WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 10.1 (Stabilizers and transitive actions)

Let G be a group acting transitively on a set X and let $K \subset G$ be the stabilizer of $p \in X$. Let $L \subset G$ be a subset. Show that the following are equivalent

- a) $G = L \cdot K$.
- b) For each $q \in X$, there is $l \in L$ with l(p) = q.

Aufgabe 10.2 (Stabilizer is compact)

Let M be a connected, complete Riemannian manifold and let $p \in M$. Show that the stabilizer of p, $\operatorname{Stab}(p)$ is compact in $\operatorname{Isom}(M)$.

In particular, for a sequence $\{g_n\}$ of isometries of M such that $g_np = p$ for all n, show that there is a subsequence $\{g_{n_k}\}$ of $\{g_n\}$ that converges uniformly on compact subsets of M.

Hint: This is a special case of the Arzela-Ascoli Theorem. Let C be a compact set. For each $c \in C$, the sequence $\{g_n c\}$ is bounded, and therefore has a convergent subsequence. By Cantor diagonalization, there is a subsequence that works for all c in a countable, dense subset of C.

Aufgabe 10.3 (Connected components of Isom(X))

Show that if X is a connected complete Riemannian manifold, then Isom(X) has only finitely many connected components.

Hint: Every component of G = Isom(X) intersects the compact group $\text{Stab}_G(x)$.

Aufgabe 10.4 (Exp and adjoint)

Let $A, B \in M(n, \mathbb{R})$, the algebra of $n \times n$ matrices with real entries. Show that

$$\exp(A) \ B \ \exp(-A) = \exp(\operatorname{ad}_A)(B),$$

where $ad_A(B) = AB - BA$.

Hint: Express ad_A as $L_A - R_A$, where where L_A (resp. R_A) is the endomorphism of $M(n,\mathbb{R})$ mapping C to AC (resp. CA). Note that $L_AR_A = R_AL_A$, hence

$$(L_A - R_A)^k = \sum_{p+q=k} \frac{k!}{p!q!} L_A^p R_{-A}^q$$

10.*-Aufgabe (Self-adjoint)

Given $X \in S(n,\mathbb{R})$, consider the endomorphism of $M(n,\mathbb{R})$ defined by the formula

$$\tau_X(Y) = \frac{d}{dt} \exp(-X/2) \exp(X + tY) \exp(-X/2) \mid_{t=0}$$

Prove that τ_X is self-adjoint, i.e., for any $Y, Z \in M(n, \mathbb{R})$, we have $(\tau_X Y | Z) = (Y | \tau_X Z)$. Recall that for $A, B \in M(n, \mathbb{R})$, $(A|B) := \text{Tr}(AB^t)$ defines a scalar product.

Hint: First show that

$$\tau_X(Y) = \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{p+q=k-1} \exp(-X/2) X^p Y X^q \exp(-X/2).$$

Then use the fact that Tr(AB) = Tr(BA).