8. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of December 32012 before the lecture.
Aufgabe 8.1 (The flat rank of hyperbolic space)
(3 marks) Let $D_{r}=\left\{v \in \mathbb{R}^{2} \mid\|v\|_{2} \leq r\right\}$. Show that there is no isometric embedding $D_{r} \longrightarrow H^{m}$ for any $r>0$. Conclude that the hyperbolic space H^{m} has flat rank 1 , for all $m \geq 1$.

Aufgabe 8.2 (Parallel 1-flats)
(a) (2 marks) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a convex function. Show that f is constant if it is bounded.
(b) (2 marks) Let E, E^{\prime} be 1-flats in a $\operatorname{CAT}(0)$ space X. Show that E and E^{\prime} are parallel if and only if there exists an $r>0$ such that $E^{\prime} \subseteq \bigcup\left\{B_{r}(v) \mid v \in E\right\}$.
(c) (1 mark) Show that parallelism is an equivalence relation for 1-flats in a CAT(0) space.

Aufgabe 8.3 (Angles)
(a) (3 marks) Let γ, γ^{\prime} be nonconstant geodesics in a CAT(0) space, with $\gamma(0)=\gamma^{\prime}(0)=p$. If $\measuredangle_{p}\left(\gamma, \gamma^{\prime}\right)<\pi / 2$, show that there exists $s, t>0$ with $d\left(\gamma(s), \gamma^{\prime}(t)\right)<s$.
(a) (1 mark) Let C be a complete convex set in a $\operatorname{CAT}(0)$ space. Suppose that $q=\operatorname{proj}_{C}(p) \neq p$ and that $q \neq c \in C$. Prove that

$$
\measuredangle_{q}(p, c) \geq \pi / 2
$$

Aufgabe 8.4 (Flat triangles)
(3 marks) Let $\Delta(a, b, c, \alpha, \beta, \gamma)$ be a geodesic triangle in a $\operatorname{CAT}(0)$ space X, with euclidean comparison triangle $\Delta(\bar{a}, \bar{b}, \bar{c}, \bar{\alpha}, \bar{\beta}, \bar{\gamma})$. Suppose that

$$
d(a, \alpha(t))=\|\bar{a}-\bar{\alpha}(t)\|_{2}
$$

holds for some t with $0<t<d(b, c)$. Show that the triangle is flat.

