□ richtig

□ richtig

□ falsch

□ falsch

Name:

2. Quiz zur Einführung in die Algebra

am Dienstag 20. 01. 2015 in der Vorlesung, Abgabe in die Briefkästen

Version 1

Übungsgruppe:

1.	Gegeben seien zwei Integritätsbereiche R , S . Dann ist auch $R \times S$ ein Integritätsbereich. \Box richtig \Box falsch
2.	Es gilt $[\mathbb{C} : \mathbb{R}] = \dots$
3.	Der Ring $\mathbb{Z} \times \mathbb{Z}$ ist ein Hauptidealbereich. \Box richtig \Box falsch
4.	Es existiert ein Körper K mit $\#K = 10$. \Box richtig \Box falsch
5.	Gegeben sei eine Körpererweiterung $K\subseteq L$ mit $[L:K]=p$ für eine Primzahl p . Sei M ein Körper mit $K\subseteq M\subseteq L$. Dann gilt: $M=K$ oder $M=L$. \square richtig \square falsch
6.	Gegeben sei eine Körpererweiterung $K \subseteq L$ und $\alpha, \beta \in L$ mit $[K(\alpha) : K] = 2$ und $[K(\beta) : K] = 3$. Dann gilt: $[K(\alpha, \beta) : K] = 6$.
7.	Sei R ein kommutativer Ring. Jeder Ringhomomorphismus $\mathbb{Q}(\sqrt{2}) \to R$ ist injektiv. \square richtig \square falsch
8.	Sei $R \neq \{0\}$ ein kommutativer Ring. Wenn $(0) \subseteq R$ ein Primideal ist, dann ist R ein Integritätsbereich. \Box richtig \Box falsch
9.	Wenn $f \in \mathbb{Z}[T]$ irreduzibel ist, dann ist auch $f \in \mathbb{Q}[T]$ irreduzibel. \Box richtig \Box falsch
10.	Es existiert ein Körper K mit char $(K) = 4$. \Box richtig \Box falsch
11.	Es existiert ein Ring R , so dass gilt: $R^* = R$. \Box richtig \Box falsch
12.	Sei R ein kommutativer Ring und $r \in R - \{0\}$ ein Nullteiler. Dann gilt: $r \notin R^*$.

13. Sei R ein kommutativer Ring mit $1 \neq 0$. Es gilt $R^* = R - \{0\}$ genau dann, wenn R ein Körper

14.		Körpererweiterung und $u_1, u_2 \in L - K$. Wenn gilt $[K(u_1, u_2) : K] = p$ für eine an gilt $[K(u_1) : K] = [K(u_2) : K]$. \Box falsch
15.	Das Ideal $\mathbb{Z} \times \{0$ \square richtig	$\{0\} \subseteq \mathbb{Z} \times \mathbb{Z} \text{ ist maximal.}$ \Box falsch
16.	Das Polynom <i>T</i> □ richtig	4 + 2 ∈ $\mathbb{Q}[T]$ ist reduzibel. \Box falsch
17.	Das Ideal $\mathbb{Z} \times \{0$	$\{ \mathbb{Z} \times \mathbb{Z} \} $ ist ein Primideal. \Box falsch
18.	Sei <i>R</i> ein endlich	her Integritätsbereich. Dann gilt # $R = p^n$ für eine Primzahl p und ein $n \in \mathbb{N}$. \square falsch
19.	Gegeben sei das Sie ein <i>J</i> an:	s Ideal $6\mathbb{Z}\subseteq\mathbb{Z}$. Dann existiert ein maximales Ideal $J\subseteq\mathbb{Z}$ mit $6\mathbb{Z}\subseteq J$. Geben $J=\dots$
20.	Sei $K \subseteq L$ eine K \square richtig	Körpererweiterung und $u \in L$. Wenn $[K(u) : L] = 1$ ist, dann ist $u \in K$. □ falsch
21.	Sei $K \subseteq L$ eine $K \subseteq L$ richtig	Körpererweiterung und $u \in L - K$ mit $u^n \in K$. Dann gilt $[K(u) : K] = n$. □ falsch
22.	Das Polynom <i>T</i> □ richtig	$2^2 - 2 \in \mathbb{Q}(2\sqrt{2})$ ist irreduzibel. \square falsch
23.	Die Anzahl der	Einheiten in $\mathbb{Z}/77\mathbb{Z}$ ist gleich
24.	Die Anzahl der	Nullteiler in $\mathbb{Z}/12\mathbb{Z}$ ist gleich

2. Quiz zur Einführung in die Algebra

am Dienstag 20. 01. 2015 in der Vorlesung, Abgabe in die Briefkästen

Version 2

Nam	e: Übungsgruppe:
1.	Sei R ein kommutativer Ring und $r \in R - \{0\}$ ein Nullteiler. Dann gilt: $r \notin R^*$. \Box richtig \Box falsch
2.	Sei R ein endlicher Integritätsbereich. Dann gilt $\#R = p^n$ für eine Primzahl p und ein $n \in \mathbb{N}$. \square richtig \square falsch
3.	Gegeben seien zwei Integritätsbereiche R , S . Dann ist auch $R \times S$ ein Integritätsbereich. \Box richtig \Box falsch
4.	Es gilt $[\mathbb{C}:\mathbb{R}] = \dots$
5.	Der Ring $\mathbb{Z} \times \mathbb{Z}$ ist ein Hauptidealbereich. \square richtig \square falsch
6.	Es existiert ein Körper K mit $\#K = 10$. \Box richtig \Box falsch
7.	Gegeben sei eine Körpererweiterung $K \subseteq L$ mit $[L:K] = p$ für eine Primzahl p . Sei M ein Körper mit $K \subseteq M \subseteq L$. Dann gilt: $M = K$ oder $M = L$.
	□ richtig □ falsch
8.	Gegeben sei das Ideal $6\mathbb{Z}\subseteq\mathbb{Z}$. Dann existiert ein maximales Ideal $J\subseteq\mathbb{Z}$ mit $6\mathbb{Z}\subseteq J$. Geben Sie ein J an: $J=\dots$
9.	Sei $K \subseteq L$ eine Körpererweiterung und $u \in L$. Wenn $[K(u):L]=1$ ist, dann ist $u \in K$. \Box richtig \Box falsch
10.	Sei $K \subseteq L$ eine Körpererweiterung und $u \in L - K$ mit $u^n \in K$. Dann gilt $[K(u) : K] = n$. \Box richtig \Box falsch
11.	Das Polynom $T^2 - 2 \in \mathbb{Q}(2\sqrt{2})$ ist irreduzibel. \Box richtig \Box falsch
12.	Die Anzahl der Einheiten in $\mathbb{Z}/77\mathbb{Z}$ ist gleich
13.	Die Anzahl der Nullteiler in $\mathbb{Z}/12\mathbb{Z}$ ist gleich
14.	Gegeben sei eine Körpererweiterung $K \subseteq L$ und $\alpha, \beta \in L$ mit $[K(\alpha) : K] = 2$ und $[K(\beta) : K] = 3$. Dann gilt: $[K(\alpha, \beta) : K] = 6$.

15.	Sei R ein kommutativer Ring. Jeder Ringhomomorphismus $\mathbb{Q}(\sqrt{2}) \to R$ ist injektiv. \square richtig \square falsch
16.	Sei $R \neq \{0\}$ ein kommutativer Ring. Wenn $(0) \subseteq R$ ein Primideal ist, dann ist R ein Integritätsbereich.
	□ richtig □ falsch
17.	Wenn $f \in \mathbb{Z}[T]$ irreduzibel ist, dann ist auch $f \in \mathbb{Q}[T]$ irreduzibel. \Box richtig \Box falsch
18.	Sei R ein kommutativer Ring mit $1 \neq 0$. Es gilt $R^* = R - \{0\}$ genau dann, wenn R ein Körper ist.
	□ richtig □ falsch
19.	Sei $K \subseteq L$ eine Körpererweiterung und $u_1, u_2 \in L - K$. Wenn gilt $[K(u_1, u_2) : K] = p$ für eine Primzahl p , dann gilt $[K(u_1) : K] = [K(u_2) : K]$. \Box richtig \Box falsch
20.	Das Ideal $\mathbb{Z} \times \{0\} \subseteq \mathbb{Z} \times \mathbb{Z}$ ist maximal. \Box richtig \Box falsch
21.	Das Polynom $T^4 + 2 \in \mathbb{Q}[T]$ ist reduzibel. \Box richtig \Box falsch
22.	Das Ideal $\mathbb{Z} \times \{0\} \subseteq \mathbb{Z} \times \mathbb{Z}$ ist ein Primideal. \Box richtig \Box falsch
23.	Es existiert ein Körper K mit char $(K) = 4$. \Box richtig \Box falsch
24.	Es existiert ein Ring R , so dass gilt: $R^* = R$. \Box richtig \Box falsch