9. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of December 102012 before the lecture.
Aufgabe 9.1 (Finitely generated abelian groups)
Let A be a finitely generated abelian group, and let $B \subseteq A$ be a subgroup.
(a) (1 mark) Show that the torsion group $T(A)=\{a \in A \mid a$ has finite order $\}$ is a subgroup. (Where do you need that A is abelian? Do you need that A is finitely generated?)
(b) (1 mark) Show that $A / T(A)$ has no torsion. (Where do you need that A is abelian? Do you need that A is finitely generated?)
(c) (2 marks) Show that B is finitely generated.
(d) (3 marks) Show that

$$
\mathrm{rk}_{\mathbb{Q}} A=\mathrm{rk}_{\mathbb{Q}} B+\mathrm{rk}_{\mathbb{Q}}(A / B)
$$

Hint: Show that $\operatorname{Hom}(A, \mathbb{Q})$ is a vector space over \mathbb{Q} of dimension $\mathrm{rk}_{\mathbb{Q}} A$.
Aufgabe 9.2 (Isometric actions on \mathbb{R}-trees)
(a) (2 marks) Every isometry g of an \mathbb{R}-tree is semisimple.

Hint: consider the midpoint of $\{x, g(x)\}$.
We call a point x in an \mathbb{R}-tree a branch point if there are three distinct nonconstant geodesics starting at x having pairwise only the point x in common. We call an \mathbb{R}-tree a \mathbb{Z}-tree if the distance between any two branch points is a natural number.
(b) (3 marks) Suppose that $(\mathbb{Q},+)$ acts isometrically on a \mathbb{Z}-tree having a nonempty set of branch points.. Show that every $t \in \mathbb{Q}$ is elliptic.

Aufgabe 9.3 (Euclidean space)
(a) (1 mark) Let $u, u^{\prime}, v \in \mathbb{R}^{2}$ be nonzero vectors, with $\|u\|_{2}=\left\|u^{\prime}\right\|_{2}$. Show that the following are equivalent.
(1) $\|u-v\|_{2}<\left\|u^{\prime}-v\right\|_{2}$.
(2) $\measuredangle_{0}(u, v)<\measuredangle_{0}\left(u^{\prime}, v\right)$.

Hint: what is the relation between the inner product and the cosine?
(b) (2 marks) Let A be a group and let $\tau: A \longrightarrow\left(\mathbb{R}^{m},+\right)$ be a homomorphism. Suppose that there is a compact subset $K \subseteq \mathbb{R}^{m}$ such that $\bigcup_{a \in A}(\tau(a)+K)=\mathbb{R}^{m}$. Show that $\tau(A)$ generates \mathbb{R}^{m} as a vector space.
(c) (2 marks) Assume that A and τ are as in part (b). Then A acts isometrically as a group of translations on \mathbb{R}^{m}, via $a: x \mapsto x+\tau(a)$. Suppose that the isometry $g \in \operatorname{Iso}\left(\mathbb{R}^{m}\right)$ commutes with this action, i.e. that $g(x+\tau(a))=g(x)+\tau(a)$ holds for all $a \in A$. Show that g is a translation.

