6. Übung zur Vorlesung Gebäude

Please hand in your solutions on the morning of Friday 18 May before the lecture.

We denote the set of all chambers in a building Δ by $Cham(\Delta)$.

Aufgabe 6.1 (1. Diameters)

(2 marks) Suppose that Δ is a building of type \circ $\stackrel{m}{---}$ \circ , with $m \in \{2, 3, ..., \infty\}$. We put $diam(\Delta) = \sup\{\ell(\delta(a,b)) \mid a,b \in Cham(\Delta)\}$

Show that $diam(\Delta) = m$.

Aufgabe 6.2 (2. The building encodes the Coxeter diagram)

(4 marks) Suppose that Δ is a building of type (W, I). If a is a simplex of type $I \setminus \{i, j\}$, with $i \neq j$, show that the entry $m_{i,j}$ of the Coxeter matrix can be read off from lk(a).

Show that the simplicial complex Δ determines both (W, I) and the type function uniquely, up to isomorphism. (What kind of isomorphism?).

Aufgabe 6.3 (3. Properties of the W-valued distance)

Let Δ be a building of type (W,I) and let $\delta: Cham(\Delta) \times Cham(\Delta) \longrightarrow W$ denote the W-valued distance.

(2 marks) Show that $\delta(a,b) = \delta(b,a)^{-1}$ and show that $\delta(a,b) = 1$ holds if and only if a = b.

(2 marks) Suppose that $\delta(b,c)=w$ and that $\delta(a,b)=i\in I$. Show that $\delta(a,c)\in\{iw,w\}$. If $\ell(iw)=1+\ell(w)$, show that $\delta(a,c)=iw$.

(2 marks) Suppose that $\delta(b,c)=w$ and that $i\in I$. Show that there is a chamber a such that $\delta(a,b)=i$ and $\delta(a,c)=iw$.