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The topology of smooth projective planes 

By 

LINUS KRAMER 

It is an open problem whether the point space of a compact connected projective plane 
is always homeomorphic to the point space of the real, the complex, the quaternion or 
the octonion projective plane. The following partial results are known: 

(i) If the (covering) dimension n of the point space ~ is finite, then ~ is a generalized 
manifold, and N has the same cohomology as one of the four classical point spaces 
P2 N, P2t~, P2]H or P2 O, and thus n e {2, 4, 8, 16}, cp. L6wen [111. This holds in 
particular, if the point rows and the pencils of lines are topological manifolds. In this 
case, the point rows and pencils of lines are n/2-spheres, cp. Salzmann [14, 7.12], 
Breitsprecher [2, 2.1]. It is not known whether the point rows have to be topological 
manifolds even if the point space is a topological manifold. 

(ii) If the (covering) dimension of the point space ~ is 2 or 4, then the point rows and 
the pencils of lines are topological manifolds, cp. Salzmann [14, 2.0] [15, 1.1], and 
.~ is homeomorphic to P2 N or PzlE, respectively, cp. Salzmann [14, 2.0], Breit- 
sprecher [2, 2.5]. 

Much more is known for compact planes with large automorphism groups, cp. 
Salzmann et al. [16], or for planes with special ternary fields, cp. Buchanan [3], Otte 
[131. 

On the other hand, there are manifolds that have similar properties as projective 
planes, but that are not homeomorphic or homotopy equivalent to any of the four 
classical projective planes, cp. Eells-Kuiper [4]. 

We prove the following result: the point space of a smooth projective plane is always 
homeomorphic to the point space of one of the four classical projective planes. By duality, 
the same holds of course for the line space. Notice that a smooth projective plane need 
not be isomorphic (in the geometrical sense) to one of the four classical projective planes, 
cp. Otte [13]. 

Part of this work was completed during a visit at Notre Dame University, Indiana. 
The author would like to thank Stephan Stolz for many helpful discussions. In partic- 
ular, Sections 3 and 4 are the result of joint work. 

Smooth projective planes. In this section, we collect some basic facts about smooth 
projective planes. 
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1. D e f i  n i t i o n .  A projective plane is a triple ~9 = (.~, 2", ~ ) ,  consisting of a set of 
points .~, a set of lines 2" and a set of f lags ~ =~ ~ x 2 '  such that  the axioms of a 
projective plane are satisfied, i.e. two distinct points p, q can be jo ined by a unique line 
p v q, and two distinct lines l, h intersect in a unique point  1 ~,, h, and there :exists a 
non-degenerate quadrangle.  A poim row L ~= -~ is the set of all points that  are incident 
with a certain line I. Similarly, a pencil of  lines 2"p -- c 2" is the set of all lines that  are 
incident with a certain point  p. 

The projective plane is called smooth if N and 2" are smooth manifolds, and if the 
maps v"  ~ x ~ - A (~) --} ~ and A : ~ x ~ --  A ( ~ )  ~ ~ are smooth. 

We exclude the case that  g~ or 6g are discrete spaces. 

2. Theorem. Let ~ = (~, 2,e, J~) be a smooth projective plane. Then the point rows and 
the pencils of  lines are smoothly embedded (possibly exotic) m-spheres for some 
m e {1, 2, 4, 8}. The spaces ~ ,  2" and ~ c= ~ x 2" are compact connected smooth mani- 
folds of  dimension 2m, 2m and 3m, respectively, and pr i : ~ -~ ~@ is a locally trivial smooth 
m-sphere bundle. 

In order  to prove this theorem, we need the following temmata:  

3. Lemma.  Let  o e ~  be a point, and consider the smooth map f : ~ . - { o } ~ ,  
p~--> p v o. There exists a nonempty open set U c= ~ _ {o}, such that for every point 
row L containing p, the intersection U c~ L is either empty or a smooth re.dimensional 
submanifold. 

P r o o f. Let U be the set of all points where the rank of the derivative J ,  is maxi,  
real, say k. Now rank ( f . )  > k means that  there is a nonsingular  k x k submatrix of the 
Jacobian o f f  This is clearly an open condition, a n d  thus U is open. The restriction 
f l y  has constant  rank k, hence tile fibers of f l y  are ( 2 m -  k)-dimensional smooth 
submanifolds of U. On the other hand, the fibers of f are exactly the (m-dimensional) 

point  rows through o. [ ]  

4. Lemma. Let X,  Z be two point rows, and let o e X,  p e Z. Then there exist open 
neighborhoods U of  o and V of  p and a diffeomorphism (U, o)--> (V, p) that maps U c~ X 
homeomorphically onto V n Z. 

P r o o f. We may assume that  the flags (o ,X)  and (p ,Z)  are in general position. 
Thus we can choose a triangle X, Y,, L such that  X n Y = {o}, X c~ Z = X c~ L = {u} 
and Y n L = {v}, and such that  o, u0 v, p is a non 'degenera te  quadranglel On  the 
open set N - L  we may define a smooth ~ function'  q~(q)=(XiY)= 
((q v v) a X, (q v u) A Y)) and on the open set ( N - -  L) x ( ~ -  L) an ' inverse co- 
ordinate  function'  g,(x, y) = q = (x v v) A (y v u). Clearly ~b(qS(q)) = q. We put  

(a, b) = ~b(p). 
The composite  

q ~ ( x ,  y)~--~(x', y') = ((((x v b) A L) v p) A X ,  (((y v a) A L) v p)/,, Y ) & q '  
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is the desired diffeomorphism, with inverse 

q'~-~(x', y')~-~(x, y) = ((((x' v p)/x L) v b)/x X, (((y' v p)/x L) v a) A Y) Ov~q 

(draw a picture). [ ]  

P r o o f o f t h e T h e o r e m.  By the two lemmata above, every point row is a 
smooth submanifold. The other claims follow now from [2] or [9]. [ ]  

The eohomology of o~ ~ ~' .  We. need the cohomology ring of the m-sphere bundle 
pr l :  ~ ~ .~. Consider the following commutative diagram of maps and spaces: 

{p} x ~% ~ g 

{p} 
Passing to rational cohomology, we get the following diagram (for m > 1, cp. Breit- 
sprecher [2, 2.3]. For  m = 1, the same is true with 7Zz-coefficients): 

(I)[yl/(y z) *-- @[x, yl/(x 3, y3,x2 + y 2  _ xy) 

Q ,-- Q [xl/(x ~) - ,  Q [xl/(x~) 

For  m > 1, none of these spaces has torsion. 
Recall that the signature ~r of a 4k-manifold M is defined as the index of the rational 

quadratic form u ~ (u 2, [M] ), H2k(M; (1)) ~ Q, cp. Milnor-Stasheff [12, pg. 224]. Hence 
the signature a (~)  of the point space is 1 for m > 1. 

Characteristic classes of 2 .  In this section we always assume that the dimension m of 
the point rows of the smooth projective plane (~, ~ ,  ~ )  is at least 2. We calculate 
the Pontrjagin classes of the point space ~ .  The main toot is Knarr 's  embedding theo- 
rem [9], which implies that the Pontrjagin classes of the flag space ~ vanish. Using the 
topological invariance of the rational Pontrjagin classes, Hirzebruch's signature theo- 
rem, and the fact that ~- is a sphere bundle over ~ ,  we obtain the total Pontrjagin class 
p(~)  (up to a sign). Our  reference for characteristic classes is the book by Milnor and 
Stasheff [12]. 

Recall that a topological lRm-bundle is a locally triviai fiber bundle with fiber R" .  
The structure group of such a bundle is the group TOP(m) of all base-point preserving 
homeomorphisms of ]R m. 

5. D e f i n  i t i o n .  Let 0 be the m-plane subbundle of the tangent bundle z ( ~ )  tan- 
gent to the fiber, i.e. 0 = ker p r l , , .  Choose a Riemannian metric on Y.  Then there is a 
vector bundle isomorphism 0 1 ~ pr*(z(~)),  and hence z(Y) ~ 0 ~ pr*(z(~)). 

6. Proposition. The (rational) total Pontrjagin class p ( ~ )  = I + ~ pj(@) of @ is 
j>=l 

trivial. Hence p(O) pr~ p(~) -- p(O) p(pr~(z(~))) = p ( ~ )  = 1 by [12, 15.2, 15.3]. 
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P r o o f. According to Knarr  [9], • can be embedded as a topological compact 
hypersurface in S 3m+ 1, with trivial normal bundle e., and therefore the bundle ~(~)  | e, 
considered as a topological R 3'n + Zbundle, is trivial, because the (topological) tangent 
bundle of N. 3m+t is trivial. 

Since the fiber T O P / O  of the map between the classifying spaces ]80 ~ BTOP has 
finite homotopy groups in every dimension, cp. Kirby-Siebenmann [7, Essay V, w 5], this 
map yields an isomorphism H ~  H~ i.e. the rationa] Pontrjagm 
classes are topological invariants, cp. [12, Epilogue]. 

Let qS: ~,~ ~ BO(3m + 1) be the classifying map of z (~}  | 5, and consider the corn- 
mutative diagram 

H'(@;@)~ H~ ~ H'(BO;Q) 

H" (BTOP(3m + 1); Q) ,-- H" (BTOP; Q). 

The composite ~ o 4) is homotopic to a constant map, because the topological IR 3 m + ~_ 
bundle z(J  ~ )  �9 e is trivial. Hence the induced map H ~ ( B O ; Q ) ~  H ~ (Y;@) is trivial, 
and since H ~ (BO;~)  is generated by the Pontrjagin classes, p ( ~ )  = p ( z ( ~ ) G  e) = 1. 

[]  
W e p u t p ( ~ ) = l + b x + c x 2 ,  wi thb ,  c r  T h e n p ( O ) = l - b x + ( b  2 c)x z. 

7. Lemma. The Euler class e(O) is of  the form 2y + a x  jor some a ~ ~ .  

P r o o f. The restriction of 0 to a fiber is just the tangent bundle of the even-di- 
mensional sphere 5; m, thus the restriction of e(0) to a fiber is 2y, cp. Mflnor-Stasheff 
[12, 11.12]. []  

8. Lemma. The Euler class of  0 is 2y - x, and the m/2-th Pontrjagin class of  0 is 
--  3X 2. Thus p(~) = t + bx  + (b 2 q- 3 ) x  2. 

P r o o f .  Since m is even, we have the relation e(O) 2 =  pm/2(O) by [12, 15.8]. This 
yields (a 2 + 4a)x 2 + 4 (1 + a) y2 (b 2 - c)x 2 and hence a = - 1 (cp. the proof  of 6.4 
in Grove-Halperin [5]). [ ]  

9. Theorem. The total Pontrjagin class of  ~ is I + 3X 2 for m = 2, 1 __+ 2x + 7X 2 

for m = 4, and 1 +_ 6x + 39x2 for m = 8. 

P r o o f. The signature a (~)  is 1. From the Hirzebruch signature theorem, cp. [12, 
19.4], we get the equations 

b 2 + 3 = 3 (m = 2) 

7(b 2 + 3 ) -  b 2 = 45 (m = 4) 

381(b 2 + 3 ) -  19b 2 = 14175 (m = 8) 

and the claim follows. []  
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The classification. Let ~ be a smooth 2m-dimensional projective plane. Pick a 
point o e ~  and a point row L that does not meet o. The map h : ~ - { o } - - , L ,  
p~--~(o v p )A  L yields a smooth, locally trivial bundle t /=  ( ~ -  {o} ~ L) over the 
m-sphere L, and the fibers of this bundle are the point rows through o, with o removed, 
and thus homeomorphic to ~,". Note that in the case of the four classical Moufang 
planes, r/is just the Hopf bundle of the underlying division algebra. 

10. Proposition. Let  v denote the normal bundle o f  the smooth submanifold L ~= ~.  The 
bundles v and t l, considered as topological R"-bundles over L, are isomorphic. Thus the 
point space ~ is homeomorphic to the Thorn space of  the normal bundle v. 

I f  m =~ 4, then the structure group of  the smooth bundle tl can be reduced to GL (m), 
i.e. r 1 is a vector bundle. In this case, the vector bundles v and tl are also isomorphic. 

P r o o f. The bundle ~/is a smooth microbundle. Hence there exists an open neighbor- 
hood U of L in ~ - {o} such that the restriction hl U yields a smooth vector bundle 
rf = (hp U :  U --, L), cp. [7, Essay IV, w 1,1.~]. Since U is a tubular neighborhood of L, 
the vector bundle q' is isomorphic to the normal bundle v of L. The topological R'~- 
bundles r/ and r/' are isomorphic because they represent the same microbundle, see 
Kister [8, Thin. 2]. 

Now suppose m ~ 4. The fibers of r/ are diffeomorphic to ~ by the result of Stal- 
lings [17]. The structure group of t/ is the group Diff(m) of all base-point preserving 
diffeomorphisms of IR ~. Since the inclusion G L ( m ) ~  Diff(m) is a homotopy equiva- 
lence, cp. Stewart [18], the structure group of this bundle can be reduced to GL(m). 
Clearly, the total space ~ - {o} of q is a tubular neighborhood of L, and thus the 
vector bundles v and q are isomorphic. [] 

It is an open problem whether the point rows and the point space of a smooth pro- 
jective plane always carry the standard differentiable structure. However, the differen- 
tiable structure is uniquely determined by the Underlying topological plane, see [1]. 

By the Proposition above, it suffices to determine the m-plane bundle v in order to 
classify the point space ~ up to homeomorphism. 

11. Proposition. The 2-plane bundles over $z  are classified by their Euler class. The 
4-plane bundles over S 4 are classified by their Euler class and by their f irst  rational 
Pontrjagin class. The 8-plane bundles over S 8 are classified by their Euler class and by 
their second rational Pontrjagin class. 

P r o  o f .  Let x e Hm(BSO(m);Q) and let f ~  IS m, BSO(m)] = 7r,, BSO(m). Let C de- 
note the function that sends f to f "  (x)E H"(S'n;Q). We claim that C: %, BSO(m) 
H~(S";Q) ~ Q is a group homomorphism from the m-th homotopy group of BSO(m) 
into the m-th rational cohomology group of the m-sphere: consider the Kronecker 
index ( f ' ( x ) ,  [Sm])= (x,  fo I S ' ] ) e  Q. The term on the right-hand side is additive, 
since the Hurewicz homomorphism f ~ fo [S m] is additive. Hence the map that assigns 
to an m-plane bundle over S m the Euler class or some Pontrjagin class is additive. 

Since n2 BSO(2) = n 1 SO(2) = ;g, ~4 BSO(4) = n3 so (a )  = ~g �9 2~, and n8 BSO(8) = 
n 7 SO(8) = 2g �9 ;g, it suffices to find enough vector bundles with linearly independent 
characteristic classes, see also [12, 20.10]. 
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The Euler class of the tangent bundle of S "  is 2x by [12, 11.12], whereas the Pontr -  
jagin classes vanish by [12, 15.2], because the tangent bundle of the sphere is stably trivial. 
The Hopf  bundles over N 4, S 8 have nonvanishing Pontr jagin classes (see below p, hence 
the Proposi t ion follows. []  

Now we can prove our main result: 

12. Theorem. Let ~ be the point space of a smooth projective plane. Then ~ gs homeo- 
morphic ro the point space PflR, P2G, P2~-I or P2�9 of one of the four classical Moufang 
planes. 

P r o o f. Let v denote the normal  bundle of L as in ]0. If m = 1. then v is either 
trivial or  the M6bius bundle, because 7z 1 BO(1) = 7z o O(1) = Z 2 . Since ~,~ is a manifold. 
v is nontrivial,  and thus .~ ~ PJR. 

Now let m E {2, 4, 8}. Since the tangent  bundle of the (possibly exotic) m-sphere L is 
stably trivial (at least considered as a topological  bundle, but  see also Kervai re-Milnor  
[6, 3.1]), the total  Pontr jagin class of v is just  the restriction of the total  Pontr jagin class 
of ~ to L by [12, 15.3]. Hence p(v) = 1, 1 + 2x, 1 + 6x for m = 2, 4,8. 

Now we want to calculate the Euler class of v. F rom the Gysin exact sequence 

u etv,~ ^ 
,-- H " ( ~  {o} L)+'-Hm(L)+-----HO(L)~H"~-I(~ {o} - L ~  

and the fact that  N - {o} L = N 2" - {0} we find ely) = x. Thus we have determined 
the Euler class and (up to a sign) the total Pontr jagin  class of v. The uncertainty about  
the sign in the Pontr jagin class does not  affect the classification: v is either the classical 
Hopf bundle or the bundle obtained from the opposi te  division algebra. The total  spaces 
of these bundles are homeomorphic  by the map that  is induced on the t~ase space by 
conjugation, cp. Tamura  [19]. This finishes the proof. [ ]  

Observe that  for m = 1, 2. this proof  works also for compact  connected projective 
planes. The inclusion BOIm)-- ,  BTOP(m) is a homotopy  equivalence for m = 1, 2, ep. 
Kneser  [10], Kirby-Siebenmann [7, Essay V, w 5], hence in these dimensions the bundle tl 
is a vector bundle. By the same argument as above, r /has  to be the M6bms bundle for 
m - 1. In the case m = 2, we may use the Gysin sequence of  t / t o  obtain the Euler class 
e(t/). This yields a slightly different proof  for Salzmann's  and Breitsprecher's classifi- 
cation [14, 2.0], [2, 2.5] of the point  space of compact  connected 2- or 4-dimensional 
planes. 
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