4. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 4.1 (Completeness)

Let (X, d) be a nonempty metric space.

- a) Show that if X is spherically complete, then it is complete.
- b) Show that if X is complete, then every nested sequence of closed balls, $\bar{B}_{r_i}(x_i)$ with $\lim_{i\to\infty} r_i = 0$, has a common point.

Aufgabe 4.2 (Fixed points)

Let G be a group acting isometrically on a metric space X.

- a) Show that the fixed point set X^G is closed.
- b) Assume further that X is a CAT(0) space. Show that the fixed point set X^G is convex (assuming that it is not empty).

Aufgabe 4.3 (Groups of Isometries)

Recall that $\operatorname{GL}(n,\mathbb{R})$ is the group of $n \times n$ invertible matrices. It acts on \mathbb{R}^n via the usual linear transformations: for $A = (a_{ij}) \in \operatorname{GL}(n,\mathbb{R})$ and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $A(x) = (y_1, \ldots, y_n)$ where $y_i = \sum_j a_{ij} x_j$.

- a) Show that the action of A preserves the Euclidean norm $|| ||_2$ on \mathbb{R}^n if and only if $A \in O(n)$, where O(n) is the group of orthogonal matrices.
- b) Use part (a) to show that O(n) acts on $S^{n-1} \subset \mathbb{R}^n$ by isometries.
- c) Consider the usual linear action of $\operatorname{GL}(n+1,\mathbb{R})$ on \mathbb{R}^{n+1} . Let O(1,n) be the subgroup formed by the matrices that leave invariant the bilinear form β on $\mathbb{R} \oplus \mathbb{R}^n$, $\beta(u,v) = u_0v_0 - \sum u_iv_i$. Show that O(1,n) consists of those matrices A such that $A^tJA = J$, where

$$J = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & -1 \end{pmatrix}$$

d) Let $O^+(n, 1)$ be the subgroup of matrices that preserve the upper sheet \mathbb{H}^n of the hyperboloid $\{x \in \mathbb{R}^{n+1} \mid \beta(x, x) = 1\}$. Show that this is an index two subgroup in O(1, n).

Aufgabe 4.4 (Models of the hyperbolic plane) Consider the hyperbolic space \mathbb{H}^n defined as a subspace of $\mathbb{R} \oplus \mathbb{R}^n$

$$\mathbb{H}^{n} = \{ u = (u_{0}, u_{1}) \in \mathbb{R} \oplus \mathbb{R}^{n} \mid u_{0} > 0, \ \beta(u, u) = 1 \}$$

Let $B^n = \{(u_0, u_1) \in \mathbb{R} \oplus \mathbb{R}^n \mid u_0 = 0, -\beta(u, u) < 1\}$ be the unit *n*-ball in $\{0\} \oplus \mathbb{R}^n$. Let $P = (-1, 0, \dots, 0) \in \mathbb{R} \oplus \mathbb{R}^n$.

Define the stereographic projection of \mathbb{H}^n from the point P to the unit ball as the map $s : \mathbb{H}^n \to B^n$ such that for every $x \in \mathbb{H}^n$, the points x, s(x), and Pare collinear.

- a) Give a formula for the map s.
- b) Describe a metric \tilde{d} on B^n so that s becomes an isometry.

The metric space (B^n, \tilde{d}) gives another model for the hyperbolic space, called the *Poincaré ball model*.

4.*-Aufgabe (Spherical completeness)

Consider the space of natural numbers $\mathbb{N} = \{n \in \mathbb{Z} \mid n \ge 1\}$ with the metric

$$d(m,n) = \begin{cases} 0 & \text{if } m = n\\ 1 + \max\{\frac{1}{m}, \frac{1}{n}\} & \text{if } m \neq n \end{cases}$$

Show that d is a metric and that (\mathbb{N}, d) is complete but not spherically complete.

Abgabe bis: Donnerstag, den 3.12.2020, 8 Uhr online im Learnwebkurs.