Stochastic and Deterministic Simulation of Nonisothermal Crystallization of Polymers

Alessandra Micheletti, Martin Burger

Abstract

This paper is devoted to the numerical simulation of nonisothermal crystallization of polymers, which may be modelled as a stochastic birth-and-growth process. One of the main aims is to develop efficient algorithms for the stochastic simulation of such process process. We put a special emphasis on the problem of computing the surface density of crystals, which is an important factor for the mechanical properties of the solidified material.

Moreover, an averaged deterministic model, designed as an approximation in the case of many small crystals (which is very frequent in industrial applications), is presented, and the results of numerical simulations are compared with the corresponding simulations of the stochastic model.

1 Introduction

This paper is devoted to the numerical simulation of nonisothermal crystallization of polymers, which is a topic of growing interest in material science and chemistry with many relevant industrial applications. A crystallization process is in general the superposition of two features, namely nucleation and growth of crystals. While the growth process may be considered deterministic (with normal speed \( G = G(x, t) \)), the growth rate, depending upon

\*MIRIAM and Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
\[\text{†Industrial Mathematics Institute, Johannes Kepler Universität Linz, Altenbergerstr. 69, 4040 Linz, Austria}\]
the temperature field), nucleation occurs randomly in space and time (the kinetic parameters being themselves temperature dependent). We will consider a crystallization process in a bounded domain \( E \subset \mathbb{R}^d \) \( (d = 1, 2, 3) \) and assume that nucleation takes place only in the interior of \( E \).

We will denote by \( \Theta^t \) the crystalline phase at time \( t \) and by \( \Theta^t(X_0, T_0) \) a crystal born at point \( X_0 \) at time \( T_0 \) and freely grown up to time \( t \). In a crystallization process with nucleation events \{ \((X_j, T_j)\mid 0 \leq T_1 \leq T_2 \leq \ldots \) \}, the crystalline phase at time \( t \) is given by

\[
\Theta^t = \bigcup_{T_j < t} \Theta^t(X_j, T_j).
\] (1.1)

Note that because of the stochasticity of nucleation, the set \( \Theta^t \) is stochastic and since in a bounded space-time region it is also closed and bounded, it is a \textit{random compact set} (RACS) \cite{19}. It turns out (cf. \cite{2, 14}) that on a macroscopic scale the quantity

\[
\xi(x, t) := \mathbb{E}[\Theta^t(x) = P(\{x \in \Theta^t\})], \quad x \in E, t \in \mathbb{R}_+ \tag{1.2}
\]

is suitable for the description of the crystallization process in many cases relevant in practice. In the simple case of spatially homogenous growth and nucleation, equations for \( \xi \) (which is then a function of time only) can be derived based upon the approaches by Avrami, Kolmogorov and Evans (cf. \cite{1, 12, 16}). These models yield a good description of isothermal processes and have been investigated frequently in bounded and unbounded domains (cf.\cite{7, 8, 13, 14, 20}).

In many applications also other characteristics of the final morphology are of interest, in particular the interfaces between the crystals (see Figure 1), which heavily influence the mechanical properties of the material (cf. \cite{15}). Because of impingement, at a certain time \( t \) of the crystallization process the available space is randomly divided into cells, forming a so-called \textit{(incomplete) Johnson-Mehl tessellation} \cite{10} (the tessellation is incomplete at time \( t \) if some uncristallized space is still available). In the following \( \tau_i(y) \) will denote the time at which a point \( y \in \mathbb{R}^d \) is reached by the crystal freely grown (disregarding impingement) from the nucleus \( a_i = (X_i, T_i) \). If the point is never covered by the \( i \)-th crystal, we formally write \( \tau_i(y) = \infty \).

**Definition 1.1.** The \textit{crystal} \( C_i(t) \) of the (incomplete) tessellation, generated by the nucleus \( a_i = (X_i, T_i) \), at the time of observation \( t \) is the non-empty set

\[
C_i(t) = \{y \in \mathbb{R}^d \mid \tau_i(y) \leq t \text{ and } \tau_i(y) \leq \tau_j(y) \forall j \neq i\}.
\]
We will denote by $C_e(t)$ the uncrystallized region at time $t$, i.e.,

$$C_e(t): = \{ y \in \mathbb{R}^d | \tau_i(y) > t, \forall i \in \mathbb{N} \}.$$  

In order to describe rigorously the concept of "interfaces" between crystals, we introduce the definition of $n$-facets (cf. also [10, 21]):

**Definition 1.2.** An $n$-facet ($0 \leq n \leq d$) is the non-empty intersection between $m + 1$ crystals or between $m$ crystals and the uncrystallized region, i.e.,

$$F_n(t, a_{k_0}, \ldots, a_{k_m}) = C_{k_0}(t) \cap C_{k_1}(t) \cap \cdots \cap C_{k_m}(t),$$

with $m = d - n$ and $k_0, \ldots, k_m \in \mathbb{N} \cup \{e\}$.

Note that in the previous definitions $d$ denotes the dimension of the space in which the tessellation takes place, $n$ denotes the dimension of the interface under consideration, and $m + 1$ denotes the number of crystals involved in the formation of such an interface, if we consider the uncrystallized region as a particular crystal itself. E.g., in the case $d = 2$, a 2-facet is a crystal, a 1-facet is the boundary of a crystal and a 0-facet is a vertex of a crystal (see Figure 2).
For a Borel set $B$ one can define the mean content of $n$-facets at time $t$ in $B$ as

$$
\mu_{d,n}(t, B) = \frac{1}{(m+1)!} E \left[ \sum_{a_{k_0}, \ldots, a_{k_m} \neq \emptyset} \lambda_n(B \cap F_n(t, a_{k_0}, \ldots, a_{k_m})) \right],
$$

(1.3)

where $\lambda_n$ is the $n$-dimensional Hausdorff measure and the symbol $\neq$ denotes that the nuclei $a_{k_0}, \ldots, a_{k_m}$ must be distinct. If the measure $\mu_{d,n}(t, \cdot)$ is absolutely continuous with respect to the $d$-dimensional Lebesgue measure $\nu_d$ (for sufficient conditions see [9]), then there exists a density (i.e. the Radon-Nikodym derivative of $\mu_{d,n}$ with respect to $\nu_d$) $\gamma_{d,n}(t, x)$ such that for all Borel sets $B$ in $\mathbb{R}^d$

$$
\mu_{d,n}(t, B) = \int_B \gamma_{d,n}(t, x) dx.
$$

(1.4)

**Definition 1.3.** The function $\gamma_{d,n}(t, x)$ defined by (1.4) is called local mean density of $n$-facets of the (incomplete) tessellation at time $t$.

If the birth-and-growth process that generates the tessellation is spatially homogeneous (which means in our case that the temperature field is constant
in space), the density $\gamma_d,\alpha(t, x)$ does not depend on the spatial location $x$ (cf. [21] for a detailed discussion of this case).

In the following we discuss problems related to the numerical simulation of a stochastic model for heterogeneous growth in presence of a spatially varying temperature field and the comparison with a deterministic model obtained under the assumption that nucleation is much faster than growth, so that averaging is possible based on a multiple scale idea. Both models have been introduced and described in detail by the authors (cf. [2, 4, 5]), we will give a short exposition in Section 2. The problem of simulation is discussed including various aspects in Sections 3 and 4. In the latter we will put special emphasis on the problem of computing the density of interfaces of crystals ($\gamma_d,\alpha, d = 1, 2$). We will finally conclude and discuss some open problems related with the numerical simulation and optimal control of nonisothermal crystallization in Section 6.

## 2 Mathematical Modelling

In the following we will review the development of mathematical models for nonisothermal crystallization in a stochastic as well as in a deterministic setup. The stochasticity of the crystallization process is caused by the randomness of the nucleation events, the standard model for nucleation is an heterogeneous Poisson-process in space and time (with rate $\alpha = \alpha(x, t)$, cf. e.g. [2, 4]). In an experimental situation, where heterogeneities are caused only by the heat transfer in the material, the nucleation rate can be modelled as a temperature-dependent material function (cf. [2, 14]) of the form

$$
\alpha(x, t) = \frac{\partial}{\partial t} \hat{N}(T(x, t)) + \hat{\alpha}(T(x, t)).
$$

(2.1)

This assumption is due to experimental observations which show that nucleation events are mainly caused by cooling (athermal nucleation), but in many materials still some rare nucleations may be observed when the cooling is stopped (i.e. when $\frac{dT}{dt} = 0$) at a temperature between the melting and the glass transition point. Since the term $\hat{N}$, responsible of nucleation without cooling (thermal nucleation) is much smaller than the term $\hat{N}$ in general, we restrict our attention to the case $\hat{N} = 0$ in the following, but we note that all models and methods may be adapted easily to the more general case (2.1).
Crystal growth can be modeled as a deterministic process; the evolution of the indicator function $f_j^i$ of the crystal $\Theta_j$ is determined by the nonlinear initial-value problem

$$\frac{\partial f_j^i}{\partial t} + G |\nabla f_j^i| = 0 \quad \text{in } \mathbb{R}^d \times (T_j, \infty) \quad (2.2)$$

$$\frac{\partial f_j^i}{\partial t} = \delta(x - X_j) \quad \text{in } \mathbb{R}^d \times \{T_j\}, \quad (2.3)$$

where $X_j$ and $T_j$ are location and time of the birth of the crystal (cf. [4, 26]) and $G$ denotes the normal speed of growth (the growth rate). An experimentally verified model for the growth rate is pure temperature-dependence, i.e.,

$$G(x, t) = \tilde{G}(T(x, t)). \quad (2.4)$$

The experimental results for $G$ in the case of isotactic Polypropylene are shown in Figure 4. The indicator function $f = I_{\Theta^t}$ is determined by the indicator functions $f_j^i$ via

$$f(x, t) = 1 - \prod_{T_j \leq t} (1 - f_j^i(x, t)). \quad (2.5)$$

The above considerations allow to compute a realization of the stochastic crystallization process if the temperature field is known. The temperature $T$ is determined by the standard heat equation together with a source arising from the latent heat, which is released in the moment of phase change and causes an immediate raise of temperature, more precisely

$$(\rho T)_t = \nabla \cdot (\kappa \nabla T) + (h I_{\Theta^t})_t \quad \text{in } E \times \mathbb{R}^+ \quad (2.6)$$

$$T = T^i \quad \text{on } \partial E \times \mathbb{R}^+ \quad (2.7)$$

$$T = T^0 \quad \text{in } E \times \{0\}, \quad (2.8)$$

where equation (2.6) has to be understood in a weak sense. Here $\rho$ denotes the density, $c$ the heat capacity, $\kappa$ the heat conductivity, and $h$ the latent heat.

This heat transfer model is a random differential equation, since all parameters depend upon the random variable $I_{\Theta^t}$. A direct consequence is the stochasticity of the temperature, whose evolution also depends upon the change of the crystalline phase. The complete stochastic model of the crystallization process is given by the random differential equations (2.2)-(2.8) together with the Poisson process $\{(X_j, T_j)\}$.
In many industrial applications cooling is strong, which implies together with the scale of \(\bar{N}\) (varying from around \(10^6\) m\(^{-1}\) in \(\mathbb{R}^1\) up to around \(10^4\) m\(^{-3}\) in \(\mathbb{R}^3\)) that the number of nuclei is very large. Vice versa, the growth rate is quite small (below \(10^{-5}\) ms\(^{-1}\)) and consequently we may expect many small crystals. The typical scale of the heat transfer problem is given by

\[
x_T = \sqrt{\frac{\kappa t_0}{\rho c_0}}
\]

where \(t_0\) is the length of the considered time interval, \(\kappa_0, \rho_0\) and \(c_0\) are typical scales for \(\kappa, \rho\) and \(c\). The typical scale for the growth of a nucleus is given by

\[
x_G = G_0t_0,
\]

where \(G_0\) is a typical value for the growth rate \(G\). In practical applications it turns out that \(x_T \gg x_G\), which is due to the fact that crystal growth is very slow, whereas heat conduction is rather fast. This means that there exist two significant scales for the system, i.e.

- A microscale (of size \(x_G\)) for growth.
- A macroscale (of size \(x_T\)) for heat conduction.

The scale of real interest in polymer processing is a mesoscale between \(x_T\) and \(x_G\), which is sufficiently small with respect to the mesoscale so that temperature may be considered approximately constant at that scale, but large enough with respect to the microscale so that it contains a large number of crystals. On such a mesoscale the description by an averaged deterministic model (cf. [2, 4, 5]) is possible, describing the evolution of \(\xi, u, v\) and \(T\), which represent averaged quantities for the crystallinity function, the free surface densities of the crystals and the temperature. The resulting system consists of deterministic partial differential equations given by

\[
\frac{\partial \xi}{\partial t} = \bar{G}(T)(1 - \xi)u \tag{2.11}
\]
\[
\frac{\partial u}{\partial t} = \nabla \cdot (\bar{G}(T)v) + \mathcal{F}_d[\bar{G}, \bar{N}, T] \tag{2.12}
\]
\[
\frac{\partial v}{\partial t} = \nabla (\bar{G}(T)u) \tag{2.13}
\]
\[
\frac{\partial T}{\partial t} = \frac{1}{\rho c} \nabla \cdot (k \nabla T) + \frac{h}{c} \frac{\partial \xi}{\partial t}, \tag{2.14}
\]
in \( \Omega \times (0, t_s) \), supplemented by the boundary conditions
\[
\begin{align*}
u + v^T n &= 0, \quad (2.15) \\
\frac{\partial T}{\partial n} &= \alpha(T - T^i), \quad (2.16)
\end{align*}
\]
on \( \partial \Omega \times (0, t_s) \) and initial values given by
\[
\begin{align*}
\xi &= 0 \quad (2.17) \\
u &= 0 \quad (2.18) \\
v &= 0 \quad (2.19) \\
T &= T^0 \quad (2.20)
\end{align*}
in \( \Omega \times \{0\} \), usually with \( T^0(x) \geq T_m \) (melting temperature) for all \( x \in \Omega \). The source term \( \mathcal{F}_d \) is a nonlinear operator dependent upon the spatial dimension; it is just the expected value of the rate of surface production by the crystals, more precisely (if \( N(T^0) = 0 \), cf. [4, 5])
\[
\begin{align*}
\mathcal{F}_1[\bar{G}, \bar{N}, T](x, t) &:= 2 \frac{\partial}{\partial t} \bar{N}(T(x, t)) \quad (2.21) \\
\mathcal{F}_2[\bar{G}, \bar{N}, T](x, t) &:= 2\pi \bar{G}(T(x, t))\bar{N}(T(x, t)) \quad (2.22) \\
\mathcal{F}_3[\bar{G}, \bar{N}, T](x, t) &:= 8\pi \bar{G}(T(x, t)) \int_0^t \bar{G}(T(x, s))\bar{N}(T(x, s)) \, ds \quad (2.23)
\end{align*}
\]

3 Numerical Methods for the Averaged Model

An algorithm for the numerical approximation of the averaged model (2.11)-(2.20) has been proposed by the authors (cf. [5]) and analyzed with respect to convergence (cf. [6]). The basic idea of this algorithm is to perform an explicit time step in the hyperbolic part of the system together with an implicit step in the heat equation, which yields a decoupling and partial linearization in each time step. In semidiscrete form, this strategy for the hyperbolic part reads
\[
\begin{align*}
\xi^{j+1} &= \xi^j + \tau^j (1 - \xi^j)(\bar{G}(T^j)u^j) \quad (3.1) \\
u^{j+1} &= v^j + \tau^j (\nabla (\bar{G}(T^j)v^j) + \mathcal{F}_d[\bar{G}, Nt, T^j]) \quad (3.2) \\
v^{j+1} &= w^j + \tau^j (\nabla (\bar{G}(T^j)w^j)). \quad (3.3)
\end{align*}
\]
By the index $j$ we denote the function at time $t^j$ and $\tau^j = t^{j+1} - t^j$ is the $j$-th time step. For the full discretization any appropriate method like Lax's method (cf. [22]) or the Lax-Wendroff method for problems with source terms (cf. [18, 22, 28]) can be used. The stability bound for these methods is given by the Courant-Friedrichs-Levy condition (cf. [17, 22]), i.e.,

$$2(\max G)\tau \leq \Delta x.$$ \hspace{1cm} (3.4)

Because of the small size of $G$, this bound is not very restrictive and still allows a good performance of the algorithm.

For the numerical approximation of the parabolic part one can then use standard discretization methods like the Crank-Nicholson scheme, since the source including $\xi$ is known at time $t = t^{j+1}$. Hence, we can solve the model equations efficiently by the following algorithm:

**Algorithm 3.1 (Numerical Solution of the Averaged Model).** Set the initial values $\xi^0 = u^0 = v^0 = 0$.

- **for** $j = 0$ to $n - 1$ **do**
  - 1. Compute $\mathcal{F}_d[\bar{G}, \bar{N}, T^j]$.
  - 2. Compute $u^{j+1}$ and $v^{j+1}$ by an explicit step for (2.12), (2.13), (2.15).
  - 3. Compute $\xi^{j+1}$ by an implicit (with respect to $u$) or explicit step in (2.11).
  - 4. Solve the heat equation (2.14), (2.16) in $[t_j, t_{j+1})$ using $\xi^{j+1}$ and $\xi^j$ for the right-hand side to obtain $T^{j+1}$.

- **end**

## 4 Simulation of the Stochastic Model

Now we turn our attention to the (efficient) simulation of the stochastic model (i.e. (2.6)-(2.7), coupled with the stochastic evolution of the term $I_{6t}$), which consists of three main parts:

- **Nucleation**, which is the part with intrinsic stochasticity.
- **Growth** of the crystals nucleated at random locations.
• **Heat Conduction**, which is influenced by the crystalline phase.

We will put a special emphasis on the computation of the boundary densities of the crystals $\delta_{d,d-1}$, which will be denoted shortly by $S_V$ below (the symbol $S_V$ in place of $\delta_{d,d-1}$ is commonly used by some authors [27] to denote the surface density per unit volume of a random set). The mean boundary density correspond to the mean number of vertices of crystals per unit length, when $d = 1$, and to the mean length of boundary segments of crystals per unit area, when $d = 2$.

4.1 Nucleation

Since the nucleation rate $\alpha(x,t)$ depends on space and time, the birth of new crystals may be represented by an inhomogeneous space-time Poisson process (see e.g. [11, 24]) having stochastic intensity $\alpha$ (actually $\alpha(1 - I_{\theta t})$, since crystals already covered at the time of their birth are not of interest).

A standard algorithm for the simulation of such processes is the thinning or random sampling method (see [23, p.77]). This method consists in simulating an homogeneous Poisson process with constant intensity $\bar{\alpha}$, satisfying

$$\alpha(x,t) \leq \bar{\alpha}, \quad \forall x \in \mathbb{R}, t \in \mathbb{R}_+.$$ 

In a subsequent thinning step a uniformly distributed random variable $R_i \in [0, 1]$ is evaluated for each generated point $\{(x_i,t_i)\}$, which is then retained if $R_i > \alpha(x_i,t_i)/\bar{\alpha}$. For our problem it turns out this algorithm enforces a very high computational effort, since the number of generated points is much larger than the number of points that are finally kept. Therefore, we use a different approach, taking into account the spatial discretization of the domain $E$. Suppose we have a decomposition

$$E = \bigcup_{i=1}^{m} E_i, \quad (4.1)$$

$$0 = t_0 < t_1 < \ldots < t_n = t_{\text{final}} \quad (4.2)$$

with $\text{diam } E_i$ and $|t_j - t_{j-1}|$ sufficiently small such that the intensity of the process can be well approximated by a constant in each space-time cylinder $E_i \times (t_j, t_{j+1})$. Then we can simulate the births in the time interval $(t_j, t_{j+1})$ via the following algorithm
Algorithm 4.1 (Generation of births in the time interval \((t_i, t_{i+1})\)).
for \(i = 1\) to \(m\) do
    1. Compute \(\alpha_{ij} = \int_{t_j}^{t_{j+1}} \int_{E_i} \alpha(x, t)dxdt\).
    2. Generate a random number \(P_i\), Poisson distributed with intensity \(\alpha_{ij}\).
       This number represents the number of 'virtual' births in the \(i\)-th space
       cell of the discretization.
    3. generate \(P_i\) independent random numbers \(U_1, \ldots, U_{P_i}\) having uniform
       distribution in the cell \(E_i\). These numbers represent the locations of
       the new 'virtual' nuclei in the cell \(E_i\).
    4. check if the new 'virtual' nuclei are already covered by the crystalline
       phase: if yes delete them, otherwise add them to the set of nuclei.
end

Note that if we are not interested in the evolution of the interfaces between
two crystals, but only in the evolution of the crystallinity, we may disregard
the effects of impingement and do not need to perform Step 4 in the previous
algorithm. Indeed, a new 'virtual' crystal that is inside another one will never
grow out of it [11, 24]. Hence, the indicator function \(I_{\Theta^t}\) does not change
because of the presence of the new 'virtual nuclei inside the crystalline phase.

4.2 Growth

Together with the nucleation, we have to simulate the growth of the crystals
and their interaction with heat transfer.

In spatial dimension one, a crystal \(\Theta^k\) nucleated at \((X_k, T_k)\) is an interval
\([c_k, d_k]\), the evolution of the boundary is determined by

\[
\frac{dc_k(t)}{dt} = -G(c_k(t), t), \quad \frac{dd_k(t)}{dt} = G(d_k(t), t),
\]

with initial values \(c_k(T_k) = d_k(T_k) = X_k\). Hence, an obvious way to compute
the growth of a single crystal is to apply a numerical scheme to the nonlinear
ordinary differential equations (4.3). Since the time steps and the increments
in \(G\) are usually very small in realistic simulations, even an explicit method
yields reasonable results. Hence, if impingement is disregarded and we are
interested only in the evolution of \(I_{\Theta^t}\), the growth can be computed according
to the following algorithm:
Algorithm 4.2 (Growth of $m$ one-dimensional crystals in the time interval $(t_j, t_{j+1})$ without impingement).

for $k = 1$ to $m$ do

1. If $T_k \in (t_j, t_{j+1})$ set $c_k = d_k = X_k$ and $s = T_k$. Else, set $s = t_j$ if $T_k < t_j$ and $s = t_{j+1}$ if $T_k > t_{j+1}$.

2. Compute (or approximate) the growth rate at the boundary points of the $k$-th crystal $[c_k, d_k]$:

$$G_1 = G(T(c_k, s)), \quad G_2 = G(T(d_k, s))$$

3. Update the boundary points by

$$c_k = c_k - G_1(t_{j+1} - s), \quad d_k = d_k + G_2(t_{j+1} - s).$$

end

Of course, also more advanced schemes for the numerical integration of (4.3) can be used in Algorithm 4.2, and the algorithm can in principle also be carried over to higher dimensions, where systems of ordinary differential equations can be derived for the evolution of each point on the boundary and the according outer normal (cf. [4, 6]), but then an additional discretization of the boundary of a crystal has to be performed (cf. [6]).

If we are interested also in the effects of impingement, e.g., monitoring the evolution of the interface densities, Algorithm (4.2) has several disadvantages. Obviously, in one spatial dimension, one can check if two crystals $\Theta^j$ and $\Theta^k$ intersect by simply comparing $c_k$ with $d_j$ and $d_k$ with $c_j$, but if we want to find all interfaces this method is computationally expensive. Therefore it also seems necessary to derive a faster numerical method for the simulation of growth, which allows to trace the interfaces efficiently also in higher spatial dimensions.

The clue for such a method seems to be a change from the Lagrangian perspective induced by 4.3 to an Eulerian approach, i.e., we fix locations in space and watch the crystals arriving. We use this Eulerian viewpoint for a 'pixel colouring' technique, i.e., we assign a number (respectively a colour) to each crystal and then assign this number (colour) to the spatial locations (pixels) covered by the crystal. More precisely, we fix a spatial grid (usually finer than the grid on which the temperature is assigned, because of the
larger scale of heat condiction with respect to growth) in the domain $E$ and at every time step we check for each grid point if it is inside a crystal (which is the case if there exist a grid point of radial distance less than $G\Delta t$); if yes we assign the number of the crystal to this point (respectively colour it). An additional speed-up can be achieved by marking those grid points, which are at the boundary of a crystal and computing the growth only there (all the points in the interior of a crystal do not provide additional information).

If we have $K_j$ marked pixels at time $t_j$ (i.e. the ones which are coloured and at the boundary of a crystal), then we simulate the growth in a time step $(t_j, t_{j+1})$ in the following way.

**Algorithm 4.3 (Growth in a time interval $(t_j, t_{j+1})$ with impingement).**

for $k = 1$ to $K_j$
do

1. Compute the growth rate at the pixel $p_k$: $G_k = G(T(p_k, t_j))$
2. Compute the radius associated with the pixel $p_k$: $\Delta r_k = G_k(t_{j+1} - t_j)$
3. For every pixel $p$ included in a disk centered at $p_k$ having radius $\Delta r_k$ do

   - if $p$ is not in the crystalline phase (uncoloured), assign tp $p$ the same number of $p_k$ (colouring), mark $p$ and compute the approximate time at which it is captured by $p_k$: $\tau_k = \frac{||p-p_k||}{G_k}$.
   - if $p$ is already inside a crystal (i.e. it has been captured at a time $\tau$) and marked compute the time at which is captured by $p_k$: $\tau_k = \frac{||p-p_k||}{G_k}$. If $\tau_k < \tau$, assign to $p$ the number (colour) of $p_k$.

4. Unmark pixel $p_k$.
end

We note that Step 3 ensures that every pixel assumes the colour of the first crystal by which is reached, independently from the order of examination of the marked pixels and of the chosen time step. The accuracy of the algorithm increases when the step size in time and the spatial grid size decrease; obviously they cannot be chosen independently, since one should ensure that

13
a crystal can really reach neighbouring grid points in one time step, i.e., if $h$ is the typical grid size and $\Delta t$ the time step we need at least

$$h < G_0 \Delta t,$$

where $G_0$ is a typical value of the growth rate.

### 4.3 An Algorithm for the Complete Model

For the temperature we have to solve an equation of the form

$$T_i = \text{div} \ (D \nabla T) + L \frac{\partial}{\partial t} I_{\Theta^t}. \quad (4.4)$$

The discretization can be performed in a similar way to the solution of the averaged model, i.e., by an explicit step for the stochastic part and an implicit step for the heat equation (4.4) afterwards. The source term can be approximated by

$$\frac{\partial}{\partial t} I_{\Theta^t}(t_j) = \frac{\partial f}{\partial t}(t_j) \approx \frac{1}{t_j - t_{j-1}}[f(t_j) - f(t_{j-1})], \quad (4.5)$$

the discretized source does not cause problems neither in a finite element nor finite difference method. Because of the larger scale of heat conduction, we propose to use a coarser grid for the heat equation than for the computation of growth. In this case, since the time step is small anyway, also the explicit Euler method is suitable for this purpose.

With the above approximations we can simulate the complete process as follows

**Algorithm 4.4 (Stochastic simulation of nonisothermal crystallization).** Start with the initial temperature $T^0$ and set $\Theta^0 = 0$.

1. For $j = 0$:
   - Solve the discretized version of equation (4.4) with the approximation (4.5) of the source term and $f^0(x) = f^1(x) = 0, \forall x \in \mathbb{R}$ to obtain $T^1$.
   - For $j = 1$ to $n - 1$
     - Approximate the nucleation rate in $[t_j, t_{j+1})$ by
       $$\alpha \sim \frac{\bar{N}(T^j) - \bar{N}(T^{j-1})}{t_j - t_{j-1}}.$$
2. Simulate the nucleation in $E \times [t_j, t_{j+1})$ according to Algorithm 4.1 and add the new generated nuclei to $\Theta^{j+1}$.

3. Let the (old and new) crystals grow until time $t_{j+1}$ and update $\Theta^{j+1}$.

4. Compute the indicator function $f^{j+1}(x) = I_{\Theta^{j+1}}(x)$.

5. Solve the discretized heat equation to obtain $T^{j+1}$.

end

4.4 Computation of the surface density

The surface density of the final tessellation can be computed in a preprocessing step. In the one-dimensional case, the surface density can be computed easily from the result of Algorithm 4.3 by counting the number of times that there is a colour change in the pixels, moving in the interval $E$ from its left to the right boundary point.

In two (or three) spatial dimensions, Algorithm 4.3 provides at every time step a 2D (or 3D) matrix, in which different integer numbers (representing the colours) correspond to different crystals, usually the empty space corresponds to the number 0. This vector may be easily used to compute the local surface density of crystals $S_V(x)$ (i.e. the mean length of sides of crystals per unit area) in a way similar to the one suggested in [25, Chapter VI] for digital images. For the sake of simplicity, we restrict our exposition to a square grid of pixels on a rectangular domain in $\mathbb{R}^2$, so that every pixel is a small square of size $a$. A pixel is on the boundary of a crystal only if its configuration is one of the types presented in Figure 3.

If a coloured pixel is in a situation of type 1, that is it has 3 neighbours of its same colour, then it belongs to a side of the crystal, and contributes to the perimeter by $a$; if the pixel is of type 2, then it belongs to a corner or an isthmus and contributes to the perimeter by $2a$; in the same way pixels of type 3 and 4 add $3a$ and $4a$, respectively, to the perimeter. Hence, for every crystal $C_i(t)$, the quantity

$$N(j) = \text{number of pixels in the crystal } C_i(t) \text{ of type } j, \quad j = 1, 2, 3, 4$$

can be computed and consequently an estimator of the perimeter $\tilde{P}_i$ of the crystal is obtained as

$$\tilde{P}_i = aN(1) + 2aN(2) + 3aN(3) + 4aN(4).$$
Figure 3: A pixel and its 4 neighbours. If the central pixel is coloured, it is on a boundary of a crystal only if not all its neighbours have its same colour. Then the situations reported in the picture may occur.
Thus, at a fixed time $t$ of observation, the stochastic length of interfaces in a spatial region $A$ may be estimated by

$$
\widehat{S}(A) = \frac{1}{2} (a A_A(1) + 2a A_A(2) + 3a A_A(3) + 4a A_A(4))
$$

$A_A(j)$ denoting the number of pixels of type $j$ ($j = 1, 2, 3, 4$) in the region $A$; the $1/2$ factor is due to the fact that every boundary is counted twice. The local stochastic surface density $\bar{S}_V(x)$ at time $t$, i.e. the density of (see formula 1.3)

$$
\bar{\mu}_{2,1}(t, \cdot) = \frac{1}{2} \sum_{a_{k_0}, a_{k_1}} \lambda(\cdot \cap F_1(t, a_{k_0}, a_{k_1})),
$$

may then be approximated by

$$
\bar{S}_V(x) \approx \widehat{S}_V(x) = \frac{\widehat{S}(A_x)}{\nu_2(A_x)}
$$

where $A_x$ is a region centered at $x$ and sufficiently small to consider $\bar{S}_V$ constant in $A_x$, and $\nu_2(A_x)$ is the area of $A_x$. In order to obtain the mean surface density $S_V(x) = E(\bar{S}_V(x))$, i.e. the density of 1-facets $\mu_{2,1}$, many stochastic simulations under the same conditions should be performed, which yields a sample $\widehat{S}_V^1(x), \ldots, \widehat{S}_V^n(x)$; $S_V(x)$ can now be approximated by the empirical mean

$$
S_V(x) \approx \overline{S}_V(x) = \frac{1}{n} \sum_{i=1}^{n} S_V^i(x).
$$

5 Numerical Results

For numerical experiments we used data from isotactic Polypropylene (i-PP), Referring to the notations of equation (2.6), the quantities $h, \rho, c, k$ have been assumed to be constant and equal in the amorphous and in the crystalline phase, since their variability for i-PP is relatively small. Thus, equations (2.6)-(2.7) may be rewritten as

$$
T_t = D \Delta T + L(I_{\partial \Omega}); \quad \text{in } E \times \mathbb{R}^+, \quad (5.1)
$$

$$
T = T_{\text{out}}, \quad \text{on } \partial E \times \mathbb{R}^+, \quad (5.2)
$$
Figure 4: Growth rate $\hat{G}(T)$ (left) and nucleation rate $\hat{N}(T)$ (right) as a function of temperature $T$

with $D = 0.5 \text{ m}^2/\text{sec}$ and $L = 50^\circ C$, which correspond to mean values of experimental data.

For the nucleation and growth rate we used curves fitted to experimental data from [24] of the form

$$\hat{G}(T) = 10^{y(T)}, \quad \hat{N}(T) = 10^{z(T)}$$

where $y$ is a piecewise quadratic and $z$ is a piecewise linear spline (see Figure 4).

All algorithms have been implemented with the Scientific Computing Tool MATLAB, which was also used for the image analysis and visualization of results.

5.1 Numerical Results in $\mathbb{R}^1$

The results of a one-dimensional stochastic simulation are shown in Figure 5. The simulation has been performed starting from a uniform temperature of $130^\circ C$ in the whole domain $E = (0, 1)$ at time $t = 0$ and suddenly cooling the boundary points to $80^\circ C$. The result clearly shows the strong effects on temperature due to the release of latent heat and due to the small diffusion coefficient. The peaks in the temperature profile are caused by new nucleations; they are smoothed in time because of diffusion. If the temperature is kept only slightly below the melting point, the increase of temperature due
to the phase change may even stop the growth of nucleated crystals. This is evident if we take into account impingement in the simulation, obtaining thus results as shown in Figures 6 and 7. In Figure 7 the cones of influence of crystals are plotted, i.e., the space-time region occupied by each growing crystal. It can be seen that already before two crystals hit each other, their growth is almost stopped for a certain time because of the increase of temperature and the consequent decrease of the growth rate.

A comparison of the results obtained from the stochastic model (2.6) and from the deterministic system (2.11)-(2.14), is shown in Figure 8. To compare the two models, 100 stochastic simulations, independent but with the same parameters, have been performed. The crystallinity at time \( t \) has then been computed by averaging, both in space and time, of the indicator function \( I_{t^*} \) computed in each stochastic simulation. The result is compared with the correspondent crystallinity obtained by the deterministic model (left); the same averaging procedure is applied to the temperature field, too. The plot of the deterministic (solid) and averaged stochastic quantities (dashed), shows good agreement in general, in particular for the degree of crystallinity. The results for temperature shows that the deterministic model seems to react more slowly to changes in the source term.

We imposed a ratio between the nucleation rate \( \alpha \) and the growth rate \( \tilde{G} \) of the order of 10\(^3\) (in many practical examples it is much larger). It can be seen from the pictures that already with this relatively small ratio between the two quantities the numerical results are quite similar. Due to the averaging arguments based on the law of large numbers we expect an improvement for increasing nucleation rate, but so far we were not able to realize such a case in reasonable computational time.

5.2 Numerical Results in \( \mathbb{R}^2 \)

A two-dimensional numerical experiment was performed on a rectangle, with the same data for the parameters as in the one-dimensional case. We cooled the sample starting from a uniform temperature of 120°\( C \) and then cooling the boundary with constant speed \( \frac{d}{dt} \big|_{t=0} = 0.5^\circ C \text{s}^{-1} \). The results are shown in Figure 9, the behaviour is similar to the one-dimensional example; most crystals nucleate close to the boundary, while the temperature in the interior is too high for significant nucleation.

Figure 10 shows the result of an edge detection with a MATLAB image analysis tool, applied to the results of the simulation, which was able to iden-
Figure 5: Evolution of the indicator $I_{et}$ (left) and of the temperature field (right) in a 1D stochastic simulation with growth computed disregarding impingement.
Figure 6: Result of a 1D stochastic simulation with growth computed with the “pixel colouring” technique. The black zones are empty.

tify the crystal boundaries without difficulties. The generated morphology is typical for an experiment with boundary cooling, where there are many fine grains close to the boundary and few larger ones inside. In Figure 11 the estimated stochastic surface density $\hat{S}_V$, computed at time $9\,\text{s}$, is plotted. Its mean $\bar{S}_V(x)$ computed on 50 simulations is plotted in Figure 12.

6 Conclusions and Open Problems

Above we have shown how nonisothermal crystallization can be simulated either by a stochastic or a deterministic approach. While the deterministic model is based on an approximation that works only under certain conditions (many small crystals), the stochastic simulation is expected to yield reasonable results in any case. Although the numerical effort could be reduced significantly by Algorithm 4.3 with respect to the first approach, it is still very expensive too perform numerical experiments, in particular in $\mathbb{R}^3$. The improvement of the methods used for computing as well as a rigorous mathematical analysis are open problems for future work.

We note that real chemical experiments of the same kind could be performed in a lab, by using thin slices of polymeric material, and cooling them via a thermostat to control the temperature in the whole slice. The disadvantage of this technique is that interfaces are often not clearly visible from microscope images of the crystallized material, in particular when the number of generated crystals is very large. Instead it is rather simple to distinguish and measure the length of the interfaces generated by the simulator, by using some edge detector or image analyzer. In practical applications, the approximation by the simulator are much smaller than the information that
Figure 7: Cones of influence in a 1D stochastic simulation (top) and a zoom of the same image (bottom). Note that the growth of some crystals is stopped before impingement occurs by the increase of temperature due to the release of latent heat.
Figure 8: Evolution of the crystallinity (on the left) and of the mean temperature (on the right) in the stochastic and the deterministic models. The solid lines are the solutions of the deterministic model, the dashed lines are the means of the stochastic simulations.
Figure 9: Evolution of the crystals (on the left) and of the temperature field (on the right) in the stochastic simulation with cooling at the boundary.
Figure 10: Edge detection in the last image of Figure 9 (using a MATLAB edge detection tool)

Figure 11: Estimate of the stochastic surface density $\hat{S}_V$, computed at time $t = 9\text{sec}$
Figure 12: estimated mean surface density $S_V(x)$, computed at time $t = 6$ sec averaging $S_V(x)$ over 50 simulations

can be extracted from a picture of a real crystallized sample. Hence, this is a typical example in which simulated data may effectively substitute the experimental ones.

Another problem related to the simulation of nonisothermal crystallization is the optimal control of the process. In order to obtain good mechanical properties of the solidified material, a uniform grain size distribution is desired. As we have seen in our numerical experiments, a simple cooling strategy will not yield this result. Therefore, one wants to find a temperature $T^1 = T^1(x, t)$ in the boundary condition

$$\frac{\partial T}{\partial n} = \alpha (T - T^1)$$

(6.1)

such that the densities of the interfaces or the crystal sizes are as much uniform as possible.

**Acknowledgements**

Fruitful and stimulating discussions are acknowledged to Prof. Vincenzo Capasso (MIRIAM, University of Milano, Italy), Dr. Claudia Salani (MIRIAM, University of Milano, Italy), Prof. G. C. Alfonso (Dept. of Chemistry and Industrial Chemistry, University of Genova, Italy), Prof. G. Eder (Dept. of
Chemistry, University of Linz, Austria). Financial support is acknowledged to the Austrian Fonds zur Förderung der wissenschaftlichen Arbeit, Projects P 13478-INF and SFB F 013, to the EU under the TMR-Network Differential Equations in Industry and Commerce, to the Italian MURST/cofin. Programme “Stochastic processes with spatial structure” and to the Italian CNR contract n. 98.03635.ST74

References


[9] V.Capasso, A.Micheletti, Local spherical contact distribution function and local main densities for inhomogeneous random sets. Quaderno
N.1/2000 (Dipartimento di Matematica, Università degli Studi di Milano.)


