3. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 3.1 (Products)

Given nonempty metric spaces $(X_1, d_1), \ldots, (X_m, d_m)$, define the metric product as $X = X_1 \times ... \times X_m$ with metric $d((x_1, ..., x_m), (y_1, ..., y_m)) = \sqrt{\sum_{1 \le j \le m} d_j(x_j, y_j)^2}$.

Prove that

- a) (X, d) is a metric space.
- b) the product is complete if and only if all the X_i are complete.
- c) the product is CAT(0) if and only if all the X_j are CAT(0).

Aufgabe 3.2 (Convexity of distance function)

Let (X, d) be a CAT(0) space.

- a) Fix $x_0 \in X$. Prove that the function $x \mapsto d(x, x_0)$ is convex.
- b) Let C be a complete convex subset of X. Show that the function $d_C: x \mapsto d(x,C)$ is convex. Further, for all $x,y \in X$, $|d_C(x) - d_C(y)| \le$ d(x,y).

Aufgabe 3.3 (Embeddings of finite metric spaces)

- a) Show that every metric space X consisting of at most three points admits an isometric embedding into $(\mathbb{R}^2, ||-||_2)$.
- b) Can every metric space consisting of four points be isometrically embedded into $(\mathbb{R}^n, ||-||_2)$, for some $n \geq 1$?
- c) Can every metric space consisting of finitely many points be isometrically embedded into $(\mathbb{R}^n, ||-||_p)$, for some $n \geq 1$ and some $1 \leq p \leq \infty$?
- c) Does there exist a metric space in which every finite metric space can be isometrically embedded?

Aufgabe 3.4 (Local geodesics)

Let (X,d) be a metric space. A local geodesic in X is a map c from an interval $I \subseteq \mathbb{R}$ to X such that for every $t \in I$ there is $\epsilon > 0$ such that d(c(t'), c(t'')) =|t'-t''| for all $t',t'' \in I$ with $|t-t'|+|t-t''| \leq \epsilon$.

Show that if X is a CAT(0) space then a local geodesic is a geodesic in X.

3.*-Aufgabe (\mathbb{R} -trees)

An \mathbb{R} -tree is a metric space (T, d) such that

- i) given any two distinct points $x,y\in T,$ there is a unique geodesic segment from x to y, and
- ii) if $[y,x] \cap [x,z] = \{x\}$, then $[y,x] \cup [x,z] = [y,z]$, where for a pair of points $a,b \in T$, [a,b] is a geodesic segment from a to b in T.

Prove that every \mathbb{R} -tree is a CAT(0) space.

Abgabe bis: Donnerstag, den 26.11.2020, 8 Uhr online im Learnwebkurs.