8. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 8.1 (Finitely generated subgroups) Suppose that G and H are groups and that $f : G \to H$ is an epimorphism. Show that G is finitely generated if H and Ker(f) are finitely generated.

Aufgabe 8.2 (Isomorphisms of \mathbb{Z}^m)

Let $f = (f_1, \ldots, f_m)$ be any generating set for \mathbb{Z}^m . Show that the canonical epimorphism $\phi_f : \mathbb{Z}^m \to \mathbb{Z}^m$ that maps (z_1, \ldots, z_m) to $\sum_{j=1}^m z_j f_j$ is injective and hence an isomorphism.

Hint: Proceed similarly as in 4.18 Lemma C from class notes.

Aufgabe 8.3 (General linear group over integers) Let $GL(m,\mathbb{Z})$ denote set of all $m \times m$ matrices with integer coefficients and determinant ± 1 .

- a) Show that $GL(m, \mathbb{Z})$ is a group.
- b) Show that $GL(m, \mathbb{Z})$ is infinite and non-abelian if m > 1.
- c) Show that $\operatorname{GL}(m,\mathbb{Z})$ is the automorphism group of \mathbb{Z}^m .

Aufgabe 8.4 (Finite order elements)

Give an example of a group G for which the subset of finite order elements $H = \{g \in G \mid \text{the order of } g \text{ is finite}\}$ is not a subgroup.

8.*-Aufgabe (Subgroups of finitely generated group)

Consider the multiplicative group G generated by the real matrices $a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

and $b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Let *H* be the set of all matrices in *G* whose diagonal entries are 1. Show that *H* is a subgroup that is not finitely generated.

Abgabe bis: Donnerstag, den 14.1.2021, 8 Uhr online im Learnwebkurs.