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2. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of October 22 2012 before the lecture.

Aufgabe 2.1 (Nested sequences of closed balls and completeness)

A nested sequence of closed balls in a metric space X is an infinite descending sequence

B̄r0(x0) ⊇ B̄r1(x1) ⊇ B̄r2(x2) ⊇ · · · .

(2 mark) If every nested sequence of closed balls in X has a point in common, then X is
complete. (A space with this property is called spherically complete.)

(2 marks) If X is complete, then every nested sequence of balls with limi∈N ri = 0 has a point
in common.

(*) Can you give an example of a complete metric space that is not spherically complete?

Aufgabe 2.2 (Families of subspaces)

(2 mark) Suppose that (Cj)k∈J is a locally finite family of subspaces of a topological space X.
Prove that ⋃

j∈J
Cj =

⋃
j∈J

Cj .

Is it true that the family (Cj)k∈J is still locally finite?

(1 mark) A Hausdorff space is compact if and only if every open covering has a finite refinement.

Recall that the interior of a subset Y ⊂ X is

int(Y ) = X \X \ Y =
⋃
{U | U open in X and U ⊆ Y }.

(2 marks) If (Cj)k∈J is a finite closed covering, then X =
⋃

j∈J int(Cj) = X.

(*) Can you prove the same if the closed covering is assumed to be locally finite? (It may be
easier to assume that J is countably infinite.)

Aufgabe 2.3 (Isometries of compact metric spaces)

(4 marks) Let X be a compact metric space and let f : X - X be an isometric embedding.
Prove that f is surjective.

Hint: Consider an element of X which has positive distance from f(X).

Is the same true for complete metric spaces? For locally compact metric spaces?

Aufgabe 2.4 (ANEs)

Recall that a metric space X is an ANE (absolute neighborhood extensor) if the following holds
for every metric space Y : if B ⊆ Y is closed and f : B - X is continuous, then there exists
an open neighborhood V of B and a continuous extension F : V - X of f . If it is always



possible to put V = Y , then X is called an AE (absolute extensor). If you get stuck with the
following problems, look up the first chapters of S.-T. Hu, Theory of Retracts.

(3 mark) Every contractible ANE is an AE (look up the definition of ’contractible’ if you don’t
remember it).

Hint: Use Urysohn’s lemma.

(1 marks) Suppose that X is an AE. If r : X - X is a continuous retraction (r ◦ r = r)
then A = r(X) is an AE.

(2 marks) An open subspace of an ANE is an ANE.

Hint: Suppose that Y is an open subspace of an ANE X, V is an open neighbourhood of B
and F : V - X is a continuous extension of f . Consider F−1(Y ).

A metric space X is called an ANR (absolute neighborhood retract) if the following hold for
every metric space Z: if f : X - Z is an isometric embedding and if f(X) ⊆ Z is closed,
then f(X) there is an open neighborhood V of f(X) and a retraction r : V - f(X).

(1 mark) Every ANE is an ANR.
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