Prof. Dr. L. Kramer Dr. Rupert McCallum Dr. Daniel Skodlerack Antoine Beljean

1. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of October 15 2012 before the lecture.

Aufgabe 1.1 (Continuity of the distance)

(2 marks) If A is a nonempty subset of a metric space X, we put $d(x, A) = \inf\{d(x, a) \mid a \in A\}$. Show that the map

 $x \mapsto d(x, A)$

is continuous. What is the zero-set of this function?

(1 mark) Every closed set in a metric space is a G_{δ} -set, that is, an intersection of countably many open sets.

Aufgabe 1.2 (New metrics from old ones)

(4 marks) Suppose that $0 < \varepsilon \le 1$. Prove that $|a + b|^{\varepsilon} \le |a|^{\varepsilon} + |b|^{\varepsilon}$ holds for all $a, b \in \mathbb{R}$. Conclude that if (X, d) is a metric space, then (X, d^{ε}) is also a metric space, with

$$d^{\varepsilon}(u,v) = d(u,v)^{\varepsilon}$$

What can you say about the completeness of (X, d^{ε}) if (X, d) is complete?

Aufgabe 1.3 (Convex functions and the $\|-\|_{p}$ -norm)

A function $f: J \to \mathbb{R}$, defined on some interval $J \subseteq \mathbb{R}$, is called *convex* if

$$f(sx + (1 - s)y) \le sf(x) + (1 - s)f(y)$$

holds for all $x, y \in J$ and $s \in [0, 1]$.

(1 mark) A convex function is locally Lipschitz continuous and in particular continuous.

(2 marks) Suppose that f is two times continuously differentiable and that $f'' \ge 0$. Show that f is convex. Conclude that $f(x) = x^p$ is convex on $\mathbb{R}_{\ge 0}$, for all $p \ge 1$.

(2 marks) Prove Minkowski's inequality: for all $a, b \in \mathbb{R}^n$ and $p \ge 1$ we have

$$\left(\sum_{j=1}^{n} |a_j + b_j|^p\right)^{\frac{1}{p}} \le \left(\sum_{j=1}^{n} |a_j|^p\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n} |b_j|^p\right)^{\frac{1}{p}}$$

(Hint: put $x = \frac{a_j}{\|a\|_p}$, $y = \frac{b_j}{\|b\|_p}$, and $s = \frac{\|a\|_p}{\|a\|_p + \|b\|_p}$.) (1 mark) Show that \mathbb{R}^n with the $\|-\|_p$ -norm

$$||x||_{p} = \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}}$$

is a normed vextor space. Is it a Banach space?

Aufgabe 1.4 (Some Banach spaces)

(1 mark) Let X be a set and let $L_{\infty}(X, \mathbb{R})$ denote the vector space of all bounded real functions on X. Let $||f||_{\infty} = \sup\{|f(x)| \mid x \in X\}$. Show that $(L_{\infty}(X, \mathbb{R}), ||-||_{\infty})$ is a Banach space. (3 marks) Let X be a topological space (or a metric space) and let $C_b(X, \mathbb{R})$ denote the vector space of all continuous bounded real functions on X. Show that $(C_b(X, \mathbb{R}), ||-||_{\infty})$ is a Banach space.