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DIFFERENTIABILITY OF CONTINUOUS HOMOMORPHISMS
BETWEEN SMOOTH LOOPS

by
Richard Bodi and Linus Kramer

ABSTRACT. It is a well-known fact that a continuous homomorphism between Lie groups is
analytic. We prove a similar result (Thm. 1.8) for continuous homomorphisms of differentiable
left or right loops in section 1 of this paper. Section 2 deals with images and kernels of such
homomorphisms. Again, the results obtained are quite analogous to the Lie group case. The
paper ends with applications of Theorem 1.8. For example, it turns out that the group of
continuous automorphisms of a smooth generalized polygon is a Lie transformation group with
respect to the compact-open topology.
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Throughout this paper, we assume all objects to be smooth of class C* for some fixed
integer k with 2 < k < 00, unless stated otherwise explicitly.

1. Continuous homomorphisms of smooth loops

First, we need the algebraic notion of a loop:

(1.1) Definition. A left loop (K, e,0) consists of a set K, an element e € K, called
the neutral element, and a map o : K x K — K with the following two properties:
zoe=¢eoz = for all elements z € K, and the equation a o z =-b has a unique solution
z for every pair a,b € K. We put z = a\b. This yields the identity z o (z\a) = a.
Substituting z o a for a, we find z\(z 0 a) = a:

Similarly, we define a right loop; in this case, we require that zoa = b has a unique solution

b/a. If both equations have unique solutions, then (K, e, o) is simply called a loop.

(1.2) Definition. An n-dimensional smooth local H-space X = (K,U, ¢, 0) consists of a
smooth n-manifold K, an open subset U of K with e € U and a smoothmapo : UxU — K

with the following property:

zoe=eozx =z for every element z € U.
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The left translation z — Aqz is defined by A\gz =aoz.

A left loop (K,e,0) is called an n-dimensional smooth left loop if K is a smooth n-
manifold, and if the maps o and \ are smooth. Similarly, we define a smooth right loop
and a smooth loop. For every a € K, the left translation map A, is a diffeomorphism with

inverse r = \; 'z = a\z.

The next proposition shows that every smooth local H-space is a smooth (left and
right) loop near the neutral element, i.e. it is a local loop in the sense of Kozma [7] and

in the sense of Hofmann and Strambach [6].

(1.3) Proposition. Let X = (K,U,e,0) be a smooth local H-space. Then there exists a
smooth map (z,y) — z\y defined on a neighborhood V' of (e, €), such that z o (z\a) = a,
whenever the left hand side is defined. Hence the left translation A, is a diffeomorphism

for all a in some neighborhhood V C U of e.

Proof. Consider the smooth map f: (z,y) = (2,2 0 y): U x U = K x K. Because of the
relation z oe = eoz = z, its derivative at (e, e) is given by Df(c.e) = G (1)) Hence f hasa

smooth local inverse f~1:(z,a) = (z,y) = (z,z\a) near (e, ).

In our studies the notion of a canonical coordinate system in the sense of [1] and [7]

plays a dominant role.

(1.4) Definition. Let (K,U,e,0) be an n-dimensional smooth local H-space, and let
V be a neighborhood of e. A coordinate chart h:(V,e) — (R",0) is called a canonical

coordinate system, if the relation
h(z o z) = h(z) + h(z)

holds for every element z with zoz € VNU. Note that for every H € GL,R the composite
Hh is again a canonical coordinate system, and conversely every other canonical coordinate

system arises in this way, cp. Kozma [7] and Theorem (1.8).

A surprising result of J. Kozma [7] states that there exists a canonical coordinate
system for every smooth local H-space. Note that in [7] this theorem is formulated for
smooth local loops rather than for H-spaces, although J. Kozma’s proof does not use the
fact that the loop operation has local inverses. The proof for the existence of a canonical
coordinate system is based on a variation of a theorem of Sternberg [13], Thm.2 on
contractions, which is formulated below. A proof of it can be found in the appendix of

7).
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(1.5) Theorem. Let M be a smooth n-manifold and let f: M — M be a smooth function
that fixes an element e € M. If the derivative Df. at e satisfies Df, = % - 1, then there
exists an open neighborhood U of e and a coordinate chart h: (U,e) — (R™,0) such that
h(f(z)) = 3h(z) for every z € U.

Using J. Kozma’s version of the theorem of Sternberg it is easy to prove the following

result, which can also be found in [7].

(1.6) Theorem. For every smooth local H-space (K,U,e,0) there exists a canonical

coordinate system h.

Proof. Consider the smooth map Sq:z — zoz : U — K. Using the relation zoe = eor = z,
it is readily verified that its derivative at e is DSq, = 2 - 1. Thus Sq has a local inverse
Sqrt in some neighborhood of e, and DSqrt, = % -1. So we may apply Sternberg’s theorem
to get a coordinate chart h:(V,e) — (R™,0) with A(Sqrt(z)) = 1h(z), and this of course
implies that h(z o z) = h(z) + h(z).

(1.7) Definition. A continuous local homomorphism between two local H-spaces X =
(K,U,e,0) and X' = (K',U’,€,0') is a continuous map f:(V,e) — (K',€') defined on
some neighborhood V' of e such that the relation

flzoy) = f(z) o' f(y)

is satisfied whenever both sides of the equation are defined. A continuous homomorphism
between two (left, right) loops is a local homomorphism that is defined on all of K.
A smooth local (global) homomorphism f between X and X' is a continuous local (global)

homomorphism which is a smooth map.

The following is our first main result. It generalizes a well-known theorem ‘about
Lie groups, see Warner [14], Thm. 3.39, p. 109 or Hochschild [5], Chapt. VII, Thm.4.2,
e.g. For Lie groups the standard proof works with local one-parameter subgroups which
need not exist in smooth local H-spaces, and it uses properties of the exponential mapping
which our canonical coordinates do not have in general. Hence our approach is completely
different. The main idea is to show that a continuous homomorphism between smooth
local H-spaces is Lipschitz-continuous and hence it possesses points of differentiability

almost everywhere.
(1.8) Theorem. Every continuous local homomorphism f : X — X' between smooth

local H-spaces K and X' is smooth in a neighborhood of the neutral element e. In fact,

f is locally a linear map with respect to canonical coordinate systems on X and X',

respectively.
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Proof. Passing to canonical coordinates, we may assume that (K,e) = (R™,0), (K',¢') =
(R"', 0). Choosing suitable euclidean metrics on R™ and R™, we may also assume that f
maps the unit ball B C R™ into the unit ball B’ C R™, and that the maps o, \, o', and \/
are defined on B x B and B’ x B', respectively. We put Sq(z) = z oz, Sqrt = Sq~" and
Sqrt’ = (2’ — z' o’ 2')~! as in the proof of (1.3). We may also assume that these maps

are defined on B and B’, repectively.
We want to show first that the continuous homomorphism f satisfies a Lipschitz

condition in some neighborhood of the origin. Since o’ and \ are smooth, we can find

constants Cq,Cy such that
@ o' ¥ =2 o y'| < Culla’ — ] + b — o)
and
la\b — z\y| < Ca(la — 2| + [b—yl)

on B’ x B' and B x B, respectively. Since Sq¥(z) = 2%z if 2¥~'z € B, we can find for
every z € B\{0} an integer m such that 1 < |Sq™z| < 1. This of course implies that
27™ < 2|z|. Now

[f(2)] = |£(Sart™(Sq™ (2)))| = [Sart™ (f(Sq™ (z)))]
=27"|f(Sq™(z))| < 27™ < 2],
because f(B) C B’. Choose a neighborhood U of 0 with U o U C B. For z,y € U we get
f(z 0y) = £(2)] = |£(z) o' §(y) — £(@) o FO)| < CilF() = F(O)
< 2Cyly| = 2C1[2\(z 0 y) — 2\2| < 2C1 Gyl oy — al,
and therefore, the homomorphism f satisfies a Lipschitz condition on U.
Applying Stein [12], Thm. 3, p. 250 to the n’ coordinate functions of f, we infer that the

map f is differentiable almost everywhere in U. Let zg € U be such a point. Choose an
arbitrary point ; € U and let a € B such that A,(z¢) = z;. Since we may write

F= a7 =N AT

it follows that f is also differentiable at z;. Thus the map f is differentiable on U. By
[8], the homomorphism f is locally a linear map and consequently is smooth.

(1.9) Theorem. Every continuous homomorphism f : X — X’ between smooth (left,
right) loops X and X' is smooth. In particular, the differentiable structure of a smooth

loop is uniquely determined by the underlying topological loop.

Proof. Choose an arbitrary element a € K. Since f = M y(,)fA;! on K and since f is a
smooth mapping in a neighborhood of the neutral element e by (1.8), it follows that f is
smooth in a neighborhood of a.
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2. Images and kernels

(2.1) Theorem. Let f : X — X' be a continuous homomorphism between smooth
(left, right) loops. Then f is a smooth map of constant rank, and therefore the kernel
N = f~(€') is a smoothly imbedded submanifold of codimension rank f in K, and a
smooth (left, right) loop with respect to the induced differentiable structure.

Proof. The map f is smooth by (1.9). Let a € K. Now f = A'f(a)f)\;l, hence Df, =
(DX (ay)eD /e (DA;1)s. Thus the derivative of f has constant rank on K, and therefore
the fibers of f are smoothly imbedded submanifolds, cp. Spivak [11] Ch.2, Prop. 12.

The next theorem generalizes the topological situation (see [6], IX.1.9) to the smooth

case.

(2.2) Theorem. Let f : K — X' be a continuous homomorphism between smooth (left,
right) loops with kernel N. Let K/N denote the quotient space obtained from collapsing
the fibers of f. Then K/N has a unique differentiable structure such that it becomes a
smooth (left, right) loop, and such that the projection map n : K — K/N is a smooth
homomorphism. Let f denote the induced map f : K/[N — K'. Then f is an injective
immersion and a smooth homomorphism, and f factors as f = fr.

We divide the proof into three steps.

(1) The fiber of f over f(a) is exactly the ‘coset’ A\, N = a o N. The quotient space K/N
obtained by collapsing the fibers is a second countable, locally euclidean Hausdorff space,
and the projection 7 : K — K/N is a locally trivial fibration. '

Let a,b be elements of K. Then f(a) = f(b) if and only if a\b € N, and this is equivalent
to b € ao N. Thus the fibers of f are exactly the left translates of N. Since f:K /N — K'
is a continuous injection into a Hausdorff space, K/N is a Hausdorff space as well.

Let k denote the codimension of the submanifold N C K. Since f has constant rank k, we
can find an imbedded submanifold S diﬁ'eomorphic to R* in K containing e and transversal
to the fibers of f, such that the restriction f|s is a diffeomorphism onto f(S) C K', and
such that the map £ : a — (a0 N)N S is smooth near S, cp. Spivak [11] Ch.2, Thm. 9(2).
For a € K, we put S, = A\s(S). We claim that the map (s,z) ~ soz is a homeomorphism
between S, x N and S, o N = 7~ !7(S,). Indeed, if (a 0s) oz = (ao s') oz, then
f(a)o’ f(s) = f(a)o' f(s'), and thus s = s’ and z = z’. By invariance of domain, the map
is a homeomorphism. Note that the restriction 7, = 7|, is a homeomorphism between
S, and the image 5'a = m(S,). This shows that « is a locally trivial fibration, and hence

an open surjection.

(2) Consider the collection of homeomorphisms 2% = {(m4Ae) ™! : Su — S = R¥|a € K}.
We claim that this collection is a smooth atlas for K/N. This implies that 7 is a smooth
map of rank k, and that the maps 7, are diffeomorphisms.
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First note that f = /\’f(a)f)\u'l, hence the restriction fls, : So — f(S.) is a diffeomor-
phism. Consider the composite ¢ = (A717; 1) (mpNs). Now m;lmy = (fls,) ' (fls,) is
smooth, hence ¢ is smooth wherever it is defined. Thus the collection A defines a dif-
ferentiable structure on K/N. The maps n, are diffeomorphisms by definition. The fact

that 7 is smooth near a € K follows from the identity (m,\s) 17\, = £.

(3) Since K/N — f(K) is a bijection, the quotient space becomes a (left, right) loop with
respect to the maps (ao N)é(bo N) = (aob)o N and (ao N)\:(b oN) = (a\b) o N. We
claim that K/N is in fact a smooth (left, right) loop. »

Let ao N and bo N be elements of K/N. For elements z and y close to ao N and bo N,
respectively, we may write 28y = (7, }(z) o7, ' (y)) and z\y = m(m; (z)\7; ' (y)), hence
the maps & and i are smooth. Finally, f is continuous and hence a smooth immersion.

3. Applications

Using [2], (2.10) we get the following result as an immediate corollary from (1.9).

(3.1) Corollary. For every connected smooth double loop D in the sense of [2], (2.5)
the group Aut (D) of continuous automorphisms of D coincides with the group of smooth
automorphisms of D, and Aut (D) is a compact linear Lie group with respect to the

compact-open topology.

As a further application we shall prove the following result in a forthcoming paper.

(3.2) Theorem. Every continuous collineation between two smooth generalized polygons
is smooth. In particular, every continuous collineation of a smooth projective plane is

smooth.

Consequences of this theorem are the following corollaries.

(3.3) Corollary. Every compact generalized polygon possesses at most one differentiable
structure such that it becomes a smooth generalized polygon. Moreover, every punctured

point row and every punctured pencil of lines is diffeomorphic to some euclidean space.

From Salzmann [10], §2 or Grundhofer [4], Thm. 1, Burns-Spatzier [3], 2.1, and
Montgomery-Zippin [9], Ch. V, we moreover obtain

(3.4) Corollary. The group of continuous automorphisms of a smooth generalized poly-

gon is a smooth Lie transformation group with respect to the compact-open topology.
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