Prof. Dr. Linus Kramer Dr. Rupert McCallum Dr. Daniel Skodlerack Antoine Beljean

5. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of November 12 2012 before the lecture.

Aufgabe 5.1 (Existence of geodesics)

(4 marks) (a) Let X be a complete metric space. Suppose that for all $x, y \in X$, there exists a midpoint, that is, a point $m \in X$ such that

$$d(x,m) = d(m,y) = \frac{1}{2}d(x,y).$$

Show that X is a geodesic space.

(2 marks) (b) Show that the metric completion of a CAT(0) space is geodesic.

(2 marks) (c) A metric space X is said to be locally geodesic if, for every $p \in X$, there exists an open neighborhood of p which is a geodesic space. Can you give an example of a path-connected locally geodesic space which is not a geodesic space?

Aufgabe 5.2 (Products) Given metric spaces $(X_1, d_1), \ldots, (X_m, d_m)$, define the metric product as

 $X = X_1 \times \cdots \times X_m$ with metric

$$d((u_1, \dots, u_m), (v_1, \dots, v_m)) = \sqrt{\sum_j d_j (u_j, v_j)^2}$$

(1 mark) (a) Prove that this is a metric.

(1 mark) (b) The product is complete if and only if all the X_j are complete.

A metric space X is said to be proper if, given any $p \in X$ and any real number r > 0, the closed ball $\overline{B}_r(p)$ is compact.

(1 mark) (c) The product is proper if and only if all the X_j are proper.

(2 marks) (d) The product is CAT(0) if and only if all the X_j are CAT(0).

Aufgabe 5.3 (Embeddings of finite metric spaces)

(1 mark) (a) Show that every metric space X consisting of at most three points admits an isometric embedding into $(\mathbb{R}^2, \|-\|_2)$.

(2 marks) (b) Can every metric space consisting of four points be isometrically embedded into $(\mathbb{R}^n, \|-\|_2)$, for some $n \ge 1$?

(1 mark) (c) Can every metric space consisting of finitely many points be isometrically embedded into $(\mathbb{R}^n, \|-\|_p)$, for some $\infty \ge p \ge 1$ and $n \ge 1$?

(2 marks) (d) Does there exist a metric space in which every finite metric space can be isometrically embedded?

Aufgabe 5.4 (Fixed points)

(1 mark) (a) Let G be a group acting isometrically on a metric space X. Show that the fixed point set X^G is closed.

(1 mark) (b) Assume in addition that X is CAT(0). Show that the fixed point set X^G is convex (assuming it is not empty).

(2 marks) (c) Let X be a complete CAT(0) space and $f: X \longrightarrow X$ a 1-Lipschitz map. The f-orbit of x is the set $E = \{f(x), f(f(x)), f(f(f(x))), \ldots\}$. If some f-orbit is bounded, show that f has a fixed point.

Hint: put $E_0 = E$ and $E_{n+1} = f(E_n)$. Consider the centers z_n and radii r_n of the E_n .