5. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of November 122012 before the lecture.
Aufgabe 5.1 (Existence of geodesics)
(4 marks) (a) Let X be a complete metric space. Suppose that for all $x, y \in X$, there exists a midpoint, that is, a point $m \in X$ such that

$$
d(x, m)=d(m, y)=\frac{1}{2} d(x, y)
$$

Show that X is a geodesic space.
(2 marks) (b) Show that the metric completion of a CAT(0) space is geodesic.
(2 marks) (c) A metric space X is said to be locally geodesic if, for every $p \in X$, there exists an open neighborhood of p which is a geodesic space. Can you give an example of a path-connected locally geodesic space which is not a geodesic space?

Aufgabe 5.2 (Products) Given metric spaces $\left(X_{1}, d_{1}\right), \ldots,\left(X_{m}, d_{m}\right)$, define the metric product as $X=X_{1} \times \cdots \times X_{m}$ with metric

$$
d\left(\left(u_{1}, \ldots, u_{m}\right),\left(v_{1}, \ldots, v_{m}\right)\right)=\sqrt{\sum_{j} d_{j}\left(u_{j}, v_{j}\right)^{2}}
$$

(1 mark) (a) Prove that this is a metric.
(1 mark) (b) The product is complete if and only if all the X_{j} are complete.
A metric space X is said to be proper if, given any $p \in X$ and any real number $r>0$, the closed ball $\bar{B}_{r}(p)$ is compact.
(1 mark) (c) The product is proper if and only if all the X_{j} are proper.
(2 marks) (d) The product is $\operatorname{CAT}(0)$ if and only if all the X_{j} are $\operatorname{CAT}(0)$.
Aufgabe 5.3 (Embeddings of finite metric spaces)
(1 mark) (a) Show that every metric space X consisting of at most three points admits an isometric embedding into $\left(\mathbb{R}^{2},\|-\|_{2}\right)$.
(2 marks) (b) Can every metric space consisting of four points be isometrically embedded into $\left(\mathbb{R}^{n},\|-\|_{2}\right)$, for some $n \geq 1$?
(1 mark) (c) Can every metric space consisting of finitely many points be isometrically embedded into ($\mathbb{R}^{n},\|-\|_{p}$), for some $\infty \geq p \geq 1$ and $n \geq 1$?
(2 marks) (d) Does there exist a metric space in which every finite metric space can be isometrically embedded?

Aufgabe 5.4 (Fixed points)
(1 mark) (a) Let G be a group acting isometrically on a metric space X. Show that the fixed point set X^{G} is closed.
(1 mark) (b) Assume in addition that X is $\operatorname{CAT}(0)$. Show that the fixed point set X^{G} is convex (assuming it is not empty).
(2 marks) (c) Let X be a complete $\operatorname{CAT}(0)$ space and $f: X \longrightarrow X$ a 1-Lipschitz map. The f-orbit of x is the set $E=\{f(x), f(f(x)), f(f(f(x))), \ldots\}$. If some f-orbit is bounded, show that f has a fixed point.
Hint: put $E_{0}=E$ and $E_{n+1}=f\left(E_{n}\right)$. Consider the centers z_{n} and radii r_{n} of the E_{n}.

