10. Hausaufgabenblatt zur Einführung in die Algebra

(Abgabe: bis Dienstag 13.01.2015, 12:15 Uhr in die Zettelkästen im Hörsaalgebäude)

Aufgabe 10.1

- i) Gegeben sei ein Körper K und $f \in K[T]$ irreduzibel. Zeigen Sie, dass K[T]/(f) ein Körper ist.
- ii) Bestimmen Sie $\mathbb{R}[T]/(T^2 + 1)$.

Aufgabe 10.2

Gegeben seien $f = 2 + T^2 + 2T^3 + T^5$ und $g = T^3 + T^4 \in \mathbb{Q}[T]$. Bestimmen Sie einen größten gemeinsamen Teiler d und Elemente $x, y \in \mathbb{Q}[T]$ mit fx + gy = d.

Aufgabe 10.3

Gegeben sei ein kommutativer Ring *R*.

i) Zeigen Sie, dass die Menge

$$N = \{r \mid r^n = 0 \text{ für ein } n \in \mathbb{N}\}$$

ein Ideal in R ist.

ii) Zeigen Sie, dass gilt:

$$N = \bigcap \{I \mid I \text{ Primideal in } R\}.$$

Aufgabe 10.4

Die Menge der Folgen $\mathbb{Q}^{\mathbb{N}}$ ist mit komponentenweiser Addition und Multiplikation der Folgenglieder:

$$(x_n)_{n\in\mathbb{N}} + (y_n)_{n\in\mathbb{N}} = (x_n + y_n)_{n\in\mathbb{N}},$$

$$(x_n)_{n\in\mathbb{N}} \cdot (y_n)_{n\in\mathbb{N}} = (x_n \cdot y_n)_{n\in\mathbb{N}}$$

für $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$ ein Ring.

Ein Element $(x_n)_{n\in\mathbb{N}}\in\mathbb{Q}^\mathbb{N}$ heißt Cauchy-Folge, falls für jedes $\epsilon>0$ ein $n_0\in\mathbb{N}$ existiert, so dass für alle $n,n'\geq n_0$ gilt: $|x_n-x_{n'}|<\epsilon$. Sei R die Menge der Cauchy-Folgen. Zeigen Sie:

- i) Die Menge R ist ein Unterring von $\mathbb{Q}^{\mathbb{N}}$.
- ii) Die Teilmenge *I* aller gegen 0 konvergenten Folgen ist ein maximales Ideal in *R*.
- *) Gibt es weitere maximale Ideale in R?
- **) Bestimmen Sie R/I.

* Aufgabe

Gegeben sei ein kommutativer Ring R. Wir definieren

$$J := \bigcap \{I \mid I \text{ maximales Ideal in } R\}.$$

Zeigen Sie, dass $x \in J$ genau dann gilt, wenn $1 - xy \in R^*$ für alle $y \in R$ gilt.