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6. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of November 19 2012 before the lecture.

Aufgabe 6.1 (R-trees)

A metric space (T, d) is said to be an R-tree if, given any two distinct points x, y ∈ T , there
exists a unique geodesic from x to y, and if a concatenation of two geodesics is again a geodesic,
provided that it is injective. (This means: if γ : [a, b] - T is injective and if the restrictions
of γ to [a, z] and [z, b] are geodesics, for some a < z < b, then γ is already a geodesic.)

(a) (2 marks) Prove that every R-tree is CAT(0).

(b) (2 marks) Consider the metric space T = R2 with the metric

d((x1, y1), (x2, y2)) =

{
|x1 − x2|+ |y1|+ |y2| if x1 6= x2

|y1 − y2| if x1 = x2

Prove that this is a complete R-tree.

(c) (2 marks) Prove that the completion of an R-tree is an R-tree.

Aufgabe 6.2 (The Lorentz group)

(3 marks) Let O1,nR be the group of matrices which preserve the form β on R⊕Rn such that

β(u, v) = u0v0 − 〈ũ, ṽ〉 = u0v0 −
m∑
j=1

ujvj .

Consider the subgroup of O1,nR consisting of those elements g ∈ O1,nR which have positive
determinant, and furthermore if u0 > 0, β(u, u) > 0, then g(u) = (v0, . . . , vm) has v0 > 0.
Prove that this is indeed a subgroup. Show that this subgroup has index four in the group
O1,nR and is equal to the group Ω1,n described in the lectures.
Hint: Consider the stabilizer of the subspace R(1, 0, . . . , 0). The following observation may be
useful. If a group G acts transitively on a set X and if H ⊆ G is a transitive subgroup, then
G = H holds if and only if Gx = Hx holds for some x ∈ X.

Aufgabe 6.3 (Nested sequences of bounded convex sets)

Suppose that C1 ⊇ C2 ⊇ . . . ⊇ Cn ⊇ . . . is a nested sequence of nonempty bounded closed
convex sets in a complete CAT(0) space X.

(a) (2 marks) Prove that the center of Ci is a member of Ci.

(b) (2 marks) Prove that
⋂∞

j=1 Cj 6= ∅.


