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Abstract

We prove the existence of a close connection between spaces with measured walls and median metric
spaces.

We then relate properties (T) and Haagerup (a-T-menability) to actions on median spaces and on spaces
with measured walls. This allows us to explore the relationship between the classical properties (T) and
Haagerup and their versions using affine isometric actions on Lp-spaces. It also allows us to answer an open
problem on a dynamical characterization of property (T), generalizing results of Robertson and Steger.
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1. Introduction

1.1. Median spaces and spaces with measured walls

The theory of median spaces involves a blend of geometry, graph theory and functional
analysis. A median space is a metric space for which, given any triple of points, there ex-
ists a unique median point, that is a point which is simultaneously between any two points in
that triple. A point x is said to be between two other points a, b in a metric space (X,dist) if
dist(a, x) + dist(x, b) = dist(a, b).

Examples of median spaces are real trees, sets of vertices of simplicial trees, R
n, n � 1, with

the �1-metric, CAT(0) cube complexes with the cubes endowed with the �1-metric, 0-skeleta of
such CAT(0) cube complexes. According to Chepoi [23] the class of 1-skeleta of CAT(0) cube
complexes coincides with the class of median graphs (simplicial graphs whose combinatorial
distance is median). See also [32] and [33] for an equivalence in the same spirit. Median graphs
are much studied in graph theory and in computer science [9] and are relevant in optimization
theory (see for instance [45,72] and references therein for recent applications).

Median metric spaces can thus be seen as non-discrete generalizations of 0-skeleta of CAT(0)
cube complexes (and geodesic median spaces can be seen as non-discrete generalizations of
1-skeleta of CAT(0) cube complexes), same as real trees are non-discrete generalizations of sim-
plicial trees.

The ternary algebra naturally associated with a median space is called a median algebra. There
is an important literature studying median algebras. Without attempting to give an exhaustive list,
we refer the reader to [65,66,53,41,10,68,11]. More geometrical studies of median spaces were
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started in [60] or [51]. In this article, we emphasize that a median space has a richer structure
than the algebraic one, and we use this structure to study groups.

Nica in [52], and Niblo and the first author in [21] proved simultaneously and independently
an equivalence of category between CAT(0) cube complexes, possibly infinite-dimensional, and
discrete spaces with walls (notion introduced by F. Paulin and the third author in [39]). Discrete
spaces with walls were generalized by Cherix, Martin and Valette in [25] to spaces with measured
walls. Spaces with measured walls are naturally endowed with a (pseudo-)metric. It turns out
(Corollary 5.4) that a (pseudo-)metric on a space is induced by a structure of measured walls if
and only if it is induced by an embedding of the space into a median space (i.e. it is submedian,
in the sense of Definition 2.7). This is a consequence of the following results:

Theorem 1.1.

(1) Any space with measured walls X embeds isometrically in a canonically associated me-
dian space M(X). Moreover, any homomorphism between two spaces with measured walls
induces an isometry between the associated median spaces.

(2) Any median space (X,dist) has a canonical structure of space with measured walls, and
the wall metric coincides with the original metric. Moreover, any isometry between median
spaces induces an isomorphism between the structures of measured walls.

(3) Any median space (X,dist) embeds isometrically in L1(W ,μ), for some measured space
(W ,μ).

The fact that a median space embeds into an L1-space was known previously, though the
embedding was not explicitly constructed, but obtained via a result of Assouad that a metric
space embeds into an L1-space if and only if any finite subspace of it embeds [6,5,4,69]. It is
moreover known that complete median normed spaces are linearly isometric to L1-spaces [69,
Theorem III.4.13].

We note here that there is no hope of defining a median space containing a space with mea-
sured walls and having the universality property with respect to embeddings into median spaces
(see Remark 2.10). Nevertheless, the medianization M(X) of a space with measured walls X

appearing in Theorem 1.1(1) is canonically defined and it is minimal in some sense. This is
emphasized for instance by the fact that, under some extra assumptions, a space with measured
walls X is at finite Hausdorff distance from M(X) [22]. In particular, it is the case when X is
the n-dimensional real hyperbolic space with the natural structure of space with measured walls
(see Example 3.7).

1.2. Properties (T) and Haagerup, actions on Lp-spaces

Topological groups with Kazhdan’s property (T) act on real trees with bounded orbits, more-
over with global fixed point if the tree is complete ([18, Corollary 5.2], see also [2,70] and [13,
Theorems 2.10.4 and 2.12.4]). The converse implication however does not hold in general. Cox-
eter groups with every pair of generators satisfying a non-trivial relation act on any real tree
with fixed point (an application of Helly’s theorem in real trees); on the other hand these groups
are known to have the Haagerup property, also called a-T-menability [19]. Nevertheless, if one
extends the bounded orbits property from actions on real trees to actions on median spaces, the
equivalence with property (T) does hold, for locally compact second countable groups. More
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precisely, Theorem 1.1 allows us to prove the following median characterizations of property (T)
and Haagerup property:

Theorem 1.2. Let G be a locally compact second countable group.

(1) The group G has property (T) if and only if any continuous action by isometries on a median
space has bounded orbits.

(2) The group G has the Haagerup property if and only if it admits a proper continuous action
by isometries on a median space.

Note that the direct implication in (1) and the converse implication in (2) follow immediately
from known results of Delorme–Guichardet, respectively Akemann–Walter (see Theorem 6.20
in this paper), and from the fact that median spaces embed into L1-spaces (see for instance [69,
Theorem V.2.4]). For discrete countable groups geometric proofs of the same implications are
provided implicitly in [48,49] (see also [60]) and explicitly in [51]. Nica conjectured [51] that the
converse implication in (1.2) and the direct implication in (2) hold for discrete countable groups.
This is answered in the affirmative by Theorem 1.2.

Theorem 1.2 can be reformulated in terms of spaces with measured walls as follows:

Theorem 1.3. Let G be a locally compact second countable group.

(1) The group G has property (T) if and only if any continuous action by automorphisms on a
space with measured walls has bounded orbits (with respect to the wall pseudo-metric).

(2) The group G has the Haagerup property if and only if it admits a proper continuous action
by automorphisms on a space with measured walls.

The equivalence in Theorem 1.3 improves the result of Cherix, Martin and Valette [25], who
showed the same equivalence for discrete groups.

Using Theorem 1.3, the classical properties (T) and Haagerup can be related to their versions
for affine actions on Lp-spaces.

Definition 1.4. Let p > 0, and let G be a topological group.

(1) The group G has property FLp if any affine isometric continuous action of G on a space
Lp(X,μ) has bounded orbits (equivalently, for p > 1, it has a fixed point).

(2) The group G is a-FLp-menable if it has a proper affine isometric continuous action on some
space Lp(X,μ).

Property FL2 is equivalent to property FH , i.e. the fixed point property for affine continuous
actions on Hilbert spaces, and the latter is equivalent to property (T) for σ -compact groups, in
particular for second countable locally compact groups, as proved in [35] and [29]. Likewise
a-FL2-menability is equivalent to a-T-menability (or Haagerup property).

Theorem 1.3 and a construction from [25] and [27] associating to every action on a space with
measured walls an affine isometric action on an Lp-space implies the following.

Corollary 1.5. Let G be a second countable locally compact group.

(1) If G has property FLp for some p > 0 then G has property (T).
(2) If G has the Haagerup property then for every p > 0 the group G is a-FLp-menable.
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Cornulier, Tessera and Valette proved the implication in (2) for countable discrete groups [27,
Proposition 3.1].

The implication in (2) with p ∈ (1,2) and a proper action on Lp([0,1]) has been announced
in [54], and a complete proof has been provided in [55] (see Remark 6.24).

Remark 1.6. The converse statements in Corollary 1.5 hold for p ∈ (0,2], in the following
strengthened version:

(1) If G has property (T) then it has property FLp for every p ∈ (0,2].
(2) The group G has the Haagerup property if it is a-FLp-menable for some p ∈ (0,2].

These statements (even slightly generalized, see Corollary 6.23) follow from results of
Delorme–Guichardet [35,29] and Akemann–Walter [1], combined with a classical Functional
Analysis result [71, Theorem 4.10].

Thus, property (T) is equivalent to all properties FLp with p ∈ (0,2]. Likewise, the Haagerup
property is equivalent to a-FLp-menability for every p ∈ (0,2]. For a discussion of the cases
when p > 2 see Section 1.3.

We prove Theorems 1.2 and 1.3 using median definite kernels, that turn out to coincide with
the Robertson–Steger measure definite kernels [59] and are very natural settings for these no-
tions. Along the way this allows us to answer Robertson–Steger question [59, Question (i)]
whether measure definite kernels can be given an intrinsic characterization among the condi-
tionally negative definite kernels (Corollary 6.17).

We also generalize to locally compact second countable groups Robertson–Steger’s dynamical
characterization of property (T) [59]. This answers Open Problem 7 in [14]. Moreover, we give
the a-T-menability a dynamical characterization as well.

Theorem 1.7. Let G be a locally compact second countable group.

(1) The group G has property (T) if and only if for every measure-preserving action of G on a
measure space (X, B,μ) and every set S ⊂ X such that for all g ∈ G, μ(S � gS) < ∞ and
limg→1 μ(S � gS) = 0, the supremum supg∈G μ(S � gS) is finite.

(2) The group G is a-T-menable if and only if there exists a measure-preserving action of G on a
measure space (X, B,μ) and there exists a set S ⊂ B such that for all g ∈ G, μ(S � gS) <

∞ and limg→1 μ(S � gS) = 0, but μ(S � gS) → ∞ when g → ∞.

1.3. Current developments and open questions

It is natural to ask whether the equivalence between properties (T) and FLp (respectively
between a-T-menability and a-FLp-menability) can be extended to p > 2. In [7, §3.c], by an
argument attributed to D. Fisher and G. Margulis, it is proved that for every group G with prop-
erty (T) there exists ε = ε(G) such that the group has property FLp for every p ∈ [1,2 + ε).
Nevertheless, no positive uniform lower bound for ε(G) is known.

For p � 2 the statements in Corollary 1.5 cannot be turned into equivalences. Indeed, it
follows from results of P. Pansu [57] that the group G = Sp(n,1) does not have property FLp

for p > 4n + 2. More recently, Y. de Cornulier, R. Tessera and A. Valette proved in [27] that any
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simple algebraic group of rank one over a local field is a-FLp-menable for p large enough. In
particular, G = Sp(n,1) is a-FLp-menable for p > 4n + 2.

Also, results of M. Bourdon and H. Pajot [17] imply that non-elementary hyperbolic groups
have fixed-point-free isometric actions on �p(G) for p large enough, hence do not have property
FLp . G. Yu later proved [73] that every discrete hyperbolic group G is a-FLp-menable for p

large enough. In particular this holds for hyperbolic groups with property (T).
The above quoted results of Y. de Cornulier, R. Tessera and A. Valette, and of G. Yu, illustrate

that neither of the two converse implications in Corollary 1.5 hold for p � 2. This shows that
for every p > 2 property FLp is a priori stronger than property (T). Also, the property of a-FLp-
menability is a weaker version of a-T-menability/Haagerup property.

Question 1.8. Can Corollary 1.5 be generalized to: “for every p � q � 2 property FLp implies
property FLq and a-FLq -menability implies a-FLp-menability”?

Question 1.9. Are different properties FLp and FLq with p,q > 2 large enough, equivalent? Is
it on the contrary true that for any p0 � 2 there exist groups that have property FLp for p � p0
and are a-FLp-menable for p > p0?

Question 1.10. What is the relation between FLp with p � 2 and other strong versions of prop-
erty (T) defined in terms of uniformly convex Banach spaces, like for instance the one defined
in [44]?

Note that, like other strong versions of property (T), the family of properties FLp separates
the semisimple Lie groups of rank one from the semisimple Lie groups with all factors of rank
at least 2 (and their respective lattices). By the results of G. Yu [73] all cocompact rank one
lattices are a-FLp-menable for p large enough. On the other hand, lattices in semisimple Lie
groups of higher rank have property FLp for all p � 1, by results of Bader, Furman, Gelander
and Monod [7].

Note also that the other possible version of property (T) in terms of Lp-spaces, namely that
“almost invariant vectors imply invariant vectors for linear isometric actions”, behaves quite dif-
ferently with respect to the standard property (T); namely the standard property (T) is equivalent
to this Lp version of it, for 1 < p < ∞ [7, Theorem A]. This shows in particular that the two def-
initions of property (T) (i.e. the fixed point definition and the almost invariant implies invariant
definition) are no longer equivalent in the setting of Lp spaces.

According to Bass–Serre theory, a group splits if and only if it acts non-trivially on a simplicial
tree. This implies that amalgamated products do not have property (T). Splittings were later
extended to semisplittings, using CAT(0) cube complexes. M. Sageev showed that if G is a
finitely generated group acting on a finite-dimensional CAT(0) cube complex without a fixed
point then there exists a stabilizer H of some convex wall such that e(G,H) > 1 (see [61]).
Then, in [32,33], V. Gerasimov removed the finite dimension assumption. (Here e(G,H) stands
for the number of ends of the group G with respect to the subgroup H , in the sense of [40].)
Conversely, V. Gerasimov showed that any group G that has a subgroup H with e(G,H) > 1
acts on a CAT(0) cube complex without a fixed point, so that H is a finite index subgroup in the
stabilizer of a convex wall (see [32,33] and also [61,50]).

Under certain stability assumptions, a non-trivial action of a group on a real tree leads to a
non-trivial action on a simplicial tree and to a splitting of the group (according to Rips, Bestvina
and Feighn [15, Theorem 9.5], Sela [64, Section 3], Guirardel [37]).
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Question 1.11. A group G acts non-trivially on a median space (equivalently, G does not have
property (T)). Under what assumptions is there a non-trivial action of G on a CAT(0) cube
complex (hence a semisplitting of G in the sense of Gerasimov–Sageev)? On a finite-dimensional
CAT(0) cube complex?

Via Question 1.11, Theorem 1.2 relates to one implication in M. Cowling’s conjecture (stat-
ing that a countable discrete group is a-T-menable if and only if it is weakly amenable with
Cowling–Haagerup constant 1 [24, §1.3.1]). Indeed, Guentner and Higson [34] showed that a
countable discrete group acting properly on a finite-dimensional CAT(0) cubical complex is
weakly amenable with Cowling–Haagerup constant 1. If for a discrete countable a-T-menable
group it would be possible (under extra-hypotheses) to extract from its proper action on a me-
dian space a proper action on the 1-skeleton of a finite-dimensional CAT(0) cubical complex, then
by Guentner and Higson weak amenability would follow. Extra-hypotheses are needed: recent
results show that the implication “a-T-menable ⇒ weakly amenable with Cowling–Haagerup
constant 1” does not hold in full generality. More precisely, a wreath product H 	 F2, where H is
finite and F2 is the free group on two generators, is a-T-menable according to Cornulier, Stalder
and Valette [26], but cannot be weakly amenable with Cowling–Haagerup constant 1 according
to Ozawa and Popa [56, Corollary 2.11].

1.4. Plan of the paper

The paper is organized as follows. Section 2 gives a general introduction of median spaces
(further geometric considerations on such spaces will be found in [22]) and proves some general
results used in the sequel. In Section 3 we recall the notion of measured wall spaces and show
how those embed isometrically in a median space, proving Theorem 1.1 part (1). In Section 4
we outline a few known results on median algebras. We emphasize on the results needed for
Section 5, which explains a structure of measured wall spaces hidden in a median space. Section 6
is devoted to the study of several types of kernels, leading to the proof of Theorem 1.2 and its
consequences.

2. Median spaces

2.1. Definitions and examples

A pseudo-metric or pseudo-distance on a set X is a symmetric map pdist : X × X → R+
satisfying the triangle inequality. Distinct points x 
= y with pdist(x, y) = 0 are allowed.

A map f : (X1,pdist1) → (X2,pdist2) between two pseudo-metric spaces is an isometry if
pdist2(f (x), f (y)) = pdist1(x, y). Note that f is not necessarily injective.

A space X with a pseudo-metric pdist has a canonical metric quotient X̃ = X/ ∼ composed
of the equivalence classes for the equivalence relation x ∼ y ⇔ pdist(x, y) = 0, endowed with
the metric dist(x̃, ỹ) = pdist(x, y). We call X̃ the metric quotient of X. The natural projection
map X → X̃ is an isometry.

Notation 2.1. If x is a point in X and r � 0 then B(x, r) denotes the closed ball of radius r

around x, that is the set {y ∈ X; pdist(y, x) � r}.
For every Y ⊆ X and r � 0, we denote by Nr (Y ) the closed r-tubular neighborhood of Y in

X, {y ∈ X; pdist(y,Y ) � r}.
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Definition 2.2 (Intervals and geodesic sequences). Let (X,pdist) be a pseudo-metric space.
A point b is between a and c if pdist(a, b) + pdist(b, c) = pdist(a, c). We denote by I (a, c)

the set of points that are between a and c, and we call I (a, c) the interval between a and c.
A path is a finite sequence of points (a1, a2, . . . , an). It is called a geodesic sequence if and only
if

pdist(a1, an) = pdist(a1, a2) + pdist(a2, a3) + · · · + pdist(an−1, an).

So (a, b, c) is a geodesic sequence if and only if b ∈ I (a, c).

Definition 2.3 (Median point). Let a, b, c be three points of a pseudo-metric space (X,dist).
We denote the intersection I (a, b) ∩ I (b, c) ∩ I (a, c) by M(a,b, c), and we call any point in
M(a,b, c) a median point for a, b, c. We note that I (a, b) = {x ∈ X, x ∈ M(a,x, b)}.
Definition 2.4 (Median spaces). A median (pseudo-)metric space is a (pseudo-)metric space in
which for any three points x, y, z the set M(x,y, z) is non-empty and of diameter zero (any two
median points are at pseudo-distance 0). In particular a metric space is median if any three points
x, y, z have one and only one median point, which we will denote by m(x,y, z).

Note that a pseudo-metric space is median if and only if its metric quotient is median.
A strict median subspace of a median pseudo-metric space (X,dist) is a subset Y of X such

that for any three points x, y, z in Y , the set M(x,y, z) is contained in Y .
A subset Y ⊂ X is a median subspace if for any three points x, y, z in Y , we have M(x,y, z)∩

Y 
= ∅. Note that Y is then median for the induced pseudo-metric. An intersection of strict median
subspaces is obviously a strict median subspace, thus any subset Y ⊂ X is contained in a smallest
strict median subspace, which we call the strict median hull of Y . When X is a metric space
median subspaces are strict, thus we simplify the terminology to median hull.

A homomorphism of median pseudo-metric spaces is a map f : X1 → X2 between two me-
dian pseudo-metric spaces such that for any three points x, y, z ∈ X1 we have f (MX1(x, y, z)) ⊂
MX2(f (x), f (y), f (z)). This is equivalent to asking that f preserves the betweenness relation,
that is f (I (a, b)) ⊂ I (f (a), f (b)).

Remark 2.5. A median metric space together with the ternary operation (x, y, z) �→ m(x,y, z)

is a particular instance of what is called a median algebra (see Example 4.5 in Section 4). We
will use freely some classical results in the theory of abstract median algebras – although it is not
difficult to prove them directly in our geometric context.

Convention 2.6. Throughout the paper, we will call median metric spaces simply median spaces.

Definition 2.7. We say that a metric space (X,dist) is submedian if it admits an isometric em-
bedding into a median space.

Here are the main examples we have in mind.

Examples 2.8.

(1) On the real line R, the median function is just taking the middle point of a triple, that is
mR(a, b, c) = a + b + c − [max (a, b, c) + min (a, b, c)]. More generally, R

n with the �1
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norm is a median space and

m(�x, �y, �z) = (
mR(x1, y1, z1), . . . ,mR(xn, yn, zn)

)
.

The interval between two points �x, �y ∈ R
n is the right-angled n-parallelepiped with opposite

corners �x and �y and edges parallel to the coordinate axes.
(2) The �1-product of two pseudo-metric spaces (X1,pdist1) and (X2,pdist2) is the set X1 ×X2,

endowed with the pseudo-metric

pdist
(
(x1, x2), (y1, y2)

) = pdist1(x1, y1) + pdist2(x2, y2).

Then (X1 × X2,pdist) is median if and only if (X1,pdist1) and (X2,pdist2) are median (the
components of a median point in X1 × X2 are median points of the components).

(3) (trees) Every R-tree is a median space.
(4) (motivating example: CAT(0) cube complexes) The 1-skeleton of a CAT(0) cube complex

is a (discrete) median space. In fact, according to [23, Theorem 6.1] a simplicial graph is
median if and only if it is the 1-skeleton of a CAT(0) cube complex.

(5) A discrete space with walls (in the sense of [39]) is submedian by [21] and [52]. We shall
prove further in this paper that actually a space is submedian if and only if it is a space with
measured walls (see Corollary 5.4).

(6) Various examples of submedian spaces can also be deduced from Remark 6.10. For instance,
Remark 6.10 combined with results in [19] and with Proposition 6.4 implies that if (W,S)

is a Coxeter system and distS is the word distance on W with respect to S then (W,dist1/2
S )

is submedian.
Likewise, from [8] can be deduced that if X is a polygonal complex locally finite, simply
connected and of type either (4,4) or (6,3) and dist is its geodesic distance then (X,dist1/2)

is submedian.
(7) (L1-spaces) Given a measured space (X, B,μ), the metric space L1(X,μ) is median. Indeed,

it is enough to see that the real vector space L1(X,μ) of measurable functions f : X → R

with finite L1-norm is a median pseudo-metric space. Define on L1(X,μ) a ternary operation
(f, g,h) �→ m(f,g,h) by

m(f,g,h)(x) = mR

(
f (x), g(x),h(x)

)
.

Clearly m = m(f,g,h) is measurable and since it is pointwise between f and g, it satisfies
‖f − g‖1 = ‖f − m‖1 + ‖m − g‖1. In particular m ∈ L1(X,μ) and m ∈ I (f, g), where the
interval is defined with respect to the pseudo-distance pdist(f, g) = ‖f − g‖1. Similarly we
have m ∈ I (g,h) and m ∈ I (f,h), so that m(f,g,h) is a median point for f , g, h.
It is easy to see that a function p ∈ L1(X,μ) belongs to I (f, g) if and only if the set of points
x such that p(x) is not between f (x) and g(x) has measure 0. It follows that M(f,g,h) is
the set of functions that are almost everywhere equal to m(f,g,h), so that L1(X,μ) is a
median pseudo-metric space. We conclude that L1(X,μ) is median because it is the metric
quotient of L1(X,μ).

(8) (symmetric differences) Let (X, B,μ) still denote a measured space. For any subset A ⊂ X,
we define

BA = {
B ⊆ X

∣∣ A � B ∈ B, μ(A � B) < +∞}
.



I. Chatterji et al. / Advances in Mathematics 225 (2010) 882–921 891
Notice that we don’t require the sets in BA to be measurable, only their symmetric difference
with A should be. Denote as usual by χC the characteristic function of a set C. Then the
map χA : BA → L1(X,μ) defined by B �→ χA�B is injective. The range of χA consists in
the class S 1(X,μ) of all characteristic functions of measurable subsets with finite measure.
Indeed the preimage of χB ′ (with B ′ ∈ B,μ(B ′) < +∞) is the subset B := A � B ′. Observe
that the L1-pseudo-distance between two functions χB ′ and χC′ in S 1(X,μ) is equal to
μ(B ′ � C′). Since we have

(A � B) � (A � C) = B � C,

it follows that for any two elements B1,B2 ∈ BA the symmetric difference B1 � B2 is mea-
surable with finite measure, and the pull-back of the L1-pseudo-distance by the bijection
BA → S 1(X,μ) is the pseudo-metric pdistμ defined by pdistμ(B1,B2) = μ(B1 � B2).
We claim that (BA,pdistμ) is a median pseudo-metric space, or equivalently that S 1(X,μ)

is a median subspace of L1(X,μ). This follows easily from the explicit formula:

m(χA,χB,χC) = χ(A∪B)∩(A∪C)∩(B∪C) = χ(A∩B)∪(A∩C)∪(B∩C).

Note that I (χA,χB) ∩ S 1(X,μ) is composed of the characteristic functions χC such that
there exists C′ ∈ B satisfying μ(C′ � C) = 0 and A ∩ B ⊂ C′ ⊂ A ∪ B . Later we will
prove that any median space embeds isometrically as a median subspace of some space
S 1(X,μ) (compare with the similar result in the context of median algebras appearing in
Corollary 4.11).

Remark 2.9. In view of Lemma 3.12 and Example 2.8(7), a metric space (X,dist) is submedian
if and only if it embeds isometrically in a space L1(W ,μ), for some measured space (W ,μ).
Thus, the notion of submedian space coincides with the notion of metric space of type 1 as
defined in [20, Troisième partie, §2]. Similarly, submedian metric is the same thing as metric of
type 1.

Remark 2.10. (1) It is not possible in general to define for every submedian space Y a median
completion, that is a median space containing an isometric copy of Y , and such that any isometric
embedding of Y into a median space extends to it. This can be seen in the following example.

Let E = R
7 endowed with the �1 norm, and let {ei; i = 1,2, . . . ,7} be the canonical basis.

Let Yx be the set composed of the four points A, B , C, D in E defined by A = x
2 (e1 + e2 + e3)+

(1 − x)e4, B = x
2 (−e1 − e2 + e3) + (1 − x)e5, C = x

2 (e1 − e2 − e3) + (1 − x)e6, D = x
2 (−e1 +

e2 − e3) + (1 − x)e7, where x ∈ [0,1].
Any two distinct points in Yx are at �1-distance 2. Thus all Yx with the �1-distance are pairwise

isometric. The median hull of Yx is composed of Yx itself and of the eight vertices of a cube of
edge length x defined by x

2 (±e1 ± e2 ± e3). Thus, for two distinct values x 
= x′ the median hulls
of Yx and of Yx′ are not isometric.

Note that the median hull of Y0 is the simplicial tree with five vertices, four of which are end-
points. The median hull of Y1 is the set of eight vertices of the unit cube. Consequently, it cannot
even be guaranteed that two median hulls of two isometric submedian spaces are isomorphic as
median algebras.

(2) Given a subspace Y of a median space X, it is in general not possible to extend an isometry
of Y to an isometry (or at least an isomorphisms of median algebras) of the median hull of Y .
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With the same notations as in (1), the isometry Y0 × Y1 → Y0 × Y1 switching the points of Y0
with the points of Y1 cannot be extended to the median hull of Y0 × Y1 in E × E.

2.2. Convexity and gate property in median spaces

Definition 2.11. Let (X,pdist) denote some pseudo-metric space. A subset Y ⊂ X is said to be
convex if for any a, b ∈ Y the set I (a, b) is contained in Y . It is quasi-convex if for any a, b ∈ Y

the set I (a, b) is contained in NM(Y ) for some M uniform in a, b ∈ Y . The convex hull of a
subset Y ⊂ X is the intersection of all convex subsets containing Y .

Note that any convex subspace of a median space is median but not the converse, as for
instance any subset of cardinality two is a median subspace, while it might not be convex. The
median hull of a subset is contained in the convex hull, and as the example above shows the
inclusion may be strict.

We now introduce a notion which is related to convexity in median spaces, and which is
commonly used in the theory of Tits buildings (see for example [62]) and in graph theory [46,68].

Definition 2.12 (Gate). Let (X,dist) be a metric space, let Y be a subset of X, and x some point
in X.

We say that a point p ∈ X is between x and Y if it is between x and any y ∈ Y . When a point
p ∈ Y is between x and Y , we say that p is a gate between x and Y . Note that there is always at
most one gate p between x and Y , and that dist(x,p) = dist(x,Y ).

We say that Y is gate-convex if for any point x ∈ X there exists a gate (in Y ) between x and Y .
We then denote by πY (x) this gate, and call the map πY the projection map onto Y .

Lemma 2.13 (Gate-convex subsets).

(1) The projection map onto a gate-convex subset is 1-Lipschitz.
(2) Any gate-convex subset is closed and convex.
(3) In a complete median space, any closed convex subset is gate-convex.

In other words, for closed subsets of a complete median space, convexity is equivalent to
gate-convexity.

Proof. (1) Let x, x′ be two points in a metric space X, and let p, p′ be the respective gates be-
tween x, x′ and a gate-convex subset Y . Since (x,p,p′) and (x′,p′,p) are geodesic sequences,
we have that

dist(x,p) + dist
(
p,p′) � dist

(
x, x′) + dist

(
x′,p′),

dist
(
x′,p′) + dist

(
p′,p

)
� dist

(
x′, x

) + dist(x,p).

By summing up the two inequalities, we conclude that dist(p,p′) � dist(x, x′).
(2) Assume that Y is gate-convex and that (x, y, z) is a geodesic sequence with x, z ∈ Y . Let

p be the gate between y and Y , so that (y,p, x) and (y,p, z) are geodesic sequences. Hence
(x,p, y,p, z) is a geodesic sequence, which forces y = p ∈ Y .

Any point x in the closure of Y satisfies dist(x,Y ) = 0. Thus if p is the gate between x and Y

we have dist(x,p) = 0, hence x ∈ Y . We conclude that Y is closed.
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(3) Let Y be a closed convex subset of a complete median space X. For any x ∈ X choose
a sequence (yk)k�0 of points in Y such that dist(yk, x) tends to dist(x,Y ). First observe that
(yk)k�0 is a Cauchy sequence. Indeed, denote by εk = dist(yk, x) − dist(Y, x), which clearly is
a sequence of positive numbers converging to zero. Let mk,� be the median point of (x, yk, y�).
Then dist(x, yk) + dist(x, y�) = 2 dist(x,mk,�) + dist(yk, y�) and so by convexity of Y we have
dist(x, yk) + dist(x, y�) � 2 dist(x,Y ) + dist(yk, y�). It follows that dist(yk, y�) � εk + ε�. Since
X is complete the sequence (yk)k�0 has a limit p in X. Since Y is closed, the point p is in Y .
Note that dist(x,p) = dist(x,Y ). It remains to check that p is between x and Y .

Let y be some point in Y , and let m be the median point of x,p, y. By convexity of Y we have
m ∈ Y , so that dist(x,m) � dist(x,Y ). We also have dist(x,p) = dist(x,m) + dist(m,p). Since
dist(x,p) = dist(x,Y ) we get dist(m,p) = 0 as desired. �

We now prove that in a median space the metric intervals are gate-convex.

Lemma 2.14. In a median metric space any interval I (a, b) is gate-convex, and the gate between
an arbitrary point x and I (a, b) is m(x,a, b).

Proof. Consider an arbitrary point x in the ambient median metric space X, p the median point
m(x,a, b) and y an arbitrary point in I (a, b). We will show that (x,p, y) is a geodesic sequence.

We consider the median points a′ = m(x,a, y), b′ = m(x,b, y) and p′ = m(x,a′, b′). Note
that p′ ∈ I (x, a′) ⊂ I (x, a) and similarly p′ ∈ I (x, b).

Since (a, y, b), (a, a′, y) and (y, b′, b) are geodesic sequences, the sequence (a, a′, y, b′, b)

is geodesic as well. So I (a′, b′) ⊂ I (a, b), hence p′ ∈ I (a, b).
We proved that p′ ∈ I (x, a) ∩ I (x, b) ∩ I (a, b), which by the uniqueness of the median point

implies p′ = p. It follows that p ∈ I (x, a′) ⊂ I (x, y). �
We can now deduce that the median map is 1-Lipschitz, in each variable and on X × X × X

endowed with the �1-metric.

Corollary 2.15. Let X be a median space.

(1) For any two fixed points a, b ∈ X the interval I (a, b) is closed and convex, and the map
x �→ m(x,a, b) is 1-Lipschitz.

(2) The median map m : X × X × X → X is 1-Lipschitz (here X × X × X is endowed with the
�1-product metric as defined in Example 2.8(1)).

Proof. Combine Lemmas 2.14 and 2.13, and use the fact that, given six points a, b, c, a′,
b′, c′ ∈ X, the distance between the median points m(a,b, c) and m(a′, b′, c′) is at most

dist
(
m(a,b, c),m

(
a′, b, c

)) + dist
(
m

(
a′, b, c

)
,m

(
a′, b′, c

)) + dist
(
m

(
a′, b′, c

)
,m

(
a′, b′, c′)).

�
2.3. Approximate geodesics and medians; completions of median spaces

We prove that the median property is preserved under metric completion. In order to do it,
we need an intermediate result stating that in a median space, approximate geodesics are close
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to geodesics, and approximate medians are close to medians. We begin by defining approximate
geodesics and medians.

Definition 2.16. Let (X,dist) be a metric space and let δ be a non-negative real number. We say
that z is between x and y up to δ provided

dist(x, z) + dist(z, y) � dist(x, y) + δ.

We say that (a1, a2, . . . , an) is a δ-geodesic sequence if

dist(a1, a2) + dist(a2, a3) + · · · + dist(an−1, an) � dist(a1, an) + δ.

Notation 2.17. Let x, y be two points of X. We denote by Iδ(a, b) the set of points that are
between a and b up to δ.

Let x, y, z be three points of X. We denote by Mδ(a, b, c) the intersection

I2δ(a, b) ∩ I2δ(b, c) ∩ I2δ(a, c).

In accordance with the previous notation, whenever δ = 0 the index is dropped.

Lemma 2.18. Given δ, δ′ � 0, for every c ∈ Iδ(a, b) the set Iδ′(a, c) is contained in Iδ+δ′(a, b).

Definition 2.19. Let x, y, z be three points in a metric space. If Mδ(x, y, z) is non-empty then
any point in it is called a δ-median point for x, y, z.

Lemma 2.20. Let (X,dist) be a median space, and a, b, c three arbitrary points in it.

(i) The set I2δ(a, b) coincides with Nδ(I (a, b)).
(ii) The following sequence of inclusions holds:

B
(
m(a,b, c), δ

) ⊆ Mδ(a, b, c) ⊆ B
(
m(a,b, c),3δ

)
. (1)

Proof. Statement (i) immediately follows from Lemma 2.14.
The first inclusion in (1) is obvious. We prove the second inclusion. To do it, we con-

sider the median points p1 = m(p,a, b), p2 = m(p,b, c), p3 = m(p,a, c), q = m(p1, b, c),
r = m(q,a, c).

First we show that r = m(a,b, c). Indeed r ∈ I (a, c) by definition. We also have r ∈ I (q, c),
and since q ∈ I (c, b) it follows that r ∈ I (b, c). Finally we have r ∈ I (a, q). Now q ∈ I (p1, b)

and p1 ∈ I (a, b), so q ∈ I (a, b). It follows that r ∈ I (a, b).
It remains to estimate the distance between p and r . According to (i) and Lemma 2.14 the

point p is at distance at most δ from p1,p2 and p3 respectively.
By Corollary 2.15 we have dist(p2, q) � dist(p,p1) � δ. Hence dist(p, q) � 2δ. Applying

Corollary 2.15 again we get dist(p3, r) � dist(p, q) � 2δ, consequently dist(p, r) � 3δ. �
The following result is also proved in [69, Corollary II.3.5]. For completeness we give another

proof here.
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Proposition 2.21. The metric completion of a median space is a median space as well.

Proof. Let (X,dist) be a median space, and let X → X̂ be the metric completion. For simplicity
we denote the distance on X̂ also by dist.

The median map m : X × X × X → X ⊂ X̂ is 1-Lipschitz by Corollary 2.15. Thus it extends
to a 1-Lipschitz map X̂ × X̂ × X̂ → X̂, also denoted by m.

Clearly for any three points a, b, c in X̂, the point m(a,b, c) is median for a, b, c. We now
prove that m(a,b, c) is the unique median point for a, b, c. Let p be another median point for
a, b, c. The points a, b, c are limits of sequences (an), (bn), (cn) of points in X. Let mn be the
median point of an, bn, cn. Set δn = dist(a, an) + dist(b, bn) + dist(c, cn).

We show that p is a δn-median point for an, bn, cn. Indeed we have that dist(an,p) +
dist(p, bn) is at most dist(an, a)+dist(a,p)+dist(p, b)+dist(b, bn) = dist(an, a)+dist(a, b)+
dist(b, bn) � 2 dist(a, an) + dist(an, bn) + 2 dist(b, bn) � dist(an, bn) + 2δn. The other inequali-
ties are proved similarly.

The point p is also the limit of a sequence of points pn in X, such that dist(p,pn) � δn.
It follows that pn is a 2δn-median point for an, bn, cn. By Lemma 2.20 we then have that
dist(pn,mn) � 6δn. Since δn → 0 we get p = m(a,b, c). �
2.4. Rectangles and parallel pairs

In a median space X, the following notion of rectangle will allow us to treat median spaces as
a continuous version of the 1-skeleton of a CAT(0) cube complex.

Definition 2.22. A quadrilateral in a metric space (X,dist) is a closed path (a, b, c, d, a), which
we rather denote by [a, b, c, d]. A quadrilateral [a, b, c, d] is a rectangle if the four sequences
(a, b, c), (b, c, d), (c, d, a) and (d, a, b) are geodesic.

Remark 2.23.

(1) By the triangular inequality, in a rectangle [a, b, c, d] the following equalities hold:
dist(a, b) = dist(c, d), dist(a, d) = dist(b, c) and dist(a, c) = dist(b, d).

(2) (rectangles in intervals) If x, y ∈ I (a, b) then [x,m(x, y, a), y,m(x, y, b)] is a rectangle.
(3) (subdivision of rectangles) Let [a, b, c, d] be a rectangle. Let e ∈ I (a, d) and f = m(e, b, c).

Then [a, b,f, e] and [c, d, e, f ] are rectangles.

Definition 2.24 (Parallelism on pairs). Two pairs (a, b) and (d, c) are parallel if [a, b, c, d] is a
rectangle.

We mention without proof the following remarkable fact that confirms the analogy with
CAT(0) cube complexes:

Proposition 2.25. In a median space the parallelism on pairs is an equivalence relation.

We now explain how to any 4-tuple of points one can associate a rectangle.

Lemma 2.26. Let [x, a, y, b] be any quadrilateral in a median space. Then there exists a unique
rectangle [x′, a′, y′, b′] satisfying the following properties:
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Fig. 1. Central rectangle.

(1) the following sequences are geodesic:(
x, x′, a′, a

)
,
(
a, a′, y′, y

)
,
(
y, y′, b′, b

)
,
(
b, b′, x′, x

);
(2) (a, a′, b′, b) is a geodesic sequence;
(3) (x, x′, y′) and (y, y′, x′) are geodesic sequences.

Proof. Existence. Let x′ = m(x,a, b) and y′ = m(y,a, b), and let a′ = m(a,x′, y′) and b′ =
m(b,x′, y′) (see Fig. 1). Then [x′, a′, y′, b′] is a rectangle by Remark 2.23(3). Properties (1) and
(2) follow immediately from the construction, property (3) follows from Lemma 2.14 applied to
x and y′ ∈ I (a, b), respectively to y and x′ ∈ I (a, b).

Uniqueness. Let [x′, a′, y′, b′] be a rectangle satisfying the three required properties. Prop-
erties (1), (2) and the fact that [x′, a′, y′, b′] is a rectangle imply that x′ = m(x,a, b) and
y′ = m(y,a, b). Again property (2) and the fact that [x′, a′, y′, b′] is a rectangle imply that
a′ = m(a,x′, y′) and b′ = m(b,x′, y′). �
Definition 2.27. We call the rectangle [x′, a′, y′, b′] described in Lemma 2.26 the central rect-
angle associated with the quadrilateral [x, a, y, b].

Remark 2.28. Property (3) cannot be improved to “(x, x′, y′, y) is a geodesic sequence”, as
shown by the example of a unit cube in R

3, with a, b two opposite vertices of the lower horizontal
face, and x, y the two opposite vertices of the upper horizontal face that are not above b or d (see
Fig. 2).

Note also that in general the central rectangle associated with [x, a, y, b] is distinct from the
central rectangle associated with [a, x, b, y] (again see Fig. 2).

Property (3) in Lemma 2.26 can be slightly improved as follows.

Lemma 2.29. Let x, y, p, q be four points such that (x,p, q) and (p, q, y) are geodesic se-
quences. Then there exists a geodesic sequence (x, x′, y′, y) such that (x′, y′) and (p, q) are
parallel.



I. Chatterji et al. / Advances in Mathematics 225 (2010) 882–921 897
Fig. 2. Example of central rectangle.

Proof. Applying Lemma 2.26 to the quadrilateral [p,q, y, x], we note that the resulting central
rectangle [p′, q ′, y′, x′] satisfies p′ = p, q ′ = q . �
3. Space with measured walls, median space associated to it

3.1. Preliminaries on measures

We recall the relevant definitions on measured spaces. A reference is [12], whose terminology
we adopt here. Let Y be a non-empty set and let P (Y ) be the power set of Y . A ring is a subset
of P (Y ) containing the empty set, closed with respect to finite unions and differences. A σ -
algebra is a subset in P (Y ) containing the empty set, closed with respect to countable unions
and containing together with any subset its complementary.

Given a ring R, a premeasure on it is a function μ : R → [0,+∞] such that

(M0) μ(∅) = 0;
(M1) For any sequence of pairwise disjoint sets (An)n∈N in R such that

⊔
n∈N

An ∈ R,

μ

( ⊔
n∈N

An

)
=

∑
n∈N

μ(An).

Property (M1) is equivalent to

(M ′
1) μ(A � B) = μ(A) + μ(B);

(M ′′
1 ) If (An)n∈N is a non-increasing sequence of sets in R such that

⋂
n∈N

An = ∅, then
limn→∞ μ(An) = 0.

A premeasure is called σ -finite if there exists a sequence (An) in R such that μ(An) < +∞
for every n, and

⋃
n An = Y .

A premeasure defined on a σ -algebra is called a measure.
An additive function on a ring R is a map μ : R → [0,+∞] satisfying properties (M0)

and (M1).
We need a precise version of Carathéodory’s theorem on the extension of any premeasure μ

to a measure, therefore we recall here the notion of outer measure. For every Q ⊂ Y let U (Q)
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designate the set of all sequences (An) in R such that Q ⊂ ⋃
n An. Define μ∗(Q) = +∞ if

U (Q) = ∅; if U (Q) 
= ∅ then

μ∗(Q) = inf

{ ∞∑
n=1

μ(An); (An) ∈ U (Q)

}
.

The function μ∗ is an outer measure on the set Y .
A subset A of Y is called μ∗-measurable if for every Q ∈ P (Y ),

μ∗(Q) = μ∗(Q ∩ A) + μ∗(Q ∩ Ac
)
.

Theorem 3.1 (Carathéodory). (See [12, §I.5].)

(1) The collection A∗ of μ∗-measurable sets is a σ -algebra containing R, and the restriction of
μ∗ to A∗ is a measure, while the restriction of μ∗ to R coincides with μ.

(2) If μ is σ -finite, then it has a unique extension to a measure on the σ -algebra generated by R.

3.2. Spaces with measured walls

From [39], we recall that a wall of a set X is a partition X = h � hc (where h is possibly
empty or the whole X). A collection H of subsets of X is called a collection of half-spaces if
for every h ∈ H the complementary subset hc is also in H. We call collection of walls on X the
collection W H of pairs w = {h,hc} with h ∈ H. For a wall w = {h,hc} we call h and hc the two
half-spaces bounding w.

We say that a wall w = {h,hc} separates two disjoint subsets A,B in X if A ⊂ h and B ⊂ hc

or vice-versa and denote by W (A|B) the set of walls separating A and B . In particular W (A|∅)

is the set of walls w = {h,hc} such that A ⊂ h or A ⊂ hc; hence W (∅|∅) = W .
When A = {x1, . . . , xn}, B = {y1, . . . , ym} we write

W (A|B) = W (x1, . . . , xn|y1, . . . , ym).

We use the notation W (x|y) to designate W ({x}|{y}). We call any set of walls of the form
W (x|y) a wall-interval. By convention W (A|A) = ∅ for every non-empty set A.

Definition 3.2 (Space with measured walls). (See [25].) A space with measured walls is a 4-uple
(X, W , B,μ), where W is a collection of walls, B is a σ -algebra of subsets in W and μ is a
measure on B, such that for every two points x, y ∈ X the set of separating walls W (x|y) is in B
and it has finite measure. We denote by pdistμ the pseudo-metric on X defined by pdistμ(x, y) =
μ(W (x|y)), and we call it the wall pseudo-metric.

Lemma 3.3. The collection R of disjoint unions
⊔n

i=1 W (Fi |Gi), where n ∈ N
∗, and Fi,Gi are

finite non-empty sets for every i = 1,2, . . . , n, is a ring.

Proof. Property (1) is obviously satisfied.
We first note that W (F |G) ∩ W (F ′|G′) = W (F ∪ F ′|G ∪ G′) � W (F ∪ G′|G ∪ F ′).
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Let now F,G be two finite.

W (F |G)c =
⊔

S�T =F∪G, {S,T }
={F,G}
W (S|T ).

From the two statements above it follows that R satisfies property (3), i.e. it is closed with
respect to the operation \. But R is closed with respect to intersection, thus R is also closed with
respect to union. �

Theorem 3.1 and Lemma 3.3 imply the following.

Proposition 3.4 (Minimal data required for a structure of measured walls). Let X be a space
and let W be a collection of walls on it. A structure of measured walls can be defined on (X, W )

if and only if on the ring R composed of disjoint unions
⊔n

i=1 W (Fi |Gi), where n ∈ N
∗, and Fi ,

Gi , i = 1,2, . . . , n, are finite non-empty sets, can be defined a premeasure μ such that for every
x, y ∈ X, μ(W (x|y)) is finite.

Let (X, W , B,μ) and (X′, W ′, B′,μ′) be two spaces with measured walls, and let φ : X → X′
be a map.

Definition 3.5. The map φ is a homomorphism between spaces with measured walls provided
that:

• for any w′ = {h′, h′c} ∈ W ′ we have {φ−1(h′),φ−1(h′c)} ∈ W – this latter wall we denote
by φ∗(w′);

• the map φ∗ : W ′ → W is surjective and for every B ∈ B, (φ∗)−1(B) ∈ B′ and μ′((φ∗)−1(B))

= μ(B).

Note that φ induces an isometry of the spaces equipped with the wall pseudo-distances.

Consider the set H of half-spaces determined by W , and the natural projection map p :
H → W , h �→ {h,hc}. The preimages of the sets in B define a σ -algebra on H, which we denote
by B H; hence on H can be defined a pull-back measure that we also denote by μ. This allows us
to work either in H or in W . Notice that the σ -algebra B H does not separate points in H, as sets
in B H are unions of fibers of p.

Definition 3.6. (See [21,52].) A section s for p is called admissible if its image contains together
with a half-space h all the half-spaces h′ containing h.

Throughout the paper we identify an admissible section s with its image σ = s(W ); with this
identification, an admissible section becomes a collection of half-spaces, σ , such that:

• for every wall w = {h,hc} either h or hc is in σ , but never both;
• if h ⊂ h′ and h ∈ σ then h′ ∈ σ .

For any x ∈ X we denote by sx the section of p associating to each wall the half-space bound-
ing it and containing x. Obviously it is an admissible section. We denote by σx its image, that is
the set of half-spaces h ∈ H such that x ∈ h. Observe that σx is not necessarily in B H.
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Note that p(σx � σy) = W (x|y).

Example 3.7 (Real hyperbolic space). For all the discussion below, see [58].
Define the half-spaces of the real hyperbolic space H

n to be closed or open geometric half-
spaces, with boundary an isometric copy of H

n−1, so that a wall consists of one closed half-space
and its (open) complement, as in Section 3 of [25]. Recall that the full group of direct isometries
of H

n is SO0(n,1). The associated set of walls WHn is naturally identified with the homogeneous
space SO0(n,1)/SO0(n − 1,1); as SO0(n − 1,1) is unimodular, there is a SO0(n,1)-invariant
borelian measure μHn on the set of walls [47, Chapter 3, Corollary 4]. The set of walls separating
two points has compact closure and finite measure. Thus (Hn, WHn , B,μHn) is a space with
measured walls. By Crofton’s formula [58, Proposition 2.1] up to multiplying the measure μHn

by some positive constant the wall pseudo-metric on H
n is just the usual hyperbolic metric.

Definition 3.8. The action by automorphisms of a topological group G on a space with mea-
sured walls (X, W , B,μ) is called continuous if for every x ∈ X the map G → X, g �→ gx is
continuous, where X is endowed with the topology defined by the pseudo-distance pdistμ.

The following result allows to produce many examples of spaces with measured walls.

Lemma 3.9 (Pull back of a space with measured walls). Let (X, W , B,μ) be a space with mea-
sured walls, let S be a set and f : S → X a map. There exists a pull back structure of space with
measured walls (S, WS, BS,μS) turning f into a homomorphism. Moreover:

(i) if S is endowed with a pseudo-metric pdist and f is an isometry between (S,pdist) and
(X,pdistμ), then the wall pseudo-metric pdistμS

coincides with the initial pseudo-metric
pdist;

(ii) if a group G acts on S by bijective transformations and on X by automorphisms of space
with measured walls, and if f is G-equivariant, then G acts on (S, WS, BS,μS) by auto-
morphisms of space with measured walls. Moreover, if the action on X is continuous, the
action on S is.

Proof. Define the set of walls WS on S as the set of walls {f −1(h), f −1(hc)}, where {h,hc} is
a wall in X. This defines a surjective map f ∗ : W → WS . We then consider the push-forward
structure of measured space on WS . This defines a structure of measured space with walls on S

such that f is a homomorphism of spaces with measured walls.
(i) It is easily seen that for every x, y ∈ S, (f ∗)−1(WS(x|y)) = W (f (x), f (y)), hence

pdistμS
(x, y) = pdistμ(f (x), f (y)) = pdist(x, y).

(ii) If f is G-equivariant then the whole structure of space with measured walls (S, WS, BS,

μS) is G-equivariant. �
One of the main interests in actions of groups on spaces with measured walls is given by the

following result.

Lemma 3.10. (See [25,27].) Let G be a group acting (continuously) by automorphisms on a
space with measured walls (X, W , B,μ). Let p > 0 and let πp be the representation of G on
Lp(H,μH).
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Then for every x ∈ X, the map b : G → Lp(H,μH) defined by b(g) = χσgx − χσx is a (con-
tinuous) 1-cocycle in Z1(G,πp). In other words, a (continuous) action of G on Lp(H,μH) by
affine isometries can be defined by:

g · f = πp(g)f + b(g).

Remark 3.11. Recall that for a space Lp(X,μ) with p ∈ (0,1), ‖f ‖p = (
∫ |f |p dμ)

1
p no longer

satisfies the usual triangular inequality, it only satisfies a similar inequality with a multiplicative
factor added to the second term. On the other hand, ‖f ‖p

p is no longer a norm, but it does satisfy
the triangular inequality, hence it defines a metric [43].

In this paper we consider Lp-spaces endowed with this metric, for p ∈ (0,1).

3.3. Embedding a space with measured walls in a median space

Let (X, W , B,μ) be a space with measured walls, and let x0 be a base point in X.
Recall from Example 2.8(8) that B H

σx0
denotes the collection of subsets A ⊂ H s.t. A � σx0 ∈

B and μ(A � σx0) < +∞, and that endowed with the pseudo-metric pdistμ(A,B) = μ(A � B)

this collection becomes a median pseudo-metric space. The map

χx0 : B H
σx0

→ S 1(H,μ), χx0(A) = χA�σx0
(2)

is an isometric embedding of B H
σx0

into the median subspace S 1(H,μ) ⊂ L1(H,μ), where

S 1(H,μ) = {χB; B measurable and μ(B) < +∞}.
The formula A � σx1 = (A � σx0) � (σx0 � σx1) and the fact that σx0 � σx1 is measurable

with finite measure shows that the median pseudo-metric spaces B H
σx0

and B H
σx1

are identical:

we simply denote this space by B H
X . In particular σx ∈ B H

X for each x ∈ X.
For x, y ∈ X we have pdistμ(x, y) = μ(σx � σy), thus x �→ σx is an isometric embedding

of X into (B H
X,pdistμ). Composing with the isometry χx0 : B H

X → S 1(H,μ), we get the
following well-known result stating that a wall pseudo-distance is of type 1, in the terminology
of [20, Troisième partie, §2]:

Lemma 3.12. Let (X, W , B,μ) be a space with measured walls, and x0 ∈ X a base point in
it. Then the map x �→ χW (x|x0) defines an isometry from X to L1(W ,μ). Thus if the wall
pseudo-distance is a distance then (X,distμ) is isometric to a subset of L1(W ,μ), and so it
is submedian.

We could probably define the median space associated to a space with measured walls
(X, W , B,μ) to be the median hull of the isometric image of X inside L1(W ,μ) (and then
perhaps take the closure in order to get a complete median space). We give here an alternative
construction which is more intrinsic.

Notation 3.13. We denote by M(X) the set of admissible sections, and by M(X) the intersection
M(X) ∩ B H

X .
Every section σx belongs to M(X), thus X isometrically embeds in M(X). We denote by

ι : X → M(X) this isometric embedding.
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Proposition 3.14. Let (X, W , B,μ) be a space with measured walls.

(i) The space M(X) defined as above is a median subspace of B H
X .

(ii) Any homomorphism φ : X → X′ between X and another space with measured walls
(X′, W ′, B′,μ′) induces an isometry M(X) → M(X′).

(iii) In particular the group of automorphisms of (X, W , B,μ) acts by isometries on M(X).

Proof. (i) Given an arbitrary triple (σ1, σ2, σ3) ∈ M(X)3, let us denote by m(σ1, σ2, σ3) the set
of half-spaces h such that there exist at least two distinct indices i, j ∈ {1,2,3} with h ∈ σi ,
h ∈ σj . In other words m(σ1, σ2, σ3) = (σ1 ∩ σ2) ∪ (σ1 ∩ σ3) ∪ (σ2 ∩ σ3) (see also Example 4.6).

Clearly m = m(σ1, σ2, σ3) belongs to M(X). Fix a point x0 in X and take χ0 = χx0 the
function defined in (2). We want to show that χ0(m) = m(χ0(σ1),χ0(σ2),χ0(σ3)). This will
prove that m ∈ B H

X and that m is a median point of σ1, σ2, σ3.
For our set-theoretical calculation it is convenient to treat characteristic functions as maps

from H to Z/2Z. We may then use the addition (mod 2) and pointwise multiplication on these
functions. We get

χA∩B = χAχB, χA�B = χA + χB, χA∪B = χA + χB + χAχB.

It follows easily that for any three subsets A, B , C we have

χ(A∩B)∪(A∩C)∪(B∩C) = χAχB + χAχC + χBχC.

Thus χ[(A∩B)∪(A∩C)∪(B∩C)]�D = χAχB + χAχC + χBχC + χD . On the other hand
χ((A�D)∩(B�D))∪((A�D)∩(C�D))∪((B�D)∩(C�D)) = (χA +χD)(χB +χD)+ (χA +χD)(χC +χD)

+ (χB + χD)(χC + χD) = χAχB + χAχC + χBχC + 2χAχD + 2χBχD + 2χCχD + 3χD =
χAχB + χAχC + χBχC + χD . We have thus checked that [(A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)] � D

coincides with [(A � D) ∩ (B � D)] ∪ [(A � D) ∩ (C � D)] ∪ [(B � D) ∩ (C � D)]. Applying
this to A = σ1, B = σ2, C = σ3, D = σx0 yields the desired result.

(ii) Consider a homomorphism of spaces with measured walls φ : X → X′. It is easily seen
that the surjective map φ∗ : W ′ → W induces a surjective map φ∗ : H′ → H such that for every
B ∈ B H, (φ∗)−1(B) ∈ B H′

and μ′((φ∗)−1(B)) = μ(B).
Let σ denote any admissible section. Set φ∗(σ ) = (φ∗)−1(σ ) = {h′ ∈ H′; φ−1(h′) ∈ σ }. Since

φ is a homomorphism, φ∗(σ ) is an admissible section of (X′, W ′, B′,μ′). Note that φ∗(σx) =
σφ(x) and that φ∗(σ � σ ′) = φ∗(σ ) � φ∗(σ ′). This implies that φ∗ defines a map from M(X)

to M(X′). Moreover pdistM(X′)(φ∗(σ ),φ∗(σ ′)) = μ′(φ∗(σ ) � φ∗(σ ′)) = μ′(φ∗(σ � σ ′)) =
μ′((φ∗)−1(σ � σ ′)) = μ(σ � σ ′) = pdistM(X)(σ, σ ′). Thus φ∗ is an isometry.

The statement (iii) is an immediate consequence of (ii). �
The results in Proposition 3.14 justify the following terminology.

Definition 3.15. We call M(X) the median space associated with (X, W , B,μ).

The first part of Theorem 1.1 is proved.

Remark 3.16. The median space M(X) has measured walls. Indeed for each h ∈ H define hM
to be the set of σ ∈ M(X) such that h ∈ σ . The complement of hM in M(X) is the set of
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σ ∈ M(X) such that h /∈ σ , or equivalently by the properties of admissible sections hc ∈ σ . In
other words (hM)c = (hc)M. Thus {hM}h∈H is a collection of half-spaces – which we will
denote by HM. We denote by W H the associated set of walls on M(X). Using the bijection
W → W H induced by h �→ hM we define on W H a σ -algebra B H and a measure μM. Note
that ι : X → M(X) is a homomorphism. Note also that the distance on M(X) coincides with
the distance induced by the measured walls structure.

It is easy to check that the medianized space associated with M(X) endowed with this struc-
ture of space with measured walls is M(X) itself.

Remark 3.17. One cannot hope to define a median space (M(X),dist) associated to a space with
measured walls such that there exists an isometric map ι : (X,pdistμ) → (M(X),dist) with the
universality property that any isometric map from (X,pdistμ) to a median space factors through ι.
This was explained in Remark 2.10.

4. A review of median algebras

The notion of median algebra appeared as a common generalization of trees and lattices (in
the ordered structure sense of the word). We recall here some basic definitions and properties
related to median algebras. For proofs and further details we refer the reader to the books [68,
69], the surveys [10,41], as well as the papers [16,65,66,60].

4.1. Definitions, examples

Definition 4.1 (Median algebra, first definition). A median algebra is a set X endowed with a
ternary operation (a, b, c) �→ m(a,b, c) such that:

(1) m(a,a, b) = a;
(2) m(a,b, c) = m(b,a, c) = m(b, c, a);
(3) m(m(a, b, c), d, e) = m(a,m(b, d, e),m(c, d, e)).

Property (3) can be replaced by (3′) m(a,m(a, c, d),m(b, c, d)) = m(a, c, d).
The element m(a,b, c) is the median of the points a, b, c. In a median algebra (X,m), given

any two points a, b the set I (a, b) = {x; x = m(a,b, x)} is called the interval of endpoints a, b.
This defines a map I : X × X → P (X). We say that a point x ∈ I (a, b) is between a and b.

A homomorphism of median algebras is a map f : (X,mX) → (Y,mY ) such that mY (f (x),

f (y), f (z)) = f (mX(x, y, z)). Equivalently, f is a homomorphism if and only if it preserves
the betweenness relation. If moreover f is injective (bijective) then f is called embedding or
monomorphism (respectively isomorphism) of median algebras.

The following are straightforward properties that can be found in the literature (see for in-
stance [65] and [60, §2]).

Lemma 4.2. Let (X,m) be a median algebra. For x, y, z ∈ X we have that

(1) I (x, x) = {x};
(2) I (x, y) ∩ I (x, z) = I (x,m(x, y, z));
(3) I (x, y) ∩ I (x, z) ∩ I (y, z) = {m(x,y, z)};
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(4) if a ∈ I (x, y) then for any t , I (x, t) ∩ I (y, t) ⊆ I (a, t) (equivalently m(x,y, t) ∈ I (a, t));
(5) if x ∈ I (a, b) and y ∈ I (x, b) then x ∈ I (a, y).

A sequence of points (a1, a2, . . . , an) is geodesic in the median algebra (X,m) if ai ∈
I (a1, ai+1) for all i = 2, . . . , n − 1. This is equivalent, by Lemma 4.2, point (5), to the condition
that ai+1 ∈ I (ai, an) for all i = 1,2, . . . , n − 2.

Lemma 4.3. If (x, t, y) is a geodesic sequence, then:

(1) I (x, t) ∪ I (t, y) ⊆ I (x, y);
(2) I (x, t) ∩ I (t, y) = {t}.

According to [65,66] there is an alternative definition of median algebras, using intervals.

Definition 4.4 (Median algebra, second definition). A median algebra is a set X endowed with
a map I : X × X → P (X) such that:

(1) I (x, x) = {x};
(2) if y ∈ I (x, z) then I (x, y) ⊂ I (x, z);
(3) for every x, y, z in X the intersection I (x, y) ∩ I (x, z) ∩ I (y, z) has cardinality 1.

Example 4.5. Let (X,dist) be a median space. Then the metric intervals I (x, y) satisfy the
properties in Definition 4.4, and thus the metric median (x, y, z) �→ m(x,y, z) defines a structure
of median algebra on X.

Example 4.6. Here is the set-theoretic generalization of Example 2.8(8). For any set X, the power
set P (X) is a median algebra when endowed with the Boolean median operation

m(A,B,C) = (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) ∩ (B ∪ C). (3)

The median algebra (P (X),m) is called a Boolean median algebra. One easily sees that in this
case

I (A,B) = {C; A ∩ B ⊂ C ⊂ A ∪ B}. (4)

In what follows we use the notation Bm(A,B,C) to designate the Boolean median defined in (3)
and BI (A,B) to designate the Boolean interval defined in (4).

It appears that Example 4.6 is in some sense the typical example of median algebra. More
precisely, according to Corollary 4.11, any median algebra is a subalgebra of a Boolean median
algebra, up to isomorphism.

4.2. Convexity

Definition 4.7. A convex subset A in a median algebra is a subset such that for any a, b ∈ A,
I (a, b) ⊂ A; equivalently it is a subset such that for every x ∈ X, and a, b in A the element
m(a,x, b) is in A.
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A subset h in a median space (X,m) is called a convex half-space if itself and the comple-
mentary set hc are convex. The pair {h,hc} is called a convex wall. We denote by Hc(X) the
set of convex half-spaces in X and by Wc(X) the set of convex walls in X. When there is no
possibility of confusion we simply use the notations Hc and Wc.

The above algebraic notion of convexity coincides with the metric notion of convexity intro-
duced in Definition 2.11, in the case of the median algebra associated with a median space (see
Example 4.5).

The following result shows that there are plenty of convex walls in a median algebra.

Theorem 4.8. Let X be a median algebra, and let A,B be two convex non-empty disjoint subsets
of X. Then there exists a convex wall separating A and B .

A proof of Theorem 4.8 when A is a singleton can be found in [53]; in its most general form
it follows from [67, Theorem 2.5]. Other proofs can be found in [11, §5.2] and [60, §2].

Corollary 4.9. Given any two distinct points x, y in a median space (X,dist) there exists a
convex wall w = {h,hc} with x ∈ h, y ∈ hc .

Definition 4.10. Given a median algebra X, one can define the map

σ : X → P (Hc), σ (x) = σx = {h ∈ Hc; x ∈ h}.
A consequence of Theorem 4.8 is the following.

Corollary 4.11. The map σ is an embedding of median algebras.

5. Median spaces have measured walls

The aim of this section is to prove the following.

Theorem 5.1. Let (X,dist) be a median space. Let W be the set of convex walls, and let B be
the σ -algebra generated by the following subset of P (W ):

U = {
W (x|y); x, y points of X

}
.

Then there exists a measure μ on B such that:

(1) μ(W (x|y)) = dist(x, y); consequently the 4-tuple (X, W , B,μ) is a space with measured
walls;

(2) any isometry of (X,dist) is an automorphism of the space with measured walls (X, W , B,μ).

Remark 5.2. According to Carathéodory’s theorem, a measure μ on the σ -algebra B is not
uniquely defined by the condition (1) in Theorem 5.1. It is uniquely defined if there exists say a
sequence of points (xn) in X such that W = ⋃

n,m W (xn|xm). This happens for instance if there
exists a countable subset in X whose convex hull is the entire X. Uniqueness is also guaranteed
when for some topology on W the measure μ is borelian and W is locally compact second
countable.
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Combining Theorem 5.1 above and Lemma 3.12 we get the following:

Corollary 5.3. Let (X,dist) be a median space. Then X isometrically embeds in L1(W ,μ),
where (W ,μ) are as in Theorem 5.1.

More precisely, given any x0 ∈ X, the space X is isometric to {χW (x|x0); x ∈ X} ⊂ L1(W ,μ)

endowed with the induced metric.

The fact that median spaces embed isometrically into L1-spaces was known previously,
though not via a construction of an embedding as above, but using Assouad’s result that a space
is embeddable into an L1-space if and only if any finite subset of the space is [3,4,6]. That fi-
nite median spaces can be embedded into �1-spaces seems to be well known in graph theory; all
proofs usually refer to finite median graphs only, but can be adapted to work for finite median
spaces (see for instance [46]). There exist even algorithms which isometrically embed a given
median graph into an �1-space; the same method yields algorithms in sub-quadratic time recog-
nizing median graphs [38]. The statement that finite median spaces can be embedded into �1 was
explicitly stated and proved for the first time in [69, Theorem V.2.3].

Corollary 5.4. A metric space (X,dist) is submedian in the sense of Definition 2.7 if and only if
it admits a structure of space with measured walls (X, W , B,μ) such that dist = distμ. Moreover
all walls in W may be assumed to be convex.

Proof. The direct part follows from Theorem 5.1 and Lemma 3.9.
The converse part follows from Lemma 3.12. �

Remark 5.5. Corollary 5.4 for finite metric spaces was already known. We recall this version
here as it will prove useful further on.

More precisely, according to [3] and [6] a finite metric space (X,dist) is isometrically �1-em-
beddable if and only if

dist =
∑
S⊆X

λSδS,

where λS are non-negative real numbers, and δS(x, y) = 1 if x 
= y and S ∩{x, y} has cardinality
one, δS(x, y) = 0 otherwise.

Theorem 5.1 together with Proposition 3.14 show that the natural dual category of median
pseudo-metric spaces is the category of spaces with measured walls. Precise results on duality
of categories for particular categories of median algebras and spaces with walls can be found in
[60] and [11].

Remark 5.6. According to the construction in Section 3.2, a space with measured walls X has
a natural embedding into a median space M(X); moreover M(X) has an induced structure of
space with measured walls, and its metric coincides with the metric induced by the measured
walls structure (Remark 3.16).

We note here that the above structure of space with measured walls on M(X) does not in
general agree with the structure described in this section. In general the first structure does not
have convex walls, as the walls on X may not be convex. In a forthcoming paper we will show
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that both structures on M(X) are equivalent, in the sense that they induce the same structure of
measured spaces with walls on finite subsets.

The strategy of the proof of Theorem 5.1 is to use Proposition 3.4. We first show that for any
pair of finite non-empty sets F,G in X, W (F |G) is equal to W (a|b) for some pair of points
a, b. In order to do this we need the following intermediate results.

Lemma 5.7. Let (x, y, z) be a geodesic sequence. Then we have the following decomposition as
a disjoint union:

W (x|z) = W (x|y) � W (y|z).

Proof. First notice that by convexity of half-spaces, the intersection W (x|y)∩ W (y|z) is empty.
Then the inclusion W (x|z) ⊆ W (x|y) ∪ W (y|z) is clear because if a half-space h contains x

but does not contain z, then either h contains y (in which case the wall {h,hc} separates y

from z) or hc contains y (in which case the wall {h,hc} separates x from y). The inclusion
W (x|y) ∪ W (y|z) ⊆ W (x|z) holds because if h contains x and y /∈ h, again by convexity we
cannot have z ∈ h and hence {h,hc} separates x from z. �

As an immediate consequence we get the following:

Corollary 5.8. For any geodesic sequence (x1, x2, . . . , xn) we have the following decomposition:

W (x1|xn) = W (x1|x2) � · · · � W (xn−1|xn).

Corollary 5.9. If (x, y) and (x′, y′) are parallel pairs then

W (x|y) = W
(
x′∣∣y′) = W

(
x, x′∣∣y, y′)

and

W
(
x
∣∣y′) = W

(
x′∣∣y) = W (x|y) � W

(
x
∣∣x′).

Lemma 5.10. Given three points x, y, z with median point m, we have W (x|y, z) = W (x|m).

Proof. According to Lemma 5.7 we have that W (x|y) = W (x|m)� W (m|y) and that W (x|z) =
W (x|m) � W (m|z). It follows that

W (x|y, z) = W (x|y) ∩ W (x|z) = W (x|m) � (
W (m|y) ∩ W (m|z)).

But by convexity of the walls W (m|y) ∩ W (m|z) = ∅, and we are done. �
We will use intensively the following two operations:

Definition 5.11 (Projection and straightening). Let (x, y), (a, b) be two pairs of points of a
median space X.
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The projection of (x, y) with target (a, b) is the pair (x′, y′) defined by x′ = m(x,a, b), y′ =
m(y,a, b).

If furthermore x, y ∈ I (a, b) we also consider the straightening of the path (a, x, y, b), which
by definition is the path (a,p, q, b), where the pair (p, q) is defined by p = m(a,x, y), q =
m(b,x, y).

Observe that given two pairs of points (x, y), (a, b), the central rectangle [x′, a′, y′, b′] asso-
ciated with [x, a, y, b] (as defined in Definition 2.27) is obtained by first projecting (x, y) with
target (a, b) – this yields the pair (x′, y′) – and then straightening (a, x′, y′, b) – which yields
the pair (a′, b′). We now give some properties of both procedures.

Lemma 5.12. Let (x, y), (a, b) be two pairs of points.

(1) Let (x′, y′) be the projection of (x, y) with target (a, b). Then

W
(
x′∣∣y′) = W (x|y) ∩ W (a|b).

(2) Assume x, y ∈ I (a, b), and let (p, q) be the projection of (a, b) with target (x, y). Then
[p,x, q, y] is a rectangle, W (p|q) = W (x|y), and (a,p, q, b) is a geodesic sequence (thus
(a, x, y, b) has really been straightened to a geodesic).

(3) Let [x′, a′, y′, b′] be the central rectangle associated with [x, a, y, b]. Then

W
(
x′∣∣y′) = W (x|y) ∩ W (a|b), W

(
x′∣∣y′) = W

(
a′∣∣b′).

Proof. Since the central rectangle is in fact obtained by composing the projecting and straight-
ening operations, it is enough to prove statement (3).

The equality W (x′|y′) = W (a′|b′) follows by Corollary 5.9.
By Lemma 5.10 we have W (x|x′) = W (x|a, b). In particular W (x|x′) ∩ W (a|b) = ∅. And

similarly W (y|y′) ∩ W (a|b) = ∅.
Consider now a half-space h such that x ∈ h,y /∈ h and {h,hc} ∈ W (a|b). Since W (x|x′) ∩

W (a|b) = ∅, we deduce that x′ ∈ h. Similarly we have y′ ∈ hc. We have thus proved that
W (x|y) ∩ W (a|b) ⊂ W (x′|y′).

On the other hand, since W (x′|y′) = W (a′|b′) and (a, a′, b′, b) is a geodesic, it follows that
W (x′|y′) ⊂ W (a|b).

According to Lemma 2.29, (x′, y′) is parallel to a pair (x′′, y′′) such that (x, x′′, y′′, y) is
geodesic. This and Corollary 5.9 imply that W (x′|y′) ⊂ W (x|y). �
Proposition 5.13. Let F and G be two finite non-empty subsets in X. There exist two points
p,q ∈ X such that

W (F |G) = W (p|q).

Proof. We use an inductive argument over n = cardF + cardG. For n = 2 the result is obvious,
while for n = 3 it is Lemma 5.10.

Assume that the statement holds for n and let F,G be such that cardF + cardG = n + 1 � 3.
Without loss of generality we may assume that cardF � 2. Then F = F1 � {x}, and W (F |G) =
W (F1|G)∩ W (x|G). The inductive hypothesis implies that W (F1|G) = W (a|b) and W (x|G) =
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W (c|d), for some points a, b, c, d . Hence W (F |G) = W (a|b)∩ W (c|d). We end up by applying
Lemma 5.12. �

At this stage we have proven that the ring R defined in Proposition 3.4 coincides with the set
of disjoint unions

⊔n
i=1 W (xi |yi). It remains to show that there is a premeasure μ : R → R

+ on
the ring R such that μ(W (x|y)) = dist(x, y). We first define μ as an additive function.

Lemma 5.14. If W (x|y) = W (a|b) then dist(x, y) = dist(a, b).

Proof. First let (x′, y′) be the projection of (x, y) with target (a, b). Then by Lemma 5.12(1)
we have W (x′|y′) = W (x|y) ∩ W (a|b) = W (a|b). By Corollary 2.15 the median map is 1-
Lipschitz, thus d(x′, y′) � d(x, y).

We now straighten (a, x′, y′, b) to (a,p, q, b) (thus (p, q) is the projection of (a, b) with tar-
get (x′, y′)). Then by Lemma 5.12(2) we have W (p|q) = W (x′|y′) = W (a|b), and (a,p, q, b)

is a geodesic. By Corollary 5.8 we deduce W (a|p) = W (q|b) = ∅, and thus a = p, q = b. It
follows that d(a, b) = d(p,q), and thus by Corollary 5.9 we have d(a, b) = d(x′, y′) � d(x, y).
We conclude by symmetry. �
Proposition 5.15. Assume that for two points a, b the set of walls W (a|b) decomposes as
W (a|b) = ⊔n

j=1 W (xj |yj ). Then there exists a geodesic sequence (a1 = a, a2, . . . , a2n = b) and
a partition {1,2, . . . ,2n − 1} = I1 � I2 � · · · � In such that:

(1) for each j ∈ {1, . . . , n} the set Ij has 2j−1 elements and we have a decomposition of
W (xj |yj ) = ⊔

i∈Ij
W (ai |ai+1);

(2) for each j ∈ {1, . . . , n} we have dist(xj , yj ) = ∑
i∈Ij

dist(ai, ai+1).

In particular, dist(a, b) = ∑
j dist(xj , yj ).

We easily deduce the following:

Corollary 5.16. There is a unique additive function μ : R → R
+ such that μ(W (x|y)) =

dist(x, y).

To prove Proposition 5.15 we need the following auxiliary result:

Lemma 5.17. In a median space (X,dist), consider two geodesic sequences with common
endpoints (a,p, q, b) and (a,p′, q ′, b), such that W (p|q) ∩ W (p′|q ′) = ∅. Let (s, t) be the pro-
jection of (p′, q ′) with target (a,p). Similarly let (u, v) be the projection of (p′, q ′) with target
(q, b). Then dist(p′, q ′) = dist(s, t) + dist(u, v).

Proof. Consider two more points: m = m(t,p′, q ′), n = m(u,p′, q ′) (see Fig. 3). Let us check
that [s, t,m,p′] is a rectangle. By construction (t,m,p′) is a geodesic sequence. Since s, t are
projection of p′, q ′ onto the interval I (a,p) we deduce that (q ′,m, t, s), (p′, s, t) are geodesic
sequences. And since (x,p′, q ′, y) is a geodesic sequence we see that (x, s,p′,m,q ′, y) is
geodesic.
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Fig. 3. The construction in Lemma 5.17.

We thus have dist(p′,m) = dist(s, t), and also W (p′|m) = W (s|t) (by Corollary 5.9). Hence
W (p′|m) = W (a|p) ∩ W (p′|q ′) (by Lemma 5.12(1)). Similarly we get dist(n, q ′) = dist(u, v),
and W (n|q ′) = W (q|b) ∩ W (p′|q ′).

We claim that W (m|q ′) = W (q|b)∩ W (p′|q ′). Indeed applying several times Lemma 5.7 we
get

W
(
p′∣∣m) � W

(
m

∣∣q ′) = W
(
p′∣∣q ′) ⊂ W (a|b) = W (a|p) � W (p|q) � W (q|b)

and the claim follows, since by assumption W (p|q) ∩ W (p′|q ′) = ∅ and we already have
W (p′|m) = W (a|p) ∩ W (p′|q ′).

We deduce that W (m|q ′) = W (n|q ′). This implies dist(m,q ′) = dist(n, q ′) = dist(u, v) by
Lemma 5.14. Since (p′,m,q ′) is a geodesic we get dist(p′, q ′) = dist(p′,m) + dist(m,q ′) =
dist(s, t) + dist(u, v). �
Proof of Proposition 5.15. We argue by induction on n. The case n = 1 follows by Lemma 5.14.

Now let us assume that n > 1 and that the lemma is true for partitions of any wall-interval into
n − 1 wall-intervals. Notice first that, according to Lemma 5.12(1) and Lemma 5.14, modulo
replacing (xi, yi) by its projection with target (a, b), we can assume that the xi ’s and yi ’s belong
to the interval I (a, b).

We straighten (a, x1, y1, b) to (a,p1, q1, b). Then by Lemma 5.12(2) the sequence (a,p1,

q1, b) is geodesic, and we have W (x1|y1) = W (p1|q1).
By Lemma 5.7 we have W (a|b) = W (a|p1) � W (p1|q1) � W (q1|b). It follows that

W (a|p1) � W (q1|b) = ⊔n
i=2 W (xi |yi).

We now straighten each path (a, xi, yi, b) to (a,pi, qi, b) (when i > 1). Again we have
W (xi |yi) = W (pi |qi) and moreover dist(xi, yi) = dist(pi, qi) (since [xi,pi, yi, qi] is a rectan-
gle). Now let us project the points pi and qi onto I (x,p1) and I (q1, y). So set si = m(pi, x,p1),
ti = m(qi, x,p1), ui = m(pi, q1, y) and vi = m(qi, q1, y).

Applying again Lemma 5.12(1) we get that W (pi |qi)∩ W (a|p1) = W (si |ti ) and W (pi |qi)∩
W (q1|b) = W (ui |vi). Thus W (pi |qi) = W (si |ti ) � W (ui |vi), and we get two decompositions:
W (a|p1) = ⊔n

i=2 W (si |ti ) and W (q1|b) = ⊔n
i=2 W (ui |vi).

If we apply the induction hypothesis to the two decompositions above we see that we are done
since Lemma 5.17 ensures that dist(pi, qi) = dist(si , ti ) + dist(ui, vi). �

The following shows that the premeasure satisfies property (M ′′).
1
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Proposition 5.18. Let (X,dist) be a median space, endowed with convex walls. If (In)n∈N is
a non-increasing sequence of finite disjoint unions of wall-intervals such that

⋂
n In = ∅, then

Ik = ∅ for k large enough.

Proof. In what follows we identify a half-space with its characteristic function. First note that
the set of half-spaces bounding a convex wall (i.e. the set of convex subsets whose complement is
convex as well) is a closed subset of {0,1}X . Then the set H(x|y) of half-spaces containing x but
not y is a closed subset of the compact subset of {0,1}X consisting in functions f : X → {0,1}
such that f (x) = 1, f (y) = 0. So H(x|y) is compact.

It is enough to argue when I0 = W (x|y). Since (In)n∈N is non-increasing for each n we
have In ⊂ W (x|y). We then define Hn as the set of half-spaces h such that {h,hc} ∈ In, and
x ∈ h. It follows that (Hn)n∈N is non-increasing, and has empty intersection. By projecting onto
I (x, y) we have In = ⊔

W (xi |yi) for some points xi, yi ∈ I (x, y) (Lemma 5.12(1)). We know
that W (xi |yi) = W (pi |qi) for pi = m(x,xi, yi), qi = m(y,xi, yi), and furthermore (x,pi, qi, y)

is a geodesic sequence. Thus Hn = ⊔
W (pi |qi) and Hn is compact. It follows that there exists k

such that Hk = ∅, which implies that Ik = ∅. �
We now have all the ingredients to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. That the premeasure μ is well-defined on R is the content of Propo-
sition 5.15. It obviously satisfies properties (M0) and (M ′

1), while (M ′′
1 ) is proved in Proposi-

tion 5.18.
By Carathédory’s Theorem 3.1, μ∗ restricted to A∗ is a measure extending μ, hence its re-

striction to B is also a measure extending μ.
Obviously any isometry of (X,dist) defines a bijective transformation on W preserving R

and the premeasure μ, hence the outer measure μ∗ and A∗, hence it defines an automorphism of
the measured space (W , B,μ). �
6. Kernels, median spaces, properties (T) and Haagerup

6.1. Various types of kernels

A kernel on a set X is a symmetric map ψ : X×X → R+ such that ψ(x, x) = 0. For instance,
a pseudo-metric is a kernel.

Let f : X → Y be a map and let φ be a kernel on Y . The pull-back of φ under f is the kernel
ψ(x, y) = φ(f (x), f (y)). Given a class of kernels C , a kernel ψ on X is of type C if ψ is the
pull-back of some kernel in the class C .

We will be particularly interested in kernels of median type, which are obtained by pulling
back a median pseudo-distance. By considering the canonical median metric quotient, we see
that any kernel of median type is also the pull-back of a median distance.

Properties (T) and Haagerup (a-T-menability) have often been described using conditionally
negative definite kernels, the definition of which we now recall.

Definition 6.1. A kernel ψ : X × X → R+ is conditionally negative definite if for every n ∈ N,
x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R with

∑n
i=1 λi = 0 the following holds:

n∑
i=1

n∑
j=1

λiλjψ(xi, xj ) � 0.
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Proposition 6.2. (See [63].) If ψ : X × X → R+ is a conditionally negative definite kernel and
0 < α � 1 then ψα is a conditionally negative definite kernel.

An example of conditionally negative definite kernel is provided by the following result.

Proposition 6.3. (See [71, Theorem 4.10].) Let (Y, B,μ) be a measured space. Let 0 < p � 2,
and let E = Lp(Y,μ) be endowed with the norm ‖ · ‖p . Then ψ : E × E → R, ψ(x, y) = ‖x −
y‖p

p is a conditionally negative definite kernel.

In some sense, the example in Proposition 6.3 is universal for conditionally negative definite
kernels, as the following statement shows.

Proposition 6.4. (See [63].) A function ψ : X × X → R+ is a conditionally negative definite
kernel if and only if there exists a map f : X → H , where (H,‖ · ‖) is a Hilbert space, such that

ψ(x, y) = ∥∥f (x) − f (y)
∥∥2

. (5)

The discussion above suggests the following:

Definition 6.5. A function ψ : X × X → R+ is a kernel of type p, where 0 < p � 2, if there
exists a map f : X → Lp(Y,μ), for some measured space (Y, B,μ), such that

ψ(x, y) = ∥∥f (x) − f (y)
∥∥p

p
. (6)

Proposition 6.6. A function ψ : X × X → R+ is a kernel of type 1 if and only if it is of median
type.

Proof. Since L1(Y,μ) is a median space (see Example 2.8(7)), a kernel of type 1 is of median
type. Conversely, Corollary 5.3 shows that a median space embeds in some L1(W,μ), so a kernel
of median type, by composition with this embedding, will be of type 1. �
Remark 6.7. Clearly, the pull-back of a conditionally negative definite kernel (or of a kernel of
type p) is also conditionally negative definite (respectively, of type p).

Proposition 6.4 states that conditionally negative definite kernels are the same thing as kernels
of type 2. In order to investigate further the relationship between conditionally negative definite
kernels and kernels of type p, we recall some results on isometric embeddings of Lp-spaces.

Theorem 6.8. (See Theorems 1 and 7 in [20].) Let 1 � p � q � 2.

(1) The normed space (Lq(X,μ),‖ · ‖q) can be embedded linearly and isometrically into
(Lp(X′,μ′),‖ · ‖p) for some measured space (X′, B′,μ′).

(2) If Lp(X,μ) has infinite dimension then (Lp(X,μ),‖ · ‖α
p) can be embedded isometrically

into (Lq(X′,μ′),‖ · ‖q) for some measured space (X′, B′,μ′) if and only if 0 < α � p
q

.

Remark 6.9. Note that according to [42], the space lp with p > 2 does not coarsely embed into
a Hilbert space.
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Remark 6.10. Theorem 6.8(1) implies that every metric space that can be isometrically em-
bedded in a space Lp(X,μ) with p ∈ [1,2] (metric space of type p in the terminology of [20]
and [31]) is a submedian space. See [31] for examples of such spaces.

Using these results we can now establish a more precise relationship between kernels of type
p and conditionally negative definite.

Corollary 6.11.

(1) If ψ is a kernel of type p for some 0 < p � 2 then ψ is a conditionally negative definite
kernel.

(2) If ψ is a conditionally negative definite kernel and 1 � p � 2 then ψ
p
2 is a kernel of type p.

Proof. Let X be an arbitrary space and let ψ : X × X → R+.
(1) follows from Proposition 6.3 and Remark 6.7.
(2) According to Proposition 6.4 there exists a map g : X → L2(X,μ) such that ψ(x, y) =

‖g(x) − g(y)‖2
2. By Theorem 6.8(1), there exists an isometric embedding F : (L2(X,μ),‖ · ‖2)

→ (Lp(X′,μ′),‖ · ‖p). Consequently ψ(x, y) = ‖g(x)−g(y)‖2
2 = ‖F(g(x))−F(g(y))‖2

p , and

ψp/2 is a kernel of type p. �
Remark 6.12.

(1) By Proposition 6.6, Corollary 6.11 and Proposition 6.4, every submedian space (X,dist)
has the property that (X,dist1/2) can be embedded isometrically in a Hilbert space. This
can be refined ([5], [30, Proposition 2.5]) to the sequence of implications: (X,dist) sub-
median ⇒ (X,dist) hypermetric ⇒ (X,dist1/2) spherically L2-embeddable ⇒ (X,dist1/2)

L2-embeddable.
Recall that a kernel ψ : X × X → R (in particular a metric) is hypermetric if for any fi-
nite sequence x1, . . . , xn in X and any integers λ1, . . . λn such that

∑n
i=1 λi = 1, we have∑n

i,j=1 λiλjψ(xi, xj ) � 0. A kernel is spherical if its restriction to any finite subset of X

coincides with a pull-back of a metric on an Euclidean unit sphere. A metric space is called
spherically L2-embeddable if its distance is a spherical kernel.
It follows that any submedian space (X,dist) has the property that all its finite subsets en-
dowed with the metric dist1/2 are isometric to subsets on an Euclidean unit sphere. This holds
even for submedian spaces of negative curvature, like H

n
R

, as was first noticed by Robertson
in [58, Corollary 3.2].

(2) The above implications can be reformulated in terms of kernels thus: ψ kernel of type 1 ⇒
ψ hypermetric kernel ⇒ ψ1/2 spherical kernel ⇒ ψ kernel of type 2.

Robertson and Steger defined in [59] an alternate type of kernels.

Definition 6.13. (See Robertson and Steger [59].) A measure definite kernel on a space X is a
map ψ : X × X → R+ such that there exists a measured space (M, B,μ) and a map S : X → B,
x �→ Sx , satisfying ψ(x, y) = μ(Sx � Sy).

In [59] it is asked (Question (i)) whether measure definite kernels can be given an intrinsic
characterization among the conditionally negative definite kernels. It turns out that measure defi-
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nite kernels are very much related to structures of space with measured walls, as well as to median
spaces (see Lemma 6.14). This relationship allows us to answer this question (Corollary 6.17).

Lemma 6.14. A kernel ψ : X × X → R+ on a space X is measure definite if and only if it is
of median type, in other words it is the pull-back of a median metric. Moreover when X is a
topological space the kernel ψ is continuous if and only if the pull-back map f is continuous.

Proof. Assume that ψ is a measure definite kernel on X. Then there exists a map S : X → B,
x �→ Sx , where (M, B,μ) is a measured space, and ψ(x, y) = μ(Sx � Sy). Fix some base
point x0 and endow BSx0

with the structure of median pseudo-metric space described in Ex-
ample 2.8(8). Then ψ is the pull-back under S of this median pseudo-metric.

Conversely, consider a map f from X to a median space (Y,dist) such that ψ(x, x′) =
dist(f (x), f (x′)). By Theorem 5.1, there exists a set of convex walls W on Y , a σ -algebra B on
W and a measure μ on B such that the 4-tuple (Y, W , B,μ) is a space with measured walls, and
moreover dist(y, y′) = μ(W (y|y′)).

We fix a point x0 in X and we define the map S : X → B, Sx = W (f (x)|f (x0)). Then
μ(Sa � Sb) = μ(W (f (a)|f (x0)) � W (f (b)|f (x0))) = μ(W (f (a)|f (b))) = dist(f (a), f (b))

= ψ(a, b).
Obviously f continuous implies ψ continuous. Conversely, assume that ψ is continuous. If

y ∈ X is close to x ∈ X then (x, y) is close to (x, x) hence ψ(x, y) = dist(f (x), f (y)) is close
to ψ(x, x) = 0. �

The following statement is an improvement of [59, Proposition 1.2] and [25, Proposition 2].

Lemma 6.15. A map ψ : X × X → R+ on a space X is a measure definite kernel if and only if
there exists a structure of space with measured walls (X, W , B,μ) on X such that ψ(x, x′) =
μ(W (x|x′)).

Proof. The if part follows from Lemmata 3.12 and 6.14.
Conversely, assume that ψ is a measure definite kernel on X. By Proposition 6.14 the kernel

ψ is the pull-back of a median distance: ψ(x, y) = dist(f (x), f (y)) for some map f : X → Y

where (Y,dist) is a median space. Consider the structure of space with measured walls on Y

given by Theorem 5.1. The pull-back structure of space with measured walls on X has ψ as wall
pseudo-distance, according to Lemma 3.9. �
Proposition 6.16. A kernel is measure definite if and only if it is of type 1.

Proof. Follows directly from Lemma 6.14 and Proposition 6.6. �
Corollary 6.17. A kernel ψ : X × X → R is measure definite if and only if ψ satisfies the tri-
angular inequality, moreover for every finite subset F in X, ψ |F×F is equal to

∑
S⊆F λSδS for

some λS � 0, where δS(x, y) = 1 if ψ(x, y) > 0 and S ∩ {x, y} is of cardinality 1, δS(x, y) = 0
otherwise.

Proof. It follows immediately from Proposition 6.16, from the fact that a metric space is isomet-
rically embeddable into an L1-space if any finite subset of it is [3,6], and from Remark 5.5. �
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Corollary 6.18.

(1) Every measure definite kernel is conditionally negative definite.
(2) If ψ is a conditionally negative definite kernel then

√
ψ is a measure definite kernel.

Statement (1) in Corollary 6.18 has already been proved in [59], where it appears as Proposi-
tion 1.1, while statement (2) has been proved in [59, Proposition 1.4(i)] under the extra assump-
tion that the set on which the kernel is defined is countable.

6.2. Properties (T) and Haagerup and actions on median, measured walls and Lp-spaces

Definition 6.19. A function Φ : G → R+ defined on a group is conditionally negative definite if
the function G × G → R+, (g,h) �→ Φ(g−1h), is a conditionally negative definite kernel.

Recall that a function Φ is called proper if limg→∞ Φ(g) = ∞. Here g → ∞ means that g

leaves any compact subset.
If a conditionally negative definite kernel ψ : G × G → R+ is left invariant, i.e. ψ(g1, g2) =

ψ(hg1, hg2) for every h,g1, g2 in G, then the map Φ : G → R+ defined by Φ(g) = ψ(1, g) is a
conditionally negative definite function. If Φ is proper we say that the kernel ψ is proper.

We also recall that a second countable space is a topological space satisfying the second
axiom of countability, that is such that its topology has a countable base. A second countable
space is separable (i.e. has a countable dense subset) and Lindelöf (i.e. every open cover has a
countable sub-cover). The converse implications do not hold in general, but they do for metric
spaces.

Characterizations of properties (T) and Haagerup (also called a-T-menability) using condi-
tionally negative definite kernels are well-known and can be found in the literature. We recall
here the relevant ones.

Theorem 6.20. (See [29,36,1,28,24].) Let G be a second countable, locally compact group.

(1) The group G has property (T) if and only if every continuous conditionally negative def-
inite function on G is bounded (equivalently, every continuous left invariant conditionally
negative definite kernel on G is bounded).

(2) The group G has the Haagerup property if and only if there exists a continuous proper
conditionally negative definite function on G (equivalently, there exists a continuous proper
left invariant conditionally negative definite kernel on G).

Theorem 6.20 and Corollary 6.11 imply the following.

Corollary 6.21. Let G be a second countable, locally compact group.

(1) If the group G has property (T) then for every p ∈ (0,2], every continuous left invariant
kernel of type p on G is bounded.

(2) The group G has the Haagerup property if for some p ∈ (0,2], there exists a continuous
proper left invariant kernel of type p on G.
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Remark 6.22. For p ∈ [1,2] the converse statements in Corollary 6.21 immediately follow from
Corollary 6.11(2).

Corollary 6.21 can be reformulated in terms of actions of the group on subsets of Lp-spaces,
as follows.

Corollary 6.23. (See [29,1,71].) Let G be a second countable, locally compact group.

(1) If G has property (T) then for every p ∈ (0,2], every continuous action by isometries of G

on a subset of a space Lp(X,μ) has bounded orbits.
(2) The group G has the Haagerup property if there exists p ∈ (0,2], and a continuous proper

action by isometries of G on a subset of some Lp(X,μ).

Proof. Both (1) and (2) follow from the fact that if S is a subset of some Lp(X,μ) and there
exists an action of G on S by isometries, G × S → S, (g, s) �→ g · s, then for any s ∈ S the map
ψ(g,h) = ‖g · s − h · s‖p

p is a continuous left invariant kernel of type p on G. �
Remark 6.24. In [54] the following result is stated: a second countable locally compact group
has the Haagerup property if and only if for some (for all) p ∈ (1,2) the group has a proper affine
isometric action on Lp[0,1]. The proof in that paper has been completed in an updated version
of his preprint appearing on arXiv at [55].

The converse statements in Corollary 6.23 (and their stronger versions, with “every p ∈ (0,2]”
replaced by “there exists p ∈ (0,2]” in (1), and the opposite replacement done in (2)) follow
immediately from the following fact. Given ψ a continuous proper left invariant kernel of type
p on G, that is a map ψ : G × G → R+ defined by ψ(g,h) = ‖f (g) − f (h)‖p

p , where f : G →
Lp(X,μ) is continuous, one can define a continuous action by isometries of G on f (G) by
g · f (h) = f (gh).

Much stronger versions of the converse statements in Corollary 6.23 are provided by Corol-
lary 1.5. But in order to obtain those, we first need to obtain improved converse statements for
p = 1. Indeed, for this value of p, the sufficient condition to have property (T) can be weakened:
it suffices to look at actions of G on median subspaces of L1-spaces. Also, Haagerup property
implies more for p = 1: the existence of a continuous proper action by isometries of G on a
median subspace of some L1-space. Both statements are straightforward consequences of the
following result.

Theorem 6.25. Let G be a separable topological group.

(1) If G acts continuously by isometries on a median space (X,dist) and x ∈ X then ψ : G ×
G → R+, ψ(g,g′) = dist(g · x,g′ · x) is a continuous left invariant kernel of type 1.

(2) If ψ : G × G → R+ is a continuous left invariant kernel which is the square root of a kernel
of type 2 (hence ψ is a kernel of type 1) then there exists a continuous action by isometries
of G on a median space (X,dist), and a point x ∈ X such that

ψ
(
g,g′) = dist

(
g · x,g′ · x)

.
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We first need to establish equivariant versions of Lemmata 6.14 and 6.15 when X is a group G.
In the particular case when the group is countable, Lemma 6.15 has the following equivariant
version.

Proposition 6.26. (See [59].) Let Γ be a countable group.

(1) If Γ is endowed with a left invariant structure of space with measured walls (Γ, W , B,μ)

then ψ : Γ ×Γ → R+ defined by ψ(g,g′) = μ(W (g|g′)) is a left invariant measure definite
kernel.

(2) If ψ : Γ × Γ → R+ is the square root of a left invariant conditionally negative definite
kernel, then Γ can be endowed with a left invariant structure of space with measured walls
(Γ, W , B,μ) such that ψ(g,g′) = μ(W (g|g′)).

Proof. (1) follows immediately from the definition of a measure definite kernel. It appears in
[59] as Proposition 1.1.

(2) follows from Proposition 1.4 and the proof of Theorem 2.1 on p. 252 in [59]. �
This implies the following equivariant version of Lemma 6.14.

Lemma 6.27. Let Γ be a countable group.

(1) If Γ acts by isometries on a median space (X,dist), and x is a point in X then ψ : Γ ×
Γ → R+, ψ(g,g′) = dist(g · x,g′ · x) is a left invariant kernel of type 1.

(2) If ψ : Γ × Γ → R+ is a left invariant kernel which is the square root of a conditionally
negative definite kernel (hence ψ is of type 1) then there exists an action by isometries of Γ

on a median space (X,dist), and a point x ∈ X such that ψ(g,g′) = dist(g · x,g′ · x).

Proof of Theorem 6.25. (1) follows from the fact that median spaces isometrically embed in
L1-spaces by Corollary 5.3.

(2) Let Γ be a countable dense subgroup in G. Restrict ψ to Γ and apply Lemma 6.27(2):
there exists an action by isometries of Γ on a median space (X,dist) and x ∈ X such that
ψ(γ,γ ′) = dist(γ · x, γ ′ · x). The metric completion of (X,dist) is still median by Proposi-
tion 2.21, and any isometry of X extends uniquely to an isometry of the completion. We get an
action of Γ on a complete median space that still induces the kernel ψ . Thus we may – and will
– assume that the median space (X,dist) is already complete.

The map f : Γ → X sending γ to γ · x is uniformly continuous since ψ is continuous (we
endow Γ ⊂ G with the induced topology). Since X is complete it follows that f extends to a
continuous map G → X still verifying ψ(g,g′) = dist(f (g), f (g′)) (for all g,g′ in G). As usual
the left invariance of ψ implies that g · f (h) = f (gh) defines an action of G by isometries on
f (G). And the continuity of ψ implies that the action is continuous.

To end the argument it suffices to prove that the above action of G on f (G) extends to an
action by isometries on the median hull of f (G) in X, which we denote by M . Set M0 = f (G)

and then define inductively Mi+1 = {m(x,y, z) | (x, y, z) ∈ (Mi)
3}. Clearly M is the ascending

union of the Mi ’s. Every element g ∈ G defines an isometry g : M0 → M0. We first note that
there is at most one isometric embedding g : M → X extending g : M0 → M0, and g(M) ⊂ M .
Indeed, since isometries commute with the median map, g is completely determined on M1 and
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g(M1) ⊂ M1, then g is completely determined on M2 and g(M2) ⊂ M2, and so on. We now prove
the existence of such an isometric extension.

Choose a sequence γn of elements of Γ converging to g in the topological group G. Then
for every f (h) ∈ M0, γnf (h) = f (γnh) converges to f (gh) = gf (h) by continuity of f . We
prove by induction on i that for any m ∈ Mi the sequence γn(m) converges. This is true for
m ∈ M0. Assume we know that γn(p) converges for every p ∈ Mi , and let m denote an el-
ement of Mi+1. Write m = m(x,y, z) with (x, y, z) ∈ (Mi)

3. Since γn acts by isometry on
the whole space X we have γn(m) = m(γn(x), γn(y), γn(z)). By induction the three sequences
(γn(x))n�0, (γn(y))n�0(γn(z))n�0 are convergent. By the continuity of the median map (Corol-
lary 2.15) it follows that (γn(m))n�0 converges. Denote g : M → X the pointwise limit of γn

on M . It immediately follows that g is an isometric embedding which extends g : M0 → M0. By
the remarks above we have that g(M) ⊂ M .

Using the uniqueness of the extension it is now straightforward to check that the maps g are
isometries of M (with inverse g−1), and finally that g �→ g defines an action of G by isometries
on M that extends the action of G on f (G), and thus still induces the kernel ψ . �

Theorem 6.25 allows to obtain some results concerning a structure of space with measured
walls on the complex hyperbolic space.

Corollary 6.28 (Walls in the complex hyperbolic space). The complex hyperbolic space H
n
C

admits a structure of space with measured walls such that:

(1) the induced wall metric is dist1/2, where dist is the hyperbolic distance;
(2) the walls are all the convex walls with respect to the metric dist1/2;
(3) SU(n,1) acts by isomorphisms on this structure.

Proof. According to [31] the complex hyperbolic space H
n
C

equipped with the metric dist1/2

can be embedded into a Hilbert space. It follows, by Theorem 6.8(1), that ψ : H
n
C

× H
n
C

→ R+,
ψ(x, y) = dist1/2(x, y), is the square root of a kernel of type 2, in the terminology of Defini-
tion 6.5. Obviously ψ is continuous and left-invariant with respect to the action of G = SU(n,1).

Via the identification of H
n
C

with G/K , where K = SU(n), the kernel ψ induces a left in-
variant pull-back kernel ψG : G × G → R+. Theorem 6.25 implies that G acts by isometries on
a median space (X,distX) such that ψG(g,g′) = distX(g · x,g′ · x) for some x ∈ X. It follows
easily that the map g �→ g · x factorizes to a G-equivariant isometric embedding gK �→ gx of
(Hn

C
,dist1/2) into (X,distX). All the required statements then follow from Lemma 3.9 and from

Theorem 4.8. �
We now prove the results stated in the introduction.

Proof of Theorem 1.2. By Corollary 6.21 and Remark 6.22, property (T) and a-T-menability
for a group G are characterized by properties of continuous left invariant kernels of type 1. By
Theorem 6.25(1), continuous actions of G on median spaces induce such kernels. On the other
hand, a kernel of type 1 is by Corollary 6.11 also of type 2, hence its square root is defined by a
continuous action on a median space, according to Theorem 6.25(2). Theorem 1.2 follows, since
bounded kernels correspond to actions with bounded orbits, and proper kernels correspond to
proper actions. �
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Proof of Theorem 1.3. If a group acts continuously on a median space by isometries then the
group acts continuously by automorphisms on the structure of measured walls associated to
it, by Theorem 5.1. This and Theorem 1.2 give the direct implication in (2) and the converse
implication in (1).

On the other hand, a space with measured walls is a submedian space, by Corollary 5.4, hence
a subspace of an L1-space by Corollary 5.3. Corollary 6.23 then gives the direct implication
in (1) and the converse implication in (2). �
Proof of Corollary 1.5. A continuous action of a group G on a space with measured walls
(X, W ,μ) induces by Lemma 3.10 a continuous action by affine isometries on Lp(H,μH) for
any p > 0, defined by g · f = πp(g)(f ) + χσgx − χσx , where x is an arbitrary point in X.

The hypothesis in case (1) implies that the orbit of the constant function zero, composed of the
functions χσgx − χσx , g ∈ G, is bounded. This implies that the orbit of x is bounded. It remains
to apply Theorem 1.3(1).

(2) If G is a-T-menable then we may assume by Theorem 1.3(2) that G acts on (X, W , B,μ)

such that pdistμ(x, gx) → ∞ when g → ∞. Hence the action of G on Lp(H,μH) is proper. �
Proof of Theorem 1.7. The only if part of (1) and the if part of (2) immediately follow from
Corollary 6.21 and Proposition 6.16.

The if part of (1) and the only if part of (2) follow from Theorem 1.2 and from Corol-
lary 5.3. �
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[8] W. Ballmann, J. Świa̧tkowski, On L2-cohomology and property (T) for automorphism groups of polyhedral cell

complexes, Geom. Funct. Anal. 7 (1997) 615–645.



920 I. Chatterji et al. / Advances in Mathematics 225 (2010) 882–921
[9] H.-J. Bandelt, V. Chepoi, Metric graph theory and geometry: a survey, in: Surveys on Discrete and Computational
Geometry, in: Contemp. Math., vol. 453, Amer. Math. Soc., Providence, RI, 2008, pp. 49–86.

[10] H.-J. Bandelt, J. Hedlikova, Median algebras, Discrete Math. 45 (1983) 1–30.
[11] S.A. Basarab, The dual of the category of generalized trees, Ann. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9 (2001)
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