Locally Sparse Reconstruction Using $\ell^{1,\infty}$-Norms

Applied Inverse Problem Conference 2013, Daejeon, Korea
Introduction

Variational Model

Some Computational Results

Summary & Outlook
Introduction

Variational Model

Some Computational Results

Summary & Outlook
Inverse Problem

Consider the discrete **time-dependent** inverse problem

\[AZ = W \]

- \(A \in \mathbb{R}^{L \times M} \) is a discretized operator
- \(Z \in \mathbb{R}^{M \times T} \) is the unknown dynamic image
- \(W \in \mathbb{R}^{L \times T} \) is the measured data
Inverse Problem

Assume that every pixel m at time step t of the image Z can be written as a linear combination of known basis vectors b_t with coefficient vectors u_m, i.e.

$$z_{mt} = \sum_{n=1}^{N} u_{mn} b_{tn} \implies Z = UB^T.$$

Thus we obtain

$$A UB^T = W$$

with $A \in \mathbb{R}^{L \times M}$, $U \in \mathbb{R}^{M \times N}$, $B \in \mathbb{R}^{T \times N}$ and $W \in \mathbb{R}^{L \times T}$.
Example: Dynamic Positron-Emission-Tomography

- PET is an **imaging technique** in nuclear medicine
- It visualizes the **distribution** of a weak radioactive labeled substance (**tracer**) in order to image functional processes in the body

Figure: J. Langner, M.Sc. Thesis, 2003
Example: Dynamic Positron-Emission-Tomography

Visualize the **perfusion** of the **cardiac muscle**

Figure: U.S. National Heart Lung and Blood Institute
Example: Dynamic Positron-Emission-Tomography

Visualize the **perfusion** of the cardiac muscle

Model the **tracer exchange** in the capillaries

Figure: U.S. National Heart Lung and Blood Institute

Figure: U.S. National Cancer Institute
Example: Dynamic Positron-Emission-Tomography

- obtain basis functions from a kinetic blood flow model\(^1\)
- can compute basis vectors \(b_n\) in advance
- want to pick out one \(b_n\), which fits best per pixel

There are other applications which lead to a similar problem, e.g. unmixing problems.

\(^1\) [3, Wernick & Aarsvold, Emission Tomography, 2004]

Pia Heins (pia.heins@wwu.de), Martin Burger
Knowledge about the Basis

- **every pixel** should consist of **only one** or at most **very few** of the given basis vectors

- consider the operator to be **coherent**, i.e. the coherence parameter

\[
\mu := \max_{i \neq j} |\langle b_i, b_j \rangle|
\]

for \(b_i, b_j \) being distant basis vectors, is large. In other words, the **basis vectors are very similar**.

Note that orthogonalization does not help because the coefficients would not be sparse and we would lose our prior knowledge.
Introduction

Variational Model

Some Computational Results

Summary & Outlook
A Priori Knowledge

Variational Problem

\[
\frac{1}{2} \| AUB^T - W \|_F^2 + \alpha \mathcal{R}(U) \rightarrow \min_U
\]

Prior Knowledge:
(At best) we would like to have just one (or only a few) basis vector, which fits best in the considered pixel.

\[\Rightarrow \text{only one coefficient unequal to zero per pixel.} \]

\[\Rightarrow \text{want to promote sparsity in every pixel} \]
Which Regularization?

Idea: $\ell^{0,\infty}$-Regularization

$$\min_U \|U\|_{0,\infty} = \min_U \left\{ \max_i \sum_{j=1}^{N} |u_{ij}|^0 \right\}$$

[1, Donoho & Elad, Optimally Sparse Representation in General (non-Orthogonal) Dictionaries via l1 Minimization, 2003]
Which Regularization?

Idea: ℓ^1,∞-Regularization as Relaxation

$$\min_U \|U\|_{1,\infty} = \min_U \left\{ \max_i \sum_{j=1}^N |u_{ij}| \right\}$$

$^{[1, \text{Donoho & Elad, Optimally Sparse Representation in General (non-Orthogonal) Dictionaries via l1 Minimization, 2003}]$
Which Regularization?

Idea: $\ell^{1,\infty}$-Regularization as Relaxation

$$\min_U \|U\|_{1,\infty} = \min_U \left\{ \max_i \sum_{j=1}^N |u_{ij}| \right\}$$

Variational Model

$$\min_U \frac{1}{2} \| AUB^T - W \|_F^2 + \alpha \|U\|_{\ell^{1,\infty}}$$

$^[1, \text{Donoho & Elad, Optimally Sparse Representation in General (non-Orthogonal) Dictionaries via l1 Minimization, 2003}]$
Reconstruction with Local Sparsity

Implementation

- The implementation of the $\ell^{1,\infty}$-term is not that easy
- Reformulation of the problem is necessary
- Simplified assumption: *Nonnegativity of the coefficients* (reasonable in many applications)
Reformulation

\[
\min_{U} \frac{1}{2} \|AUB^T - W\|_F^2 + \alpha \max_i \sum_{j=1}^{N} |u_{ij}|
\]
Reformulation

Add a nonnegativity constraint

\[
\min_U \frac{1}{2} \|AUB^T - W\|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall \ i, j
\]
Reformulation

Add a nonnegativity constraint

\[
\min_U \frac{1}{2} \| AUB^T - W \|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall i, j
\]

Maximum is a problem!
Reformulation

Add a nonnegativity constraint

\[
\min_U \frac{1}{2} \|AUB^T - W\|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall i, j
\]

Maximum is a problem!
\(\Rightarrow\) Use equivalent formulation, i. e.

\[
\min_{U, \tilde{v}} \frac{1}{2} \|AUB^T - W\|_F^2 + \tilde{v} \quad \text{s. t.} \quad \alpha \sum_{j=1}^N u_{ij} \leq \tilde{v}, \ u_{ij} \geq 0 \quad \forall i, j
\]
Reformulation

Add a nonnegativity constraint

\[
\min_U \frac{1}{2} \| AUB^T - W \|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall i, j
\]

Maximum is a problem!

\[\mapsto\text{Use equivalent formulation, i. e.}\]

\[
\min_{U, \tilde{v}} \frac{1}{2} \| AUB^T - W \|_F^2 + \tilde{v} \quad \text{s. t.} \quad \sum_{j=1}^N u_{ij} \leq \frac{\tilde{v}}{\alpha}, \quad u_{ij} \geq 0 \quad \forall i, j
\]

Instead of regularizing with \(\alpha\) and minimizing over \(\tilde{v}\), we can choose \(v\) in advance and thus regularize with \(v\) instead. Note that we make a systematic error and only obtain the support.

Include additional \(\ell_1, \ell_\infty\) regularization.
Reformulation

Add a nonnegativity constraint

\[
\min_U \frac{1}{2} \|AUB^T - W\|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall i, j
\]

Maximum is a problem!

\Rightarrow \text{Use equivalent formulation, i. e.}

\[
\min_U \frac{1}{2} \|AUB^T - W\|_F^2 \quad \text{s. t.} \quad \sum_{j=1}^N u_{ij} \leq v, \ u_{ij} \geq 0 \quad \forall i, j
\]

Instead of regularizing with \(\alpha\) and minimizing over \(\tilde{v}\), we can choose \(v\) in advance and thus regularize with \(v\) instead.

Note that we make a systematic error and only obtain the support.
Reformulation

Add a nonnegativity constraint

$$\min_U \frac{1}{2} \|AUB^T - W\|_F^2 + \alpha \max_i \sum_{j=1}^N u_{ij} \quad \text{s. t.} \quad u_{ij} \geq 0 \quad \forall \ i, j$$

Maximum is a problem!

$$\Rightarrow$$ Use equivalent formulation, i.e.

$$\min_U \frac{1}{2} \|AUB^T - W\|_F^2 + \beta \|U\|_{\ell^1,1} \quad \text{s. t.} \quad \sum_{j=1}^N u_{ij} \leq \bar{v}, \ u_{ij} \geq 0 \quad \forall \ i, j$$

Instead of regularizing with α and minimizing over \bar{v}, we can choose v in advance and thus regularize with v instead.

Note that we make a systematic error and only obtain the support.

Include additional $\ell^{1,1}$-regularization.
Introduction

Variational Model

Some Computational Results

Summary & Outlook
Algorithm

Splitting Approach:

\[
\min_{U, Z, D} \frac{1}{2} \|AZ - W\|_F^2 + \beta \sum_{i,j} d_{ij} \quad \text{s. t.} \quad \sum_{j=1}^{N} d_{ij} \leq v, \quad d_{ij} \geq 0 \quad \forall i
\]

\[Z = UBT, \quad D = U\]

Solve via **Alternating Direction Method of Multipliers**\(^2\) (ADMM), i.e.

- state Augmented Lagrangian
- compute optimality conditions
- solve subproblems successively

\(^2[2, \text{D. Gabay, Applications of the Method of Multipliers to Variational Inequalities}]\)
Exact Coefficients

- Use simple 3D matrix \hat{U} containing the exact coefficients
- Define 2 regions where coefficients are nonzero for one basis vector
- Thus the corresponding coefficients for the most basis vectors are zero
Construction of Artificial Data

Apply A and B^T to the exact coefficients \hat{U}

we obtain the artificial “measured” data W via

$$W = A\hat{U}B^T.$$

(For simplicity) A is a 2D convolution with

$$\frac{1}{16} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 12 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

which works on the pixels for every basis function.

Start the reconstruction process using W as measured data.
Basic Idea

Strong regularization \Rightarrow very good reconstruction of the support

Figure: Reconstruction with $\nu = 0.1$ and $\beta = 0.1$

Every value larger than ν is projected down to ν

\leadsto we are not really close to the exact data
Basic Idea

- **First run** with ℓ^1,∞- and ℓ^1-regularization to obtain the support
Basic Idea

- **First run** with ℓ_1,∞- and ℓ_1-regularization to obtain the support
- **Second run** without regularization *only on the known support* to reduce the distance to the exact data
Basic Idea

- **First run** with ℓ_1,∞- and ℓ_1-regularization to obtain the support
- **Second run** without regularization *only on the known support* to reduce the distance to the exact data

Figure: Reconstruction with $\nu = 0.1$ and $\beta = 0.1$ including second run

→ very good results
Example including Noise

Figure: Reconstruction of a $200 \times 200 \times 8$ image with $\nu = 0.01$ and $\beta = 0.1$ and standard deviation $\sigma = 0.01$
Example including Noise

More regularization

\Rightarrow prior knowledge is fulfilled
Example including Noise

More regularization \Rightarrow prior knowledge is fulfilled

Basis functions are very similar \Rightarrow in some pixels we obtain the “wrong” basis function

Reminder:

Input Curve $C_A(t)$ and Kinetic Modeling Basis Functions $b_n(t)$

Pia Heins (pia.heins@wwu.de), Martin Burger
Summary

- Similar problem in different applications (dPET, FLIM, ECG, ...)
 - use specific operator and basis functions

- Reformulated problem is easier to implement and leads to the same solution

- Use ADMM for the double splitting

- Exact recovery of the support under certain circumstances
Outlook

- Use more difficult data, i.e. more and smaller regions
- Use larger data
- Use additional problem-specific regularization in space
Thank you for your attention!

Questions?
Bibliography

D. L. Donoho and M. Elad.
Optimally sparse representation in general (non-orthogonal) dictionaries via l_1 minimization.

D. Gabay.
Applications of the method of multipliers to variational inequalities.

M. N. Wernick and J. N. Aarsvold, editors.
Emission Tomography: The Fundamentals of PET and SPECT.