9. Übungszettel zur Vorlesung „Räume nichtpositiver Krümmung"

WiSe 2020/21
Prof. Dr. Linus Kramer
WWU Münster
Dr. Bakul Sathaye
Philip Möller

Each question is worth 4 points.

Aufgabe 9.1 (Semisimple isometries of products)
Let X and Y be CAT(0) spaces and let g and h be isometries of X and Y respectively. Show that the isometry of $X \times Y$ given by $(x, y) \mapsto(g(x), h(y))$ is semisimple if and only if both g and h are semisimple.

Aufgabe 9.2 (Isometries of \mathbb{H}^{2})
Using the Poincaré upper half space model of the hyperbolic space, we may identify \mathbb{H}^{2} with the upper half complex plane $\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$. Consider the action of $\mathrm{SL}(2, \mathbb{R})$ on \mathbb{H}^{2} given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

a) Show that $\mathrm{SL}(2, \mathbb{R})$ acts transitively on \mathbb{H}^{2}.
b) Show that the stabilizer of i is $O(2)$.

Aufgabe 9.3 (Semisimple isometries of \mathbb{H}^{2})
Determine all the semisimple elements in $\operatorname{SL}(2, \mathbb{R})$ in its action on \mathbb{H}^{2}.

Aufgabe 9.4 (Adjoint)
Let $M(n, \mathbb{R})$ denote the algebra of $n \times n$ matrices with real entries. For $A \in$ $M(n, \mathbb{R}), A^{t}$ will denote the transpose of A. For $A \in M(n, \mathbb{R})$, define an endo$\operatorname{morphism}^{\operatorname{ad}_{A}}$ on $M(n, \mathbb{R})$ by $\operatorname{ad}_{A}(B)=A B-B A$.

Verify that the formula $(A \mid B)=\operatorname{Tr}\left(A B^{t}\right)$ defines a scalar product on $M(n, \mathbb{R})$. Show that if X is a symmetric matrix in $M(n, \mathbb{R})$, then ad_{X} is a self-adjoint operator on $M(n, \mathbb{R})$, i.e., for any $A, B \in M(n, \mathbb{R})$, we have $\left(\operatorname{ad}_{X} A \mid B\right)=\left(A \mid \operatorname{ad}_{X} B\right)$.
9.*-Aufgabe (Trace, det, and exp)

Show that for $A \in M(n, \mathbb{R}), \exp (\operatorname{Tr}(A))=\operatorname{det}(\exp A)$.

Abgabe bis: Donnerstag, den 21.1.2021, 8 Uhr online im Learnwebkurs.

