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Abstract

We show that groups satisfying Kazhdan’s property (T) have no unbounded
actions on finite dimensional CAT(0) cube complexes, and deduce that there
is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent
to any finite dimensional, locally CAT(0) cube complex.
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1 Introduction

The CAT(χ) inequality gives a measure of the curvature of a geodesic metric
space X by comparing the width of the geodesic triangles in X with those of
the corresponding triangles in the simply connected Riemannian manifold of
constant curvature χ . The theory of CAT(χ) metric spaces is described in [2].

A geodesic metric space X is said to be locally CAT(χ) if around every point
there is a non-empty ball which is geodesically convex and CAT(χ). It follows
from the definition that X is locally CAT(0) if every point has a CAT(χ)
neighbourhood for some χ less than or equal to 0, where χ is allowed to vary
with the point.

Examples of locally CAT(0) spaces are furnished by Riemannian manifolds
whose sectional curvatures are all bounded above by 0, by what Davis calls in
[4] the “(correctly defined) geometric realization” of a Tits’ building, and by
compact piecewise Euclidean polyhedral complexes satisfying certain curvature
conditions on the link of every cell, as studied by Bridson in his thesis, [1]. If the
cells of such a complex are all isometric to Euclidean cubes then the curvature
condition can be expressed in terms of the combinatorics of the links of the
cells (Gromov’s “no bigon” and “no triangle” conditions [5], outlined here in
section 3). It is an open problem to decide which CAT(0) spaces can be given
a piecewise Euclidean polyhedral structure which is also CAT(0).

In this paper we establish the following theorem:

Theorem A For any n ≥ 2 there is a smooth locally CAT(−1) Riemannian
manifold M of dimension 4n which is not homotopy equivalent to any finite
dimensional, locally CAT(0) cube complex.

The manifold M is a quotient of quaternionic hyperbolic space OH
n (of real

dimension 4n) by a discrete group G of isometries. The isometry group of OH
n

is the symplectic group Sp(n, 1); in fact we may choose G to be any discrete co-
compact lattice in Sp(n, 1), and let M be the corresponding quotient of OH

n ,
so G = π1(M). Now if M was homotopy equivalent to a compact, locally
CAT(0) cube complex X , then G would act freely and properly discontinuously
on the universal cover X̃ which is a non-compact finite dimensional CAT(0)
cube complex (see [1] for a discussion of how the local curvature properties of
X give global curvature constraints on the universal cover). We will see that
G admits no such actions; indeed we will show that any cellular action of G
on a finite dimensional CAT(0) cube complex must have a global fixed point.
This will follow from the fact that G has Kazhdan’s property (T) [6], together
with the following result:
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Theorem B If G is a group satisfying Kazhdan’s property (T) and X is
a finite dimensional CAT(0) cube complex on which G acts cellularly (and
therefore isometrically), then the action has a global fixed point.

We note that since M is a compact locally CAT(−1) space, π1(M) is a δ–
hyperbolic group, and so this gives an example of a δ–hyperbolic group which
cannot act without fixed points on any finite dimensional CAT(0) cube com-
plex.

Further examples of T –groups are furnished by groups acting simply transi-
tively on Tits’ buildings modelled on the Ã2 simplex, ie the Euclidean triangle
with angles π/4, π/4 and π/2, [6]. As Davis shows in [4], these buildings are
CAT(0), so their quotients are locally CAT(0). Their quotients give examples
of locally CAT(0) simplicial complexes which are not homotopy equivalent to
any finite dimensional, locally CAT(0) cube complexes.

The proof of Theorem B is modelled on (or stolen from, depending on your point
of view) the proof by Bozejko et al [3] that finitely generated Coxeter groups do
not have property (T). It can be shown [7] that finitely generated Coxeter groups
act effectively, properly discontinuously and cellularly on finite dimensional
CAT(0) cube complexes so Theorem A may be viewed as a generalisation of
their result.

In section 2 we will recall the definition of a “conditionally negative kernel” on
a group as given in [6] and the characterisation of Kazhdan’s property (T) in
terms of these kernels. We will then outline the proof of Theorem B. In section
3 we will give the definition of a CAT(0) cube complex and derive the technical
result we need to complete the missing steps of the proof.

2 Kazhdan’s property (T)

In [6] de la Harpe and Valette give several equivalent formulations of Kazhdan’s
property (T) for locally compact groups. Although it is not the most intuitive
one we will use the following criterion to establish our main result:

Definition A conditionally negative kernel on a set V is a function f : V ×
V −→ R such that for any finite subset {v1, . . . , vn} ⊂ V and any real numbers
{λ1, . . . , λn} such that

∑

i

λi = 0 the following inequality holds:

∑

i,j

λiλjf(vi, vj) ≤ 0
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A conditionally negative kernel on a group G is a conditionally negative kernel
on the set of elements of G such that for any g, h, k in G , f(gh, gk) = f(h, k).

According to [6] a finitely generated group G has Kazhdan’s property (T) (or is
a T –group) if and only if every conditionally negative kernel on G is bounded.

Our goal is to prove the following theorem. The statement is followed by an
outline proof and the missing lemma is given in the following section.

Theorem B If G is a group satisfying Kazhdan’s property (T) and X is
a finite dimensional CAT(0) cube complex on which G acts cellularly (and
therefore isometrically), then the action has a global fixed point.

Proof In section 3 we will show that for any CAT(0) cube complex X , the
simplicial metric D on the 1–skeleton of X restricts to a conditionally negative
kernel on the vertex set X(0) . Since G acts cellularly on X , D is invariant
under the action, so setting f(g, h) = D(gv, hv) gives a conditionally negative
kernel on the group G . Since G has Kazhdan’s property (T) the conditionally
negative kernel must be bounded so the orbit Gv is bounded in the metric
D and therefore, since X is finite dimensional, in the metric d (see section
3). Since X is finite dimensional it is complete [1] and in a complete CAT(0)
metric space any isometric action with a bounded orbit has a global fixed point
([1] again), completing the proof of Theorem B.

3 CAT(0) cube complexes

A cube complex X is a metric polyhedral complex in which each cell is iso-
metric to the Euclidean cube [−1/2, 1/2]n , and the gluing maps are isometries.
If there is a bound on the dimension of the cubes then the complex carries a
complete geodesic metric, [1].

Definition A cube complex is non-positively curved if for any cube C the
following conditions on the link of C , lk(C), are satisfied:

(i) (no bigons) For each pair of vertices in lk(C) there is at most one edge
containing them.

(ii) (no triangles) Every edge cycle of length three in lk(C) is contained
in a 2–simplex of lk(C).

The following theorem of Gromov relates the combinatorics and the geometry
of the complex.
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Lemma (Gromov, [5]) A cube complex X is locally CAT(0) if and only if
it is non-positively curved, and it is CAT(0) if and only if it is non-positively
curved and simply connected.

Examples Any graph may be regarded as a 1–dimensional cube complex,
and the curvature conditions on the links are trivially satisfied. The graph is
CAT(0) if and only if it is a tree. Euclidean space also has the structure of a
CAT(0) cube complex with its vertices at the integer points.

A midplane of a cube [−1/2, 1/2]n is its intersection with a codimension 1
coordinate hyperplane. So every n–cube contains n midplanes each of which
is an (n− 1)–cube, and any m of which intersect in a (n−m)–cube. Given an
edge in a non-positively curved cube complex, there is a unique codimension
1 hyperplane in the complex which cuts the edge transversely in its midpoint.
This is obtained by developing the coordinate hyperplanes in the cubes con-
taining the edge. In the case of a tree the hyperplane is the midpoint of the
edge, and in the case of Euclidean space it is a geometric hyperplane.

In general the hyperplane is analogous to an immersed codimension 1 subman-
ifold in a Riemannian manifold and the immersion is actually a local isometry.
An application of the Cartan–Hademard theorem, [5, section 4], then shows that
the hyperplane is isometrically embedded, and furthermore any hyperplane in
a CAT(0) cube complex separates it into two components referred to as the
half spaces associated with the hyperplane. This is a consequence of the fact
that the complex is simply connected. The hyperplane gives rise to a 1–cocycle
which is necessarily trivial, and hence the hyperplane separates the space.

The set of vertices of the cubing X can be viewed as a discrete metric space,
where the metric D(u, v) is given by the length of the shortest edge path be-
tween the vertices u and v in the 1–skeleton of X . If X is finite dimensional
this metric is quasi-isometric to the CAT(0) metric (it is at most

√
n times

the CAT(0) metric, where n is the dimension of the complex; this does not
require the complex to be cocompact). Sageev, [8], observed that the shortest
path in the 1–skeleton crosses any hyperplane at most once, and since every
edge crosses exactly one hyperplane, the distance between two vertices is the
number of hyperplanes separating them. Recalling that a hyperplane separates
the vertices into two half spaces U+ and U− , it follows that

D(u, v) =
∑

U

χU (u)(1 − χU (v))

where χU is the characteristic function of the half space U , and U ranges over
all the half spaces in X . Although there are infinitely many half spaces, the
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fact that only finitely many of them separate any pair of vertices means that
this will be a finite sum.

Now suppose that G is a group acting cellularly on X. The action restricts
to the 1–skeleton and therefore preserves the metric D, so we have established
parts 2 and 3 of the following lemma:

Technical Lemma For any CAT(0) cube complex X the simplicial metric
D on the 1–skeleton of X satisfies the following properties:

1) D is a conditionally negative kernel on the vertex set of X .

2) D is invariant under the action of G on the vertex set.

3) For any vertices u, v ∈ X , d(u, v) ≤ D(u, v) ≤ √
nd(u, v) where n is the

dimension of the cube complex.

Proof It remains to establish that the metric D is a conditionally negative
kernel. Let u1, u2, . . . , un ∈ G and λi ∈ R with

∑

i

λi = 0. Then

∑

i

∑

j

λiλjD(ui, uj) =
∑

i

∑

j

λiλj

∑

U

χU (ui) (1 − χU (uj))

where the third sum can taken over the finitely many half spaces U separating
the vertices {u1, . . . , un} (the other half spaces all contribute 0 to the sum).
This triple sum can now be rearranged to get

∑

i

∑

j

λiλj

∑

U

χU (ui) −
∑

i

∑

j

λiλj

∑

U

χU (ui)χU (uj)

The first term is zero since it can be rearranged to give
∑

j

λj

∑

i

λi

∑

U

χU(ui),

and
∑

j

λj = 0 by hypothesis. Likewise the second term can be rewritten as

∑

U

∑

i

λiχU (ui)
∑

j

λjχU (uj) =
∑

U

(

∑

i

λiχU (ui)

)2

which is positive. It follows that the entire sum is negative as required.
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