1. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of October 152012 before the lecture.
Aufgabe 1.1 (Continuity of the distance)
(2 marks) If A is a nonempty subset of a metric space X, we put $d(x, A)=\inf \{d(x, a) \mid a \in A\}$. Show that the map

$$
x \mapsto d(x, A)
$$

is continuous. What is the zero-set of this function?
(1 mark) Every closed set in a metric space is a G_{δ}-set, that is, an intersection of countably many open sets.

Aufgabe 1.2 (New metrics from old ones)
(4 marks) Suppose that $0<\varepsilon \leq 1$. Prove that $|a+b|^{\varepsilon} \leq|a|^{\varepsilon}+|b|^{\varepsilon}$ holds for all $a, b \in \mathbb{R}$.
Conclude that if (X, d) is a metric space, then $\left(X, d^{\varepsilon}\right)$ is also a metric space, with

$$
d^{\varepsilon}(u, v)=d(u, v)^{\varepsilon}
$$

What can you say about the completeness of $\left(X, d^{\varepsilon}\right)$ if (X, d) is complete?
Aufgabe 1.3 (Convex functions and the $\|-\|_{p}$-norm)
A function $f: J \rightarrow \mathbb{R}$, defined on some interval $J \subseteq \mathbb{R}$, is called convex if

$$
f(s x+(1-s) y) \leq s f(x)+(1-s) f(y)
$$

holds for all $x, y \in J$ and $s \in[0,1]$.
(1 mark) A convex function is locally Lipschitz continuous and in particular continuous.
(2 marks) Suppose that f is two times continuously differentiable and that $f^{\prime \prime} \geq 0$. Show that f is convex. Conclude that $f(x)=x^{p}$ is convex on $\mathbb{R}_{\geq 0}$, for all $p \geq 1$.
(2 marks) Prove Minkowski's inequality: for all $a, b \in \mathbb{R}^{n}$ and $p \geq 1$ we have

$$
\left(\sum_{j=1}^{n}\left|a_{j}+b_{j}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{j=1}^{n}\left|b_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

(Hint: put $x=\frac{a_{j}}{\|a\|_{p}}, y=\frac{b_{j}}{\|b\|_{p}}$, and $s=\frac{\|a\|_{p}}{\|a\|_{p}+\|b\|_{p}}$.)
(1 mark) Show that \mathbb{R}^{n} with the $\|-\|_{p}$-norm

$$
\|x\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{\frac{1}{p}}
$$

is a normed vextor space. Is it a Banach space?
Aufgabe 1.4 (Some Banach spaces)
(1 mark) Let X be a set and let $L_{\infty}(X, \mathbb{R})$ denote the vector space of all bounded real functions on X. Let $\|f\|_{\infty}=\sup \{|f(x)| \mid x \in X\}$. Show that $\left(L_{\infty}(X, \mathbb{R}),\|-\|_{\infty}\right)$ is a Banach space.
(3 marks) Let X be a topological space (or a metric space) and let $C_{b}(X, \mathbb{R})$ denote the vector space of all continuous bounded real functions on X. Show that $\left(C_{b}(X, \mathbb{R}),\|-\|_{\infty}\right)$ is a Banach space.

