WS 2012/13

Prof. Dr. L. Kramer Dr. Rupert McCallum Dr. Daniel Skodlerack Antoine Beljean

3. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of October 29 2012 before the lecture.

Aufgabe 3.1 (Simplicial complexes)

(1 mark) The *n*-simplex K is, by definition, the set of all subsets of $\{0, \ldots, n\}$. Show that |K| is homeomorphic to the closed *n*-ball and that $|K^{(n-1)}|$ is homeomorphic to the n-1-sphere \mathbb{S}^{n-1} .

(1 mark) If Δ is a simplicial complex and $a \in \Delta$ is an n + 1-simplex, then $|\Delta^{(n)}| \cap |a| \cong \mathbb{S}^n$.

(2 marks) If Δ is a simplicial complex, then a subset $U \subseteq |\Delta| \times [0, 1]$ is open (in the product topology, where $|\Delta|$ carries the weak topology) if and only if $U \cap (|a| \times [0, 1])$ is open in $|a| \times [0, 1]$, for all $a \in \Delta$.

(1 mark) If Δ is a simplicial complex and $a \in \Delta$ a nonempty simplex, then its star $|st(a)| = |\{b \in \Delta \mid a \cup b \in \Delta\}|$ is contractible.

Aufgabe 3.2 (Contractible and *n*-connected spaces)

(2 marks) A contractible space is *n*-connected, for all $n \in \mathbb{N}$.

(1 mark) A space is 0-connected if and only if it is path-connected.

(2 marks) If you know what the fundamental group $\pi_1(X, p)$ of a topological space is, show that a 0-connected space is 1-connected if and only if $\pi_1(X, p) = 1$, for some $p \in X$.

(1 mark) The Hilbert space $L_2(\mathbb{N})$ consists of all square summable sequences of real numbers, $\sum_{i \in \mathbb{N}} r_i^2 < \infty$, with norm $\|(r_i)_{i \in \mathbb{N}}\|_2 = \sqrt{\sum_{i \in \mathbb{N}} r_i^2}$. Show that the unit sphere

$$\{x \in L_2(\mathbb{N}) \mid ||x||_2 = 1\}$$

is contractible.

(*) Is the unit sphere in \mathbb{R}^n contractible, for $n \ge 1$?

Aufgabe 3.3 (Paracompact spaces and partitions of unity)

(2 marks) A closed subspace of a paracompact space is paracompact.

(1 mark) Let X be a compact Hausdorff space. Suppose that every point $x \in X$ has a neighborhood V_x that admits a continuous embedding $\beta_x : V_x \to \mathbb{R}^{n_x}$, for some $n_x \in \mathbb{N}$. Show that X can be continuously embedded into \mathbb{R}^m , for some m. (A map $f : P \longrightarrow Q$ is called an embedding if it is continuous, injective, and if f is a homeomorphism between P and f(P).)

(3 marks) Prove (without using the theorem that metric spaces are paracompact) that the Euclidean space \mathbb{R}^n is paracompact. (Hint: Consider compact subspaces of \mathbb{R}^n .)