$\overline{\{y\mid f(y)\neq 0\}}$; observe that y is not in the support of f if and only if y has a nbd on which f vanishes identically.

- **4.1 Definition** Let Y be a Hausdorff space. A family $\{\kappa_{\alpha} \mid \alpha \in \mathscr{A}\}$ of continuous maps κ_{α} : $Y \to I$ is called a partition of unity on Y if:
 - (1). The supports of the κ_{α} form a nbd-finite closed covering of Y.
 - (2). $\sum \kappa_{\alpha}(y) = 1$ for each $y \in Y$ (this sum is well-defined because each y lies in the support of at most finitely many

If $\{U_{\beta} \mid \beta \in \mathscr{B}\}$ is a given open covering of Y, we say that a partition $\{\kappa_{\beta} \mid \beta \in \mathscr{B}\}$ of unity is subordinated to $\{U_{\beta}\}$ if the support of each κ_{β} lies in the corresponding U_{β} .

Clearly, every space has a partition of unity subordinated to the covering by the single set itself.

4.2 Theorem Let Y be paracompact. Then for each open covering $\{U_{\alpha}\mid \alpha\in\mathscr{A}\}$ of Y there is a partition of unity subordinated to $\{U_{\alpha}\}.$

Proof: Shrink a precise nbd-finite refinement of $\{U_{\alpha}\}$ to get a nbdfinite open covering $\{V_\alpha\}$ with $\overline{V}_\alpha\subset U_\alpha$ for each α . Now shrink $\{V_\alpha\}$ to get a nbd-finite open covering $\{W_\alpha\}$ satisfying $\overline{W}_\alpha\subset V_\alpha$. For each $\alpha \in \mathcal{A}$, VII, 4.1, gives a continuous $g_{\alpha} : Y \to I$, which is identically 1 on \overline{W}_{α} and vanishes on $\mathscr{C}V_{\alpha}$ (we take $g_{\alpha}\equiv 0$ if $V_{\alpha}=\varnothing$); each g_{α} has its support in U_{α} . Since $\{\overline{W}_{\alpha}\}$ is a nbd-finite covering, it follows that for each $y \in Y$ at least one, and at most finitely many, g_{α} are not zero, consequently $\sum g_{\alpha}$ is a well-defined real-valued function on Y and is never zero. $\sum g_{\alpha}$ is continuous on Y: every point has a nbd on which all but at most finitely many g_{α} vanish identically, so the continuity of $\sum g_{\alpha}$ on this nbd follows from that of each g_{α} , and by III, 9.4, $\sum g_{\alpha}$ is therefore continuous on Y. The required partition of unity is given by the family of functions $\{\kappa_{\alpha} \mid \alpha \in \mathscr{A}\}\$, where

$$\kappa_{\alpha}(y) = \frac{g_{\alpha}(y)}{\sum_{\alpha} g_{\alpha}(y)}.$$

We remark that in a normal space Y, the proof shows that a partition of unity subordinated to a given nbd-finite open cover exists; C. H. Dowker has shown that their existence for each open cover is equivalent to paracompactness of Y [cf. 5.5(2)].

Sec. 5 Complexes; Nerves of Coverings

To give an application of 4.2, note that if $\{\kappa_{\alpha} \mid \alpha \in \mathscr{A}\}$ is a partition of unity on Y, and if $\{\varphi_{\alpha} \mid \alpha \in \mathscr{A}\}$ is any family of continuous maps φ_{α} : $Y \to E^1$, then the map $Y \to E^1$ given by $y \to \sum_{\alpha} \varphi_{\alpha}(y) \kappa_{\alpha}(y)$ is also continuous.

171

4.3 (C. H. Dowker) Let Y be paracompact. Assume that g is a lower, and G an upper, semicontinuous real-valued function on Y such that G(y) < g(y) for each $y \in Y$. Then there exists a continuous $\varphi \colon Y \to E^1$ such that $G(y) < \varphi(y) < g(y)$ for each $y \in Y$.

Proof: For each rational r, let $U_r = \{y \mid G(y) < r\} \cap \{y \mid g(y) > r\};$ due to the semicontinuities, this is open; and because for each y there is some rational \bar{r} with $G(y) < \bar{r} < g(y)$, the family $\{U_r\}$ is in fact an open covering of Y. Let $\{\kappa_r\}$ be a partition of unity subordinated to $\{U_r\}$; the required continuous function is $\varphi(y) = \sum r \cdot \kappa_r(y)$. For, let $y \in Y$ be given, and let $\kappa_{r_1}, \dots, \kappa_{r_n}$ be all those functions whose support contains y; then $y \in U_{r_1} \cap \cdots \cap U_{r_n}$ so that $G(y) < r_i < g(y)$ for each i = 1, \cdots , n, and therefore

$$G(y) = G(y) \cdot \sum \kappa_{r_i}(y) < \sum r_i \kappa_{r_i}(y) = \varphi(y) < g(y) \cdot \sum \kappa_{r_i}(y) = g(y).$$

5. Complexes; Nerves of Coverings

The concept of a partition of unity subordinated to a given open covering has an alternative, more geometrical, interpretation. To develop this, we need two preliminary notions.

- (1). Let \mathscr{A} be any set. By an *n*-simplex σ^n in \mathscr{A} is meant a set $(\alpha_0, \dots, \alpha_n)$ of n+1 distinct elements of \mathcal{A} ; $\alpha_0, \dots, \alpha_n$ are called the vertices of σ^n , and any $\sigma^q \subset \sigma^n$ is termed a q-face of σ^n .
- **Definition** An abstract simplicial complex \mathcal{K} over \mathcal{A} is a set of simplexes in \mathscr{A} with the property that each face of a $\sigma \in \mathscr{K}$ also belongs to \mathscr{K} .

With each abstract simplicial complex we will associate a standard topological space. For this we need

(2). Given (n + 1) independent points p_0, \dots, p_n in an affine space, the open geometric *n*-simplex σ^n spanned by p_0, \dots, p_n is

$$\left\{\sum_{i=0}^{n} \lambda_{i} p_{i} \middle| \sum_{i=0}^{n} \lambda_{i} = 1, \quad 0 < \lambda_{i} \leq 1, \quad i = 0, \cdots, n\right\};$$

it is denoted by (p_0, \dots, p_n) .

 σ^n is the interior of the convex hull of $\{p_0, \dots, p_n\}$ in the *n*-dimensional Euclidean space that these vertices span; for example, (p_0, p_1) is a segment without its end

1/3

points, and (p_0, p_1, p_2) is a triangle without its boundary. The λ_i , $i = 0, \dots, n$, are called the barycentric coordinates of

$$x=\sum_{0}^{n}\lambda_{i}p_{i};$$

the closed geometric *n*-simplex $\tilde{\sigma}^n = (\overline{p_0, \dots, p_n})$ consists of σ^n with its boundary, and is obtained by allowing $0 \le \lambda_i \le 1$ for $i = 0, \dots, n$.

5.2 Definition Given any set \mathscr{A} , let $L(\mathscr{A})$ be a real vector space with finite topology, having a basis $\{b_{\alpha}\}$ in fixed 1-to-1 correspondence b_{α} : α with the elements of ${\mathscr A}$, and let u_{α} be the unit point on the vector b_{α} . Given any complex ${\mathscr K}$ over \mathscr{A} , let $K \in L(\mathscr{A})$ be the union of all open geometric simplexes $(u_{\alpha_0}, \cdots, u_{\alpha_n})$ for which $(\alpha_0, \cdots, \alpha_n)$ is a simplex in \mathcal{K} . The subspace $K \in L(\mathscr{A})$ is called a polytope with vertex scheme \mathscr{K} (or a standard geometrical realization of \mathcal{K}).

It is evident that the space K has the weak topology determined by the Euclidean topology on its closed simplexes, so that an $f: K \to Y$ is continuous if and only if it is so on each $\bar{\sigma}^n$. This implies that any two standard geometrical realizations $K_1,\,K_2$ of a given ${\mathscr K}$ are homeomorphic: for, to each $\sigma^n\in{\mathscr K}$ there correspond unique $\sigma_1^n=(p_0^1,\dots,p_n^1)$ and $\sigma_2^n=(p_0^2,\dots,p_n^2)$ in $K_1,\ K_2$, respectively, and by barycentrically mapping each σ_1^n on the corresponding σ_2^n (that is $\sum_{i=1}^n \lambda_i p_i^1 \to \sum_{i=1}^n \lambda_i p_i^2$), the desired homeomorphism is obtained. Thus we can speak of the geometric realization

In a polytype, the star, St u_0 , of a vertex u_0 is the set of all open geometric simplexes having u_0 as vertex. It is important to note that St u_0 is an open set in K: given any closed $\tilde{\sigma} = (u_{\alpha_0}, \dots, u_{\alpha_n})$, its intersection with $K - \operatorname{St} u_0$ is either $\tilde{\sigma}$ if no $u_{\alpha_i} = u_0$ or a face of σ if some $u_{\alpha_i} = u_0$; in either case, this intersection is closed in $\bar{\sigma}$, so $K - \operatorname{St} u_0$ is closed in K.

The process of associating with each open covering of a space a complex called its nerve is very important because it is one method for relating the topological to the algebraic properties of spaces; intuitively geometric realizations of nerves approximate the space with the finer covering giving the better approximation.

5.3 Definition Let $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$ be any covering of a space. Define a complex \mathscr{N} over $\mathscr A$ by the following condition: $(\alpha_0,\cdots,\alpha_n)$ is a simplex of $\mathscr N$ if and only if $U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} \neq \emptyset$. It is evident that $\mathscr N$ is indeed a complex, called the nerve of $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$. The standard geometric realization of \mathscr{N} is called the geometric nerve of $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$ and is denoted by $N(U_{\alpha})$.

The vertex of $N(U_{\alpha})$ corresponding to the set U_{α} is denoted by u_{α} .

Theorem Let Y be any space and $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$ be an open covering. Then for each partition of unity subordinated to $\{U_a\}$ there exists a continuous $\kappa \colon Y \to N(U_{\alpha})$ such that $\kappa^{-1}(\operatorname{St} u_{\alpha}) \subset U_{\alpha}$ for each α .

Proof: Let $\{\kappa_{\alpha} \mid \alpha \in \mathscr{A}\}$ be a partition of unity subordinated to $\{U_{\alpha}\}$, and define

 $\kappa \colon Y \to N(U_a)$ by $\kappa(y) = \sum \kappa_a(y)u_a$. This is continuous: each $y \in Y$ has a nbd on which all but at most finitely many κ_{α} vanish, and since this nbd is mapped into a finite-dimensional flat in $L(\mathcal{A})$, the addition is continuous (cf. Appendix I, 4), so κ is continuous on that nbd and its continuity on Y results from III, **8.3.** Since $\sum \kappa_{\alpha}(y) = 1$, $\kappa(y)$ is in fact a point of the closed geometric simplex spanned by $\{u_{\alpha} \mid \kappa_{\alpha}(y) \neq 0\}$. The inverse image of St u_{α_0} consists of all y for which $\kappa_{\alpha_0}(y) \neq 0$, and because the support of κ_{α_0} is in U_{α_0} , we have

Secona-countable Spaces; Linaelof Spaces

$$\kappa^{-1}(\operatorname{St} u_{\alpha_0})\subset U_{\alpha_0}$$

as required.

sec. o

It should be observed that if $V \subset Y$ is an open set intersecting the supports of only the finitely many $\kappa_{\alpha_1}, \dots, \kappa_{\alpha_n}$, then $\kappa(V) \subset (\overline{u_{\alpha_0}, \dots, u_{\alpha_n}})$.

- 5.5 Remark It is known (cf. Appendix I, 5.2) that the geometric nerve $N(U_{\alpha})$ is always a paracompact space. Using this fact, we can prove
 - (1). A continuous $\kappa: Y \to N(U_{\alpha})$ satisfying $\kappa^{-1}(\operatorname{St} u_{\alpha}) \subset U_{\alpha}$ for each α exists if and only if there is a partition of unity subordinated to $\{U_n\}$.

The "if" is 5.4; the "only if" follows by finding a partition of unity $\{\kappa_{\alpha} \mid \alpha \in \mathcal{A}\}\$ subordinated to the open cover $\{St u_{\alpha} \mid \alpha \in \mathcal{A}\}\$ of the paracompact $N(U_{\alpha})$ and defining $\lambda_{\alpha} \colon Y \to I$ by $\lambda_{\alpha} = \kappa_{\alpha} \circ \kappa$.

(2). Y is paracompact if and only if for each open covering $\{U_{\alpha}\}$ there is a subordinated partition of unity.

The "only if" is 4.2; the "if" follows by finding a nbd-finite refinement $\{V_{\beta} \mid \beta \in \mathcal{B}\}\$ of the open covering $\{\operatorname{St} u_{\alpha} \mid \alpha \in \mathcal{A}\}\$ in $N(U_{\alpha})$; then

$$\{\kappa^{-1}(V_{\beta}) \mid \beta \in \mathcal{B}\}$$

is the desired nbd-finite refinement of $\{U_{\alpha}\}$. There is a simpler proof of "if" which uses the geometry, rather than the paracompactness, of $N(U_a)$: letting N' be the barycentric subdivision of $N(U_{\alpha})$ [cf. Appendix I, 5] and using stars in N', we have that $\{\kappa^{-1}(\operatorname{St} p') \mid p' \text{ a vertex of } N'\}$ is a barycentric refinement of $\{U_{\alpha} \mid \alpha \in \mathscr{A}\}$. This indicates the origin of the term barycentric refinement.

6. Second-countable Spaces; Lindelöf Spaces

In this section, we study two properties of spaces related to the behavior of their open coverings; it turns out that when any one of them is present, weak separation properties become very strong.

6.1 Definition A Hausdorff space is 2° countable (or, satisfies the second axiom of countability) if it has a countable basis.

In recent literature, the least cardinal of a basis for a space X is called the weight of X; thus, X is 2° countable if it has weight $\leq \aleph_0$.

Ex. 1 E^n is 2° countable, as seen in III, 2, Ex. 3. A countable discrete space is