7. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 7.1 (Isometries of trees)

Prove that every isometry g of an \mathbb{R} -tree is semi-simple.

Hint: Let $x \in X$ and let m be the midpoint of x and g(x). Prove that $d(g(m), m) = l_g$.

Aufgabe 7.2 (Translation lengths)

Let (X,d) be a metric space and g be an isometry of X. Consider the limit

$$\lim_{n \to \infty} \frac{d(x, g^n(x))}{n}.$$

- a) Show that the limit exists for every $x \in X$ using the following steps.
 - i) Show that $f(n) = d(x, g^n(x))$ is a subadditive function, that is, $f(m+n) \le f(m) + f(n)$ for all m and n.
 - ii) Use (i) to show that the limit $\lim_{n\to\infty}\frac{f(n)}{n}$ exists. Hint: For $d\in\mathbb{N}$, express n=qd+r, where $0\leq r< d$.
- b) Show that the limit is independent of $x \in X$.
- c) If X is CAT(0) and g is semi-simple, then show that for any $x \in X$,

$$l_g = \lim_{n \to \infty} \frac{d(x, g^n(x))}{n}.$$

Hint: Use the convexity of μ_q .

Aufgabe 7.3 (Flat strips in \mathbb{H}^m)

Show that there are no flat strips in the hyperbolic space \mathbb{H}^m , that is, show that there is no isometric embedding $\mathbb{R} \times [0, D] \to \mathbb{H}^m$ for any D > 0.

Aufgabe 7.4 (Flat triangles)

Let a, b, c be distinct points in a CAT(0) space X, with comparison points $\bar{a}, \bar{b}, \bar{c}$ in \mathbb{R}^2 . Suppose that there is a point z on the geodesic from b to c, different from b and c, with $d(z, a) = ||\bar{z} - \bar{a}||_2$.

Show that there is a unique isometric embedding ϕ of the convex hull D of $\bar{a}, \bar{b}, \bar{c}$ in \mathbb{R}^2 into X, such that $\phi(\bar{a}) = a, \phi(\bar{b}) = b$, and $\phi(\bar{c}) = c$.

7.*-Aufgabe (The Sandwich Lemma)

Let X be a CAT(0) space. For a closed subspace $C \subset X$, write $d_C(x) = \inf\{d(x,c) \mid c \in C\}$ to denote the distance of a point x from C.

Let C_1 and C_2 be two complete, convex subspaces of X. Prove that if the restriction of d_{C_1} to C_2 is constant, equal to say a, and the restriction of d_{C_2} to C_1 is constant, then the convex hull of $C_1 \cup C_2$ is isometric to $C_1 \times [0, a]$.

Abgabe bis: Donnerstag, den 7.1.2021, 8 Uhr online im Learnwebkurs.