabel (′norms′)
title (′‖u(p) − u(p-1)‖, also for v and w′)
legend (′u in red′, ′v in blue′, ′w in yellow′, 1)
figure (2)
plot (z, y)
xlabel (′iterations p′)
ylabel (′norm′)
title (′‖norm (B * [f(i); g(i)](p) − [d3(i); e3(i)](p-1)‖′)

We need the following functions to use this program. The function DGLfunction solves a
discretized differential equation.

function u = DGLfunction (h, n, a, b, c, d)

A = zeros (n);
u = zeros (n, 1);

r = a/(ĥ 2) − max (b, 0)/h;
s = c − 2 * a/(ĥ 2) − min (b, 0)/h + max (b, 0)/h;
t = a/(ĥ 2) + min (b, 0)/h;

60

r = [r(2:n); 0];
t = [0; t(1:n − 1)];

A = spdiags ([r s t], −1:1, n, n);

u = A\d;

The other functions needed for the program Iteration are given below:

function y = a1function (f)
y = f .̂ 3 + 2 * f;

function y = a2function (g)
y = g .̂ 2;

function y = b1function (f)
y = 3 * f;

function y = b2function (f, g)
y = f .̂ 2 + g;

function y = c1function (f)
y = − 2 * f;

function y = c2function (f, g)
y = 2 * f + g;

function y = d3function (u, v, w)
y = u + v + w;

function y = e3function (u, v, w)
y = u − v − w;

61

A.2.2 The Implementation of Chapter 3

The program IterationGarleanu solves the problem in paper [1], which is described in
Chapter 3.

clear all;
close all;

h = 0.01;
n = 1/h + 1;
x = 0:h:1;
x = x′;
F = zeros (n, 1);
G = zeros (n, 1);
tau = 10;

% given parameters:
muz = 0.018;
sigmaz = 0.041;
v = 0.1;
pi = 0.01;
chi = 0.018;
gammaA = 3;
gammaB = 18;
psiA = 1;
psiB = 0.95;
rhoA = 0.001;
rhoB = 0.3;
beta1 = 0.99;
beta2 = 0.81;
beta3 = − 0.5;
beta4 = 0.3;
bruchA = (1 − psiA) * (gammaA − 1) / gammaA;
bruchB = (1 − psiB) * (gammaB − 1) / gammaB;

% computation of the other parameters:
[f, df] = ffunction (psiA, psiB, x, beta1, beta2, beta3, beta4);
omega = df;
g = f;
domega = domegafunction (omega, n, h);
ddomega = ddomegafunction (omega, n, h);
dg = dgfunction (g, n, h);
ddg = ddgfunction (g, n, h);
[sigmax, kappa] = skfunction (n, x, g, dg, omega, domega, gammaA, gammaB,
psiA, psiB, sigmaz);

62

sigmay = sigmaz + (dg./g) .* sigmax;

% initial values of U, V, and W:
U = x + 0.1;
V = 3 * x + 0.1;
W = 2 * x + 0.05;

% coefficients of the algebraic equations:
d1 = 1 + x .* (dg ./ g) − bruchA * x .* (domega ./ omega);
d2 = − x ./ gammaA;
e1 = (dg ./ g) − x .* bruchA .* (domega ./ omega) − (1 − x) .* bruchB .* (domega
./ omega);
e2 = − x ./ gammaA − (1 − x) ./ gammaB;

% computation of F and G:
D1 = Dfunction (bruchA, −1 / gammaA, muz, sigmaz, omega, domega, ddomega,
sigmax, kappa);
D2 = Dfunction (bruchB, −1 / gammaB, muz, sigmaz, omega, domega, ddomega,
sigmax, kappa);
d3 = x .* (D1 − (pi + rhoA / gammaA) − muz − (dg ./ g) .* sigmaz .* sigmax
− (ddg ./ g) .* ((sigmax .̂ 2) / 2)) − (dg ./ g) .* (sigmax .̂ 2) − sigmaz * sigmax
+ v * pi * (U ./ V);
e3 = v * pi * (U ./ V) + (1 − v) * pi * (psiB / psiA) * (U ./ W) + x .* (D1 −
(pi + rhoA / gammaA)) + (1 − x) .* (D2 − (pi + rhoB / gammaB)) − muz −
(dg ./ g) .* sigmax .* sigmaz − (sigmax .̂ 2) ./ 2 .* (ddg ./ g);

for k = 1:n

B = [d1(k) d2(k); e1(k) e2(k)];
o = B\[d3(k); e3(k)];
F(k) = o(1);
G(k) = o(2);

end

% computation of muy:
muy = muz + (dg ./ g) .* (F + sigmax .* sigmaz) + (sigmax .̂ 2) ./ 2. * ddg ./
g;

% iteration loop:
p = input (′Enter the number of iterations:′);
for j = 1:p

% definitions of the coefficients of the differential equations:
D3 = Dfunction (bruchA, 1 − 1 / gammaA, muz, sigmaz, omega,
domega, ddomega, sigmax, kappa) + bruchA * (domega ./ omega) .* F

63

− (1 − 1 / gammaA) * G;
D4 = Dfunction (bruchB, 1 − 1 / gammaB, muz, sigmaz, omega,
domega, ddomega, sigmax, kappa) + bruchB * (domega ./ omega) .* F
− (1 − 1 / gammaB) * G;
a0 = (sigmax .̂ 2) ./ 2;
a1 = F + sigmax .* (sigmay − kappa);
a2 = muy − G − sigmay .* kappa − pi − chi;
a3 = − psiA * (pi + chi) / pi * (omega ./ g);
b0 = (sigmax .̂ 2) ./ 2;
b1 = F + sigmax .* bruchA .* (sigmaz + (domega ./ omega) .* sigmax)
− sigmax .* ((gammaA − 1) / gammaA) .* kappa;
b2 = D3 − (pi + rhoA / gammaA);
b3 = − ones (n, 1);
c0 = (sigmax .̂ 2) ./ 2;
c1 = F + sigmax .* bruchB .* (sigmaz + (domega ./ omega) .* sigmax)
− sigmax .* ((gammaB − 1) / gammaB) .* kappa;
c2 = D4 − (pi + rhoB / gammaB);
c3 = − ones (n, 1);

% definition of the damping coefficients:
a0 = − a0;
a1 = − a1;
a2 = − a2 + tau;
a3 = − a3 + tau * U;
b0 = − b0;
b1 = − b1;
b2 = − b2 + tau;
b3 = − b3 + tau * V;
c0 = − c0;
c1 = − c1;
c2 = − c2 + tau;
c3 = − c3 + tau * W;

uk = U;
vk = V;
wk = W;
dk = d3;
ek = e3;

% computation of U, V, and W:
a = a0; b = a1; c = a2; d = a3;
U = DGLfunction (h, n, a, b, c, d);
a = b0; b = b1; c = b2; d = b3;
V = DGLfunction (h, n, a, b, c, d);
a = c0; b = c1; c = c2; d = c3;
W = DGLfunction (h, n, a, b, c, d);

64

% computation of F and G:
d3 = x .* (D1 − (pi + rhoA / gammaA) − muz − (dg ./ g) .* sigmaz
.* sigmax − (ddg ./ g) .* ((sigmax .̂ 2)./2)) − (dg ./ g) .*
(sigmax .̂ 2) − sigmaz .* sigmax + v * pi * (U ./ V);
e3 = v * pi * (U ./ V) + (1 − v) * pi * (psiB / psiA) * (U ./ W) +
x .* (D1 − (pi + rhoA / gammaA)) + (1 − x) .* (D2 − (pi + rhoB /
gammaB)) − muz − (dg ./ g) .* sigmax .* sigmaz − (sigmax .̂ 2) ./ 2
.* (ddg ./ g);

for k = 1:n

B = [d1(k) d2(k); e1(k) e2(k)];
o = B\[d3(k); e3(k)];
F(k) = o(1);
G(k) = o(2);
e(k) = norm(B * [F(k); G(k)] − [dk(k); ek(k)]);

end

% computation of muy:
muy = muz + (dg ./ g) .* (F + sigmax .* sigmaz) + (sigmax .̂ 2) ./ 2
.* ddg ./ g;

% computation of the norms:
l(j) = norm (U − uk);
m(j) = norm (V − vk);
q(j) = norm (W − wk);
y(j) = norm (e);

end

% plots of the norms in the number of iterations:
figure (1)
z = 1:p;
hold on
plot (z, l, ′r′)
plot (z, m, ′b′)
plot (z, q, ′y′)
hold off
xlabel (′iterations p′)
ylabel (′norms′)
title (′‖U(p) − U(p-1)‖, also for V and W′)
legend (′U in red′, ′V in blue′, ′W in yellow′, 1)
figure (2)
plot (z, y)
xlabel (′iterations p′)
ylabel (′norm′)

65

title (′‖norm(B * [F(i); G(i)](p) − [d3(i); e3(i)](p-1)‖′)

We need the following functions to use the program IterationGarleanu. The function
DGLfunction is already known. The first unknown function is called ffunction.

function [f, df] = ffunction (psiA, psiB, x, beta1, beta2, beta3, beta4)

% computation of H and alpha with equation (3.42) and (3.43):
alpha = (beta1 − beta2) .* normcdf (beta3 .* (x − beta4)) + beta2;
H = 1 ./ (1 + (((1 − psiA) / psiA) * x + ((1 − psiB) / psiB) *
(1 − x)) ./ alpha);

% solution of the ODE with equation (3.44):
[t, y] = ode45 (@dffunction, [0.001,1], 0.001);

% interpolation of y at the point H:
f = interp1 (t, y, H);
df = dffunction (H, f);

For the function ffunction it is necessary to apply the following function dffunction.

function dy = dffunction (t,y)

beta1 = 0.99;
beta2 = 0.81;
beta3 = − 0.5;
beta4 = 0.3;

a = (beta1 − beta2) .* normcdf (beta3 .* (t − beta4)) + beta2;
dy = (a ./ t) .* y;

The next functions dgfunction, ddgfunction, domegafunction and ddomegafunction
compute the derivatives of g and ω.

function y = dgfunction (g, n, h)
A = (spdiags ([−ones(n, 1) ones(n, 1)], −1:0, n, n)) ./ h;
y = A * g;

function y = ddgfunction (g, n, h)
A = (spdiags ([ones(n, 1) (−2) * ones(n, 1) ones(n, 1)], −1:1, n, n)) ./ (h 2̂);

66

y = A * g;

function y = domegafunction (omega, n, h)
A = (spdiags ([−ones(n, 1) ones(n, 1)], −1:0, n, n)) ./ h;
y = A * omega;

function y = ddomegafunction (omega, n, h)
A = (spdiags ([ones(n, 1) (−2) * ones(n, 1) ones(n, 1)], −1:1, n, n)) ./ (h 2̂);
y = A * omega;

The function skfunction evaluates κ and σx with equations (3.14), (3.17) and accordingly
(3.45), (3.46).

function [sigmax, kappa] = skfunction (n, x, g, dg, omega, domega, gammaA,
gammaB, psiA, psiB, sigmaz)

% coefficients of equations (3.45) and (3.46):
a11 = 1 ./ max (x, 1e − 10) + dg ./ g − ((1 − psiA) * (gammaA − 1) / gammaA)
* domega ./ omega;
a12 = ones (n, 1) * (−1 / gammaA);
f1 = ones (n, 1) * (((1 − psiA) * (gammaA − 1) / gammaA − 1) .* sigmaz);
a21 = dg ./ g − x .* ((1 − psiA) * (gammaA − 1) / gammaA) .* domega ./ omega
− (1 − x) .* ((1 − psiB) * (gammaB − 1) / gammaB) .* domega ./ omega;
a22 = − x ./ gammaA − (1 − x) ./ gammaB;
f2 = (x .* ((1 − psiA) * (gammaA − 1) / gammaA) − 1 + (1 − x) .* ((1 − psiB)
* (gammaB − 1) / gammaB)) .* sigmaz;

for k = 1:n

B = [a11(k) a12(k); a21(k) a22(k)];
o = B\[f1(k); f2(k)];
sigmax(k) = o(1);
kappa(k) = o(2);

end

sigmax = sigmax′;
kappa = kappa′;

67

The last function for the program IterationGarleanu is called Dfunction.

function y = Dfunction (aa, bb, muz, sigmaz, omega, domega, ddomega, sigmax,
kappa)

y = aa .* (muz + (sigmaz .̂ 2) ./ 2 .* (aa − 1) + (domega ./ omega) .* (aa .*
sigmaz .* sigmax − kappa .* bb .* sigmax) − bb .* kappa .* sigmaz) + (sigmax .̂
2) ./ 2 .* (aa .* (aa − 1) .* (domega ./ omega) .̂ 2 + aa .* (ddomega ./ omega))
− bb .* (kappa .̂ 2) ./ 2 .* (1 − bb);

68

A.2.3 The Implementation of Chapter 4

The program IterationGala general solves a more general problem of paper [2], which is
described in Chapter 4.2.

clear all;
close all;

Q = 1;
Omega = 1;
I = 10;
J = 20;
h a = 2 * Q / (I − 1);
h w = Omega / (J − 1);
a = −Q:h a:Q;
a = a′;
omega = 0:h w:Omega;
omega = omega′;
tau = 20;

% given parameters:
gamma = 1;
rho = 0.01;
alpha = 2;
n = 2;
delta = 0.13;
i hat = 0.12;
f = 0.12;
a cross = −2.22;
kappa a = 0.27;
sigma a = 0.05;
x cross = 1;
kappa x = 0.15;
sigma x = 0.27;
theta = 2 * kappa x / (sigma x)̂ 2;
v = 2 * kappa x * x cross / (sigma x)̂ 2;

% initial values for q c and q h:
q c = (Q − abs(a)) ./ Q * ((Omega − omega) ./ Omega)′;
q h = (Q − abs(a)) ./ Q * ((Omega − omega) ./ Omega)′;

% definition of the other parameter mu w (a i,w j) and c ij:
mu w = ones (I, J);
c = 0.5 .* ones (I, J);

69

% computation of the initial values of Phi cross and Phi hat:
Phi cross = (c .̂ (−gamma)) .* q c;
Phi hat = (c .̂ (−gamma)) .* q h;

% iteration loop:
p = input (′Enter the number of iterations:′);
for k = 1:p

% computation of the derivation of Phi:
for i = 1:I

mu = mu w(i, :)′;
Phi1 = Phi cross(i, :)′;
Phi2 = Phi hat(i, :)′;
dPhidw cross = dPhidw function(J, mu, h w, Phi1);
dPhidw hat = dPhidw function(J, mu, h w, Phi2);
dPhidw c(i, :) = dPhidw cross;
dPhidw h(i, :) = dPhidw hat;

end
% definition of the coefficients of the differential equations:
% for −kappa a (a cross − a) > 0 backward differencing (for ... < 0
forward differencing)
for j = 1:J

Max(:, j) = max (−kappa a .* (a cross − a) ./ h a, 0);
Min(:, j) = min (−kappa a .* (a cross − a) ./ h a, 0);
H(:, j) = exp(a);

end
A cross = rho + ((sigma a)̂ 2) / (h a)̂ 2 + Max − Min;
A hat = rho + kappa x + ((sigma a)̂ 2) / (h a)̂ 2 + Max − Min;
B = min (−kappa a .* (a cross − a) ./ (h a), 0) − ((sigma a)̂ 2) / (2 *
(h a)̂ 2);
C = − max (−kappa a .* (a cross − a) ./ (h a), 0) − ((sigma a)̂ 2) / (2
* (h a)̂ 2);
F cross = H;
F hat = H;
F cross = F cross + mu w .* dPhidw c;
F hat = F hat + mu w .* dPhidw h;

% definition of the damping coefficients:
A cross = A cross + tau;
A hat = A hat + tau;
F cross = F cross + tau .* Phi cross;
F hat = F hat + tau .* Phi hat;

Phi c old = Phi cross;
Phi h old = Phi hat;

70

q c old = q c;
q h old = q h;

% computation of the solutions Phi hat and Phi cross:
B = [0; B(1:I-1)];
C = [C(2:I); 0];
for j = 1:J

A = A cross (:, j);
F = F cross (:, j);
Phi c = DGLfunction Gala (A, B, C, F, I);
Phi cross (:, j) = Phi c;
A = A hat (:, j);
F = F hat (:, j);
Phi h = DGLfunction Gala (A, B, C, F, I);
Phi hat (:, j) = Phi h;

end

% computation of q c and q h:
q c = (c.̂ gamma) .* Phi cross;
q h = (c.̂ gamma) .* Phi hat;

% computation of the norms:
l(k) = norm (Phi cross − Phi c old);
m(k) = norm (Phi hat − Phi h old);
y(k) = norm (q c − q c old);
o(k) = norm (q h − q h old);

end

% plots of the norms in the number of iterations:
figure (1)
z = 1:p;
hold on
plot (z, l, ′r′)
plot (z, m, ′b′)
hold off
xlabel (′iterations p′)
ylabel (′norms′)
title (′‖Phi(p) − Phi(p-1)‖′)
legend (′Phi cross in red′, ′Phi hat in blue′, 1)
figure (2)
hold on
plot (z, y, ′r′)
plot (z, o, ′b′)
hold off
xlabel (′iterations p′)

71

ylabel (′norms′)
title (′‖q(p) − q(p-1)‖′)
legend (′q cross in red′, ′q hat in blue′, 1)

The program IterationGala is described in Chapter 4.3.

clear all;
close all;

Q = 1;
Omega = 1;
I = 10;
J = 10;
h a = 2 * Q / (I − 1);
h w = Omega / (J − 1);
a = −Q:h a:Q;
a = a′;
omega = 0:h w:Omega;
omega = omega′;
tau = 10;

% given parameters:
gamma = 14;
rho = 0.01;
alpha = 2;
n = 2;
delta = 0.13;
i hat = 0.12;
f = 0.12;
a cross = −2.22;
kappa a = 0.27;
sigma a = 0.05;
x cross = 1;
kappa x = 0.15;
sigma x = 0.27;
theta = 2 * kappa x / (sigma x)̂ 2;
v = 2 * kappa x * x cross / (sigma x)̂ 2;

% initial values for q c and q h:
q c = (Q − abs(a)) ./ Q * ((Omega − omega) ./ Omega)′;
q h = (Q − abs(a)) ./ Q * ((Omega − omega) ./ Omega)′;

% computation of the other parameter x tilde, i, g ij, mu w (a i,w j), and c ij:
x tilde = (1 − x cross .* (q c − q h)) ./ max (q h, 1e − 10);

72

g1 = g ijfunction (a, omega, n − 1, 1, q c, q h, v, theta, x tilde, I, J);
g2 = g ijfunction (a, omega, n − 1, 0, q c, q h, v, theta, x tilde, I, J);
g3 = g ijfunction (a, omega, n, 1, q c, q h, v, theta, x tilde, I, J);
i = i hat + ((n − 1) / (alpha * n))̂ (n − 1) .* g1;
for i = 1:I

G(i, :) = (x cross − omega);

end
mu w = (kappa x + i − i hat) .* G + (i − i hat) .* thetâ (−1) .*
(g2 ./ max (g1, 1e − 10));
c = exp(a) * omega′ + f − i hat − ((n − 1) / (alpha * n))̂ (n − 1) .*
(g1 + ((n − 1) / n) .* g3);
c = (c > 0) .* max (c, 1) + (c <= 0) .* min (c, −1);

% computation of the initial values of Phi cross and Phi hat:
Phi cross = (c .̂ (−gamma)) .* q c;
Phi hat = (c .̂ (−gamma)) .* q h;

% iteration loop:
p = input (′Enter the number of iterations:′);
for k = 1:p

% computation of the derivation of Phi:
for i = 1:I

mu = mu w(i, :)′;
Phi1 = Phi cross(i, :)′;
Phi2 = Phi hat(i, :)′;
dPhidw cross = dPhidw function(J, mu, h w, Phi1);
dPhidw hat = dPhidw function(J, mu, h w, Phi2);
dPhidw c(i, :) = dPhidw cross;
dPhidw h(i, :) = dPhidw hat;

end
% definition of the coefficients of the differential equations:
% for −kappa a (a cross − a) > 0 backward differencing (for ... < 0
forward differencing)
for j = 1:J

Max(:, j) = max (−kappa a .* (a cross − a) ./ h a, 0);
Min(:, j) = min (−kappa a .* (a cross − a) ./ h a, 0);
H(:, j) = exp(a);

end
A cross = rho + (1 − gamma) * (delta − i hat) + gamma * ((n − 1)
./ (alpha * n))̂ (n − 1) .* g1 + ((sigma a)̂ 2) / (h a)̂ 2 + Max − Min;
A hat = rho + kappa x + (1 − gamma) * (delta − i hat) + gamma *
((n − 1) ./ (alpha * n))̂ (n − 1) .* g1 + ((sigma a)̂ 2) / (h a)̂ 2 + Max
− Min;

73

B = min (−kappa a .* (a cross − a) ./ (h a), 0) − ((sigma a)̂ 2) / (2 *
(h a)̂ 2);
C = − max (−kappa a .* (a cross − a) ./ (h a), 0) − ((sigma a)̂ 2) / (2
* (h a)̂ 2);
F cross = (H + (x cross)̂ (−1) .* (f − i hat)) .* c.̂ (− gamma);
F hat = H .* c.̂ (− gamma);
F cross = F cross + mu w .* dPhidw c;
F hat = F hat + mu w .* dPhidw h;

% definition of the damping coefficients:
A cross = A cross + tau;
A hat = A hat + tau;
F cross = F cross + tau .* Phi cross;
F hat = F hat + tau .* Phi hat;

Phi c old = Phi cross;
Phi h old = Phi hat;
q c old = q c;
q h old = q h;

% computation of the solutions Phi hat and Phi cross:
B = [0; B(1:I-1)];
C = [C(2:I); 0];
for j = 1:J

A = A cross (:, j);
F = F cross (:, j);
Phi c = DGLfunction Gala (A, B, C, F, I);
Phi cross (:, j) = Phi c;
A = A hat (:, j);
F = F hat (:, j);
Phi h = DGLfunction Gala (A, B, C, F, I);
Phi hat (:, j) = Phi h;

end

% computation of q c and q h:
q c = (c.̂ gamma) .* Phi cross;
q h = (c.̂ gamma) .* Phi hat;

% computation of the norms:
l(k) = norm (Phi cross − Phi c old);
m(k) = norm (Phi hat − Phi h old);
y(k) = norm (q c − q c old);
o(k) = norm (q h − q h old);

% computation of the parameters for the next iteration:
x tilde = (1 − x cross .* (q c − q h)) ./ max (q h, 1e − 10);

74

g1 = g ijfunction (a, omega, n − 1, 1, q c, q h, v, theta, x tilde, I, J);
g2 = g ijfunction (a, omega, n − 1, 0, q c, q h, v, theta, x tilde, I, J);
g3 = g ijfunction (a, omega, n, 1, q c, q h, v, theta, x tilde, I, J);
i = i hat + ((n − 1) / (alpha * n))̂ (n − 1) .* g1;
for i = 1:I

G(i, :) = (x cross − omega);

end
mu w = (kappa x + i − i hat) .* G + (i − i hat) .* thetâ (−1) .*
(g2 ./ max (g1, 1e − 10));
c = exp(a) * omega′ + f − i hat − ((n − 1) / (alpha * n))̂ (n − 1) .*
(g1 + ((n − 1) / n) .* g3);
c = (c > 0) .* max (c, 1) + (c <= 0) .* min (c, −1);

end

% plots of the norms in the number of iterations:
figure (1)
z = 1:p;
hold on
plot (z, l, ′r′)
plot (z, m, ′b′)
hold off
xlabel (′iterations p′)
ylabel (′norms′)
title (′‖Phi(p) − Phi(p-1)‖′)
legend (′Phi cross in red′, ′Phi hat in blue′, 1)
figure (2)
hold on
plot (z, y, ′r′)
plot (z, o, ′b′)
hold off
xlabel (′iterations p′)
ylabel (′norms′)
title (′‖q(p) − q(p-1)‖′)
legend (′q cross in red′, ′q hat in blue′, 1)

We need the function g ijfunction to use the programs IterationGala general and Iter-
ationGala.

function g = g ijfunction (a, omega, m1, m2, q c, q h, v, theta, x tilde, I, J)

sum = 0;
for k = 0:m1

75

GammaU = gamma(k + v) .* (1 − gammainc (theta .* x tilde, k + v));
sum = sum + (gamma (m1 + 1) .* GammaU) ./ (gamma (m1 + 1
− k) .* gamma (k + m2) .* gamma (v)) .* (−x tilde).̂ (m1 − k) .*
thetâ (−k);

end

g = (q h.̂ m1) .* sum;

Moreover, the function dPhidw function is given by:

function y = dPhidw function (J, mu, h w, Phi)

A = zeros (J);
y = zeros (J, 1);

r = − max (sign (−mu), 0) .* 1/h w;
s = (max (sign (−mu), 0) + min (sign (−mu), 0)) .* 1/h w;
t = − min(sign (−mu), 0) .* 1/h w;

A = spdiags ([r s t], −1:1, J, J);

y = A * Phi;

Furthermore, we need the function DGLfunction Gala to compute the solutions Phi cross
and Phi hat:

function u = DGLfunction Gala (A, B, C, F, I)

M = zeros (I);
u = zeros (I, 1);

M = spdiags ([C A B], −1:1, I, I);

u = M\F;

76

A.3 Acknowledgment

In this section I want to thank all the people who have supported me during my studies.

Special thanks go to Professor Dr. Martin Burger for the supervision of this diploma thesis.
I also thank Professor Dr. Nicole Branger for providing me with the economic background
information.

Finally, I want to thank my family because they have always assisted me in my studies.

77

Bibliography

[1] Gârleanu, N. and Panageas, S., Young, old, conservative and bold: The implications of
heterogeneity and finite lives for asset pricing, working paper, University of Pennsylvania,
June 2007

[2] Gala, Vito D., Investment and returns, working paper, University of Chicago, January
28, 2006

[3] Burger, Martin, Numerik partieller Differentialgleichungen, Westfälische Wilhelms-
Universität Münster, WS 2006/07

[4] Evans, Lawrence C., Partial Differential Equations, American Mathematical Society
Providence, Rhode Island, 1998

[5] Protter, Murray H. and Weinberger, Hans F., Maximum Principles in Differential Equa-
tions, Springer-Verlag New York, 1984

[6] Walter, Wolfgang, Analysis 1, Springer-Verlag Berlin, 2004

[7] Blanchard, O. J., Dept, Deficits, and Finite Horizons, Journal of Political Economy
93(2), 1985

[8] Campbell, J. Y., and Cochrane, J. H., By Force of Habit: A Consumption-Based Expla-
nation of Aggregate Stock Market Behavior, Journal of Political Economy 107(2), 1999

[9] Arnold, Ludwig, Stochastische Differentialgleichungen, R. Oldenburg Verlag München,
1973

[10] Gomes, Joao F., Kogan, Leonid, and Zhang, Lu, Equilibrium Cross Section of Returns,
Journal of Political Economy 111, 2003

78

I affirm with my signature that I have written this diploma thesis independently and that I
have not used any other utilities than those declared.

Weisweiler, Anna Münster, May 8, 2008

