1. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21	Prof. Dr. Linus Kramer
WWU Münster	Dr. Bakul Sathaye
	Philip Möller

Each question is worth 4 points.

Aufgabe 1.1

Show that \mathbb{R}^n is a normed vector space with

- a) p-norm $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $1 \le p < \infty$. Hint: Use Minkowski's inequality.
- b) the ∞ -norm $||x||_{\infty} = \sup_{1 \le i \le n} |x_i|$, where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Aufgabe 1.2

Prove that

- a) $(\mathbb{R}^2, || \cdot ||_1)$ and $(\mathbb{R}^2, || \cdot ||_\infty)$ are isometric.
- b) $(\mathbb{R}^3, ||\cdot||_1)$ and $(\mathbb{R}^3, ||\cdot||_\infty)$ are not isometric.

Aufgabe 1.3

- a) Let X be an arbitrary set. The space $l_{\infty}(X)$ is the set of all bounded real functions on X. This is a vector space with respect to pointwise addition and multiplication by scalars. Let $||f||_{\infty} = \sup\{|f(x)| : x \in X\}$. Show that $(l_{\infty}(X), || \cdot ||_{\infty})$ is a Banach space.
- b) Show that $(\mathbb{R}^n, ||\cdot||_{\infty}) \cong (l_{\infty}(X), ||\cdot||_{\infty})$ for a suitable set X.

Aufgabe 1.4

Let (X, d) be a metric space. Define the distance between two subsets A and B of X by dist $(A, B) = \inf \{d(x, y) | x \in A, y \in B\}$.

- a) Is "dist" a metric on the space of subsets of X? Explain.
- b) If A and B are compact, then there exists $a \in A$ and $b \in B$ such that d(a,b) = dist(A,B).

*-Aufgabe (Bonus Question) (New metrics from old ones)

Suppose that $0 < \epsilon \leq 1$. Prove that $|a+b|^{\epsilon} \leq |a|^{\epsilon} + |b|^{\epsilon}$ holds for all $a, b \in \mathbb{R}$. Conclude that if (X, d) is a metric space, then (X, d^{ϵ}) is also a metric space, with $d^{\epsilon}(u, v) = d(u, v)^{\epsilon}$.

What can you say about the completeness of (X, d^{ϵ}) if (X, d) is complete?

Abgabe bis: Donnerstag, den 12.11.2020, 8 Uhr online im Learnwebkurs