Locally Compact Groups and Lie Groups

Paul Klee, Bunte Gruppe

Linus Kramer

May 19, 2020

Contents

Pı	Preface				
C	onventions	v			
Ι	Basic Properties of Topological Groups	1			
1	Topological Groups Subgroups	11 12 15			
	Van Dantzig's Theorem	17			
2	The Compact-Open Topology and Transformation Groups The Compact-Open Topology Topological Transformation Groups Proper Actions	27 31			
3	Around the Baire Property The Open Mapping Theorem and Pettis' Lemma Čech Complete Spaces	44 50			

4	Topological Vector Spaces	59
	Local compactness and completeness	61
	Normed vector spaces and Banach spaces	63
	The open mapping theorem and the closed graph theorem	66
	Hilbert spaces and their geometry	
	Adjoint operators in Hilbert spaces	
5	The Haar integral	77
	The modular function	87
6	The Peter–Weyl Theorem	91
	Hilbert modules for locally compact groups	93
		0.0
II	Lie Groups	99
7	Lie algebras	101
	Representations of Lie algebras	103
	The Theorems of Engel and Lie	108
	Extension of scalars and the Chevalley–Jordan decomposition	
	Semisimple Lie algebras	120
8	Lie groups	125
	Differentiable manifolds	125
	Rings of smooth functions and the tangent space	

Preface

Conventions

Our conventions in group theory and topology are mostly standard. The neutral element of a group G is usually denoted by e or, if the group is abelian and written additively, by 0. For subsets $X, Y \subseteq G$ we put

$$XY = \{xy \mid x \in X \text{ and } y \in Y\} \text{ and } X^{-1} = \{x^{-1} \mid x \in X\}$$

and for an integer $k \geq 1$ we put

$$X^{k} = \{x_1 x_2 \cdots x_k \mid x_1, \dots, x_k \in X\}.$$

If $XX = X^{\cdot 2} \subseteq X$ holds, we call X a subsemigroup of G. We call a subset $X \subseteq G$ symmetric if $X = X^{-1}$. The centralizer of X is denoted by

$$\operatorname{Cen}_G(X) = \{ g \in G \mid gx = xg \text{ holds for all } x \in X \}.$$

The *center* of a group G is

$$Cen(G) = Cen_G(G)$$
.

Our convention for *commutators* in groups is that

$$[a, b] = aba^{-1}b^{-1}.$$

We will mainly consider $left\ actions$. Such a left action of a group G on a set Z will be written as

$$G \times Z \longrightarrow Z$$
, $(q, z) \longmapsto qz$.

The stabilizer of a point $z \in Z$ will be denoted by

$$G_z = \{ g \in G \mid gz = z \}.$$

For a subset $A \subseteq Z$ we put $GA = \{ga \mid g \in G \text{ and } a \in A\}.$

All rings and ring homomorphisms are assumed to be unital, i.e. there are unit elements and homomorphisms preserve unit elements. The group of units of ring R is denoted R^{\times} . Rings are not necessarily commutative.

A subset V of a topological space X is called a *neighborhood* of a point $x \in X$ if there is an open set U with $x \in U \subseteq V$. A *neighborhood basis* of a point $x \in X$ is a collection \mathcal{V} of neighborhoods of x, such that for every open set $U \subseteq X$ containing x, some member of \mathcal{V} is contained in U.

It is our convention is that all compact or locally compact spaces are assumed to be Hausdorff.

We consider 0 to be a natural number. The set of natural numbers is thus

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\},\$$

and we denote the set of all positive natural numbers by

$$\mathbb{N}_1 = \{1, 2, 3, \ldots\}.$$

The set difference of two sets X, Y is written as

$$X - Y = \{ x \in X \mid x \notin Y \}$$

and the *symmetric difference* is written as

$$X\triangle Y = (X - Y) \cup (Y - X) = (X \cup Y) - (X \cap Y).$$

If S is a collection of subsets of a set X and if $A \subseteq X$ is a subset, we put

$$\mathcal{S}|A = \{S \cap A \mid S \in \mathcal{S}\}.$$

The power set of a set X is denoted as

$$\mathcal{P}(X) = \{ Y \mid Y \subseteq X \}.$$

The set of all maps from a set X to a set Y is denoted

$$Y^X$$
.

If $f: X \longrightarrow Y$ is a map and if $A \subseteq X$ is a subset, then we denote the restriction of f to A by $f|_A: A \longrightarrow Y$. If $B \subseteq Y$ contains f(A), we may consider the restriction-corestriction $f|_A^B: A \longrightarrow B$.

We use the *axiom of choice* without further ado.