6. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of November 192012 before the lecture.
Aufgabe 6.1 (R-trees)
A metric space (T, d) is said to be an \mathbb{R}-tree if, given any two distinct points $x, y \in T$, there exists a unique geodesic from x to y, and if a concatenation of two geodesics is again a geodesic, provided that it is injective. (This means: if $\gamma:[a, b] \longrightarrow T$ is injective and if the restrictions of γ to $[a, z]$ and $[z, b]$ are geodesics, for some $a<z<b$, then γ is already a geodesic.)
(a) (2 marks) Prove that every \mathbb{R}-tree is $\operatorname{CAT}(0)$.
(b) (2 marks) Consider the metric space $T=\mathbb{R}^{2}$ with the metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}\left|x_{1}-x_{2}\right|+\left|y_{1}\right|+\left|y_{2}\right| & \text { if } x_{1} \neq x_{2} \\ \left|y_{1}-y_{2}\right| & \text { if } x_{1}=x_{2}\end{cases}
$$

Prove that this is a complete \mathbb{R}-tree.
(c) (2 marks) Prove that the completion of an \mathbb{R}-tree is an \mathbb{R}-tree.

Aufgabe 6.2 (The Lorentz group)
(3 marks) Let $\mathrm{O}_{1, n} \mathbb{R}$ be the group of matrices which preserve the form β on $\mathbb{R} \oplus \mathbb{R}^{n}$ such that

$$
\beta(u, v)=u_{0} v_{0}-\langle\tilde{u}, \tilde{v}\rangle=u_{0} v_{0}-\sum_{j=1}^{m} u_{j} v_{j} .
$$

Consider the subgroup of $\mathrm{O}_{1, n} \mathbb{R}$ consisting of those elements $g \in \mathrm{O}_{1, n} \mathbb{R}$ which have positive determinant, and furthermore if $u_{0}>0, \beta(u, u)>0$, then $g(u)=\left(v_{0}, \ldots, v_{m}\right)$ has $v_{0}>0$. Prove that this is indeed a subgroup. Show that this subgroup has index four in the group $\mathrm{O}_{1, n} \mathbb{R}$ and is equal to the group $\Omega_{1, n}$ described in the lectures.
Hint: Consider the stabilizer of the subspace $\mathbb{R}(1,0, \ldots, 0)$. The following observation may be useful. If a group G acts transitively on a set X and if $H \subseteq G$ is a transitive subgroup, then $G=H$ holds if and only if $G_{x}=H_{x}$ holds for some $x \in X$.

Aufgabe 6.3 (Nested sequences of bounded convex sets)
Suppose that $C_{1} \supseteq C_{2} \supseteq \ldots \supseteq C_{n} \supseteq \ldots$ is a nested sequence of nonempty bounded closed convex sets in a complete CAT(0) space X.
(a) (2 marks) Prove that the center of C_{i} is a member of C_{i}.
(b) (2 marks) Prove that $\bigcap_{j=1}^{\infty} C_{j} \neq \emptyset$.

