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Conventions

Our conventions in group theory and topology are mostly standard. The neutral element
of a group G is usually denoted by e or, if the group is abelian and written additively, by
0. For subsets X,Y C G we put

XY ={ry|recXandycY} and X '={27'|ze€ X}
and for an integer £ > 1 we put
Xt =Apizg- x| 2y, 25 € X}

If XX = X2 C X holds, we call X a subsemigroup of G. We call a subset X C G
symmetric if X = X 1. The centralizer of X is denoted by

Ceng(X) ={g € G | gr = xg holds for all x € X}.

The center of a group G is
Cen(G) = Ceng(G).

Our convention for commutators in groups is that
[a,b] = aba'b.

We will mainly consider left actions. Such a left action of a group G on a set Z will be
written as
GxZ—Z, (g,2)— gz

The stabilizer of a point z € Z will be denoted by
G.={geCG|gz==z}

For a subset A C Z we put GA = {ga | g € G and a € A}.

All rings and ring homomorphisms are assumed to be unital, i.e. there are unit
elements and homomorphisms preserve unit elements. The group of units of ring R is
denoted R*. Rings are not necessarily commutative.



A subset V' of a topological space X is called a neighborhood of a point x € X if there
is an open set U with x € U C V. A neighborhood basis of a point x € X is a collection
Y of neighborhoods of x, such that for every open set U C X containing x, some member
of V is contained in U.

It is our convention is that all compact or locally compact spaces are assumed to be
Hausdorft.

We consider 0 to be a natural number. The set of natural numbers is thus

N=1{0,1,2,3,...},
and we denote the set of all positive natural numbers by
N; ={1,2,3,...}.
The set difference of two sets X, Y is written as
X-Y={reX|zgY}
and the symmetric difference is written as
XAY =(X-Y)U(Y -X)=(XUY)—(XnNY).
If S is a collection of subsets of a set X and if A C X is a subset, we put
S| A={SNA|SeS}.
The power set of a set X is denoted as
P(X)={Y|Y C X}.
The set of all maps from a set X to a set Y is denoted
YX.

If f: X — Yisamapandif A C X is a subset, then we denote the restriction of f to A
by fla: A— Y. If BCY contains f(A), we may consider the restriction-corestriction
fl5:A— B.

We use the axiom of choice without further ado.



