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Abstract. We consider homomorphisms between abstract, topological, and smooth generalized poly- 
gons. It is shown that a continuous homomorphismis either injective or locally constant. A continuous 
homomorphism between smooth generalized polygons is always a smooth embedding. We apply this 
result to isoparametric submanifolds. 

Mathematics Subject Classifications (1991): 51A25, 51 E24, 51H20, 51 H25. 

The aim of this paper is to investigate homomorphisms of abstract, topological, and 
smooth generalized polygons. The first two sections deal with generalized polygons 
and their homomorphisms.  We have tried to make this paper self-contained, so 
we give a short exposition of the coordinatization and the algebraic operations 
(+ ,  - ,  o , / )  of a generalized polygon. The most important theorems at this stage 
are the characterization (2.7) of injective homomorphisms, and the proof (2.9) 
of Pasini's theorem [27] that the fibers of a non-injective homomorphism are 
infinite. 

Topological polygons are introduced in Section 3. Here, the main result is 
that a homomorphism is either injective or locally constant (3.4); in partic- 
ular, a connected polygon admits only injective homomorphisms. For topological 
projective planes, this has been proved by Breitsprecher [4]. This result may 
be compared to Pasini's theorem [27] that finite polygons admit only injective 
homomorphisms.  

In the last section, we introduce smooth polygons. The main result of this 
paper states that a continuous homomorphism between smooth polygons is always 
a smooth embedding (4.7). In particular, every continuous automorphism of a 
smooth polygon is smooth, and thus the topological automorphism group of the 
polygon, endowed with the compact-open topology, is a smooth Lie transformation 
group (4.9). As an application, we prove a strong inhomogeneity theorem for a class 
of isoparametric hypersurfaces. 
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1. Generalized Polygons 

RICHARD BODI AND LINUS KRAMER 

(1.1) DEFINITION. An incidence structure ~ = (7) , / : ,  ~') is a triple, consisting 
of a set 7 -) of points, a se t / :  of lines, and a set .~ C_ 79 × / :  of flags. We say that 
a point p is incident with a line ~, if (p, £) is a flag. The union V = 7 9 U £ is 
called the set of vertices of ~ (we assume that 79 n / :  = 0). For a vertex x, we put 
Vx = {y E 1; [ y is incident with x} (Knarr [21] denotes this set by I'(x)). 

A point row Ve = L C_ 79 is the set of all points that are incident with a certain 
line £. Similarly, a pencil of lines Vp = /:p C_ L: is the set of all lines that are 
incident with a certain point p. 

A k-chain is a sequence v = (v0, v l , . . . , v k )  E V k+l of vertices with the 
property that vi is incident with Vi+l for 0 < i < k, and with vi ~ vi+2 for 
0 ___ i < k - 1; we say that the k-chain v joins vo and vk (note that we exclude 
stammering chains). If two vertices x, y can be joined by a k-chain, but not by any 
kl-chain for k ~ < k, we say that the distance d(x, y) between x and y is k. 

An ordinary k-gon is a 2k-chain (v0, v l , . . . ,  v2k-l, v0) with the property that 
vi ~ vj fo r0  < i < j < 2k. 

(1.2) DEFINITION. Let n > 3 be an integer. A generalized n-gon is an incidence 
structure ~3 = (79, Z:, .T') with the following properties: 

(n-Gonl) There are no ordinary k-gons for 2 < k < n. 
(n-Gon2) Any two vertices are contained in some ordinary n-gon. 
(n-Gon3) There exists an ordinary (n + 1)-gon. 

Let vo, vk be two vertices with distance d(v0, vk) = k < n. Condition (n-Gonl) 
says that the k-chain (v0 , . . . ,  vk-l ,  vk) joining v0 and Vk is uniquely determined 
by the vertices v0, vk. Hence we may define a map fk(vo, v~) = vk-1. Condition 
(n-Gon3) is equivalent to the following condition, see Schroth [34, 2.5], e.g. 

(n-Gon~) Every point row and every pencil of lines contains at least three 
vertices. 

Note that the definition of a generalized polygon is self-dual: (79,/: ,  5 r )  is a 
generalized polygon if and only if the dual (Z:, 79, ~ - 1  ) is a generalized polygon. 
For this reason, we will sometimes give a proof only for the point space; the 
corresponding statement for the line space follows by duality. 

(1.3) EXAMPLE. Let g3 = (79,/3, 9 t') be a generalized triangle. The conditions 
(n-Gonl) and (n-Gon2) say that any two different points p, q can be joined by a 
unique line p V q = f2(P, q), and that any two different lines ~, h intersect in a 
unique point ~ A h = f2(£, h). Thus, the generalized triangles are precisely the 
projective planes. 

The following lemma will be required frequently. 

(1.4) LEMMA (cp. Tits [40, 3.30]). Let x, y E 1; be two vertices of the same type 
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(i.e. x and y are both points or x and y are both lines) in a generalized n-gon q3. 
Then there exists a vertex z E V with d(x, z) -- d(y, z) = n. 

Proof Let z be a vertex with d(x, z) = n that has maximal distance k to y, 
and suppose that k ~ n. Thus k _< n - 2. Choose a vertex b E Vz - {fk(Y, z)}. 
We have d(b, x) = n - 1 and d(b, y) = k + 1, hence there is an element z ~ E 
Vb --  {fn--l(X, b), fk+l(Y, b)}. But  now d(z', y) = k + 2 and d(z', x) = n, a 
contradiction to the maximali ty of  k. 

(1.5) DEFINITION.  Let ~ = (79, £ ,  .T') be a generalized n-gon, and let x, y 
be two vertices of  maximum distance d(x, y) = n. We define a perspectivity 
[y, x] • ~2x ~ Vy b y v  ~ f ~ - l ( v ,  y), cp. Knarr [21]. Clearly, [x, y][y, x] = idv~. 
A concatenation of  perspectivities is called a projectivity; we put [z, y][y, x] = 
[z, y, x], etc. The collection of  all projectivities of  ~ forms a groupoid. If  we fix a 
vertex x, then the group I I (x)  of  all projectivities from Vz to Vx is two-transitive 
on 12~ (see (1.8) or Knarr [21, 1.2]). 

By (1.4), projectivities exist between any two vertices of  the same type; if n is 
odd, then projectivities exist between any two vertices. 

We shall make use of  the following coordinatization of  the point space. 

(1.6) DEFINITION. Let ~ = (7 9, £ ,  5 r )  be a generalized n-gon. Let v be a vertex 
such that the vertices q with distance d(v, q) = n - 1 are points (i.e. v is a point if  
n is odd, and a line if n is even), and let u be a vertex incident with v. We put 

79n-l(u, v ) =  {q e 791d(q, v ) =  n -  l and fn- l (q ,  v) ~ u}. 

This set is called the big cell in 79 with respect to (u, v). In the case of  a projective 
plane, 792(t, P) = 79 - L is an affine plane. 

Now choose an n-chain v = (v0 = v, vl = u, v 2 , . . . ,  Vn). For z C 79n-l(u,  v) 
let (xo = v, X l , . . . , x n - 1  = x) denote the unique (n - 1)-chain from v to x. 
Since d(xi, vn-i) = n, we have d(xi+l, vn_i) = n - 1, and we may define 
yi = f~- l (x i+l ,  v~-i) for 0 _< i < n - 1. Then we have x~+l = fn- l (Yi ,  xi). 
Note also that xi = fn - l ( vn - i -2 ,  Xi+l). Therefore, we get a bijection 

~v" 7 9 n - l ( U ,  V)  ----r ( V v n  - -  { V n - 1 } )  

X(VVn_I  - -  {Vrt--2})  X ' ' "  X (~)V2 --  { V l ) ) "  X ~ ( Y o , ' . . , Y n - - 2 )  

which can be expressed in both directions in terms of  the function f ~ - I  (cp. 
Knarr [22, 2.5]). There, the set 79~-1 (u, v) is denoted by F~-I  (v, u). 

(1.7) DEFINITION. Let ~ = (79, £ ,  ~ )  be a generalized n-gon. Let v = ( v 0 , . . . ,  
v2~-1, v 0 ) b e  an ordinary n-gon. We put OK = Vl, OOK = v2n-1, 0L = Vn-2, and 
O0 L : V n . Finally, we set L = V~,_~ - {OOL} and K = Vvo - {OOK},  and we 
choose an element 1L C L - {0L). For (x, y) E K x L we define 

x • y = fn_l(fn_l(fn_l(fn_l(X, 1L), V:,~_:), y), VO) ~ K. 
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Similarly, for (x, y) E K x (L - {0L}), we define 

x /y  = f n - l ( f n - l ( f n - l ( f n - l (  x, Y), V2n-2), IL) ,  V0) C K .  

It is readily verified that x ~ x • y is a projectivity for y ~ 0L, with inverse 
x r---> x / y .  We leave it to the reader to check that the expressions on the right-hand 
side are well defined. These maps have the following properties: 

(1) x * 0L = OK "- OK • y 
(2) x • 1L = X 
(3) (x  • y ) / y  = ( x / y )  • y = x for y ¢ 0L. 

The map • is called the multiplication with respect to (v, 1L), cp. GrundhOfer et 

al. [15, 1.1], and Hanssens and Van Maldeghem [18] for n = 4. 

(1.8) DEFINITION. Let ~3 = (P ,  £,  9 c) be a generalized n-gon. Let v = (v0, . . . ,  
v2~-l, v0) be an ordinary n-gon. We put 0K = Vl, C~K = v2n-1, and K = 
]Iv0 -- {OK)K}. Furthermore, we choose an element a E 12,~+1 - {Vn, V,~+2}. For 
y C K,  we consider the projectivity 

Try = [V0, Vn, fn-l(a,  Y), Vn+2, f n - l ( a ,  Vl), Vn, VO] e II(vo). 

Note that 7ry(oo/~) = OOK, 7ru(0K ) = y, and 7r0K = idv~ 0 . Thus we may define 

maps -t- : K x K ~ K by x + y = 7ru(x ) and by x - y = 7r~-~(x). Then we get 

the identities 

(1) x +OK = O K  + X = X 
(2 )  ( x  + - y = ( x  - y )  + y = x .  

Therefore, (K,  OK, +)  is a right loop in the sense of [3]. The map + is called 
the addition with respect to (v, a), cp. GrundhSfer et al. [15, 1.4], and Hanssens 
and Van Maldeghem [18] for n = 4. 

2. Homomorphisms Between Generalized Polygons 

(2.1) DEFINITION. Let ~ = (~ , /2 ,  ~ )  and ~3' = (T ~',/2', 5 c') be generalized 
n-gons. A homomorphism ¢p : q3 ~ g3 ~ is a map qo : V --+ V t with the following 

properties: 

(HOml) Points are mapped to points, lines are mapped to lines, and flags are 
mapped to flags. 

(Hom2) The image cp(~3) = (qo(7)), qo(£), (cp x ~2)(.T')) contains an ordinary 

(n + 1)-gon. 

The second condition guarantees that the image of a generalized n-gon is again a 
generalized n-gon. Note, however, that a homomorphism may diminish the distance 

between vertices. 
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(2.2) EXAMPLE. Let Qp denote the field ofp-adic numbers and let f" Qp --+ Fp 
be the canonical epimorphism onto the residue class field Pp. This epimorphism 
induces an epimorphism between the associated projective planes over Qp and Fp, 
respectively (compare Prieg-Crampe [28, V, Section 4]). 

For the remainder of this section, let qo" ~ -+ N~ be a homomorphism between 
generalized n-gons ~3 and ~ .  We denote the distance functions of N and ~3 ~ by d 
and d I, respectively. 

(2.3) LEMMA. Let d ~ denote the distance function in the image ~ (~ ) .  Then 
d' = dK In particular, two images ~(p) ,  qo( g) are incident in ~ '  i f  and only i f  there 
is a f l a g ( q ,  h) E ~ with (~(q) ,  ~ ( h ) ) =  (qo(p), ~(g)). 

P roo f  Suppose that d~(vo, vk) = k > d'(vo, vk) = k'. Let (v0,.. . ,  vk) be a 
minimal k-chain in ~(N), and let (v0, w 1,... ,  wk,-1, vk) be a minimal k~-chain in 
g3 ~. Deleting the repetitions in (v0,.. . ,  vk, wk,-1,. . . ,  wl, v0), we get an ordinary 
m-gon in N~ for some 2 <_ rn <_ (k + k ' ) / 2  < n, a contradiction. 

The following lemma, which has a number of immediate consequences, is based 
on a simple, but useful observation. 

(2.4) LEMMA. I f  d ' (~ (x ) ,  ~(y) )  = n, then d(x ,  y) = n, and ~ o [x, y] = 
[qo(x), ~(y)] o ~. I f  dt(qa(x), ~ (y ) )  = n - 1, then d(x ,  y) = n - 1, and we have 

t X ~ ( f ~ - l ( x ,  y)) = f ' - l ( ~ (  ), ~(Y))" 
Proo f  This is clear from d~(~(x), ~(y )) _ d(x, y ). 

(2.5) COROLLARY (cp. Pasini [27, Lemma 1]). For every x E 12, the map 
l [ ];x " 1;~ -+ 1;~o(x ) N ~(12) is a surjection. In particular, the restriction ~ I 1;~ 

assumes at least three different values. 
Proo f  Let qp(xl) E 1)~(~). Choose an ( n -  1)-chain (~(x), ~(xl) , .  •., ~p(x~-l)) 

in ~'. Now d(x ,  x,~-l) = n - 1 by (2.4), and ~(f~-l(X~-l,  x)) = ~(xl). 

(2.6) COROLLARY. Let vn-~ be a vertex. Choose elements Vn, vn-2,  1L ~ ~ _ ~  
with pairwise  different images under ~. Choose a vertex v~n_~ with d'(~(v~_l), 
~( v2n _ ~ )) = n. This uniquely determines an ordinary n-gon v = ( vo, . . . , v2n - I, vo) 
in ~3, and the image o f  v is an ordinary n-gon in ~3' (because ~(v~)  ~ ~(vn-~)) .  
Thus we may consider the multiplication • in g3 with respect to (v, 1L), and the mul- 
tiplication • ' in ~3' with respect to (q~(v), ~y(1L)). Provided that ~ (x )  ~ q~(o~g) 
and ~(y )  ~ ~ ( ~ L ) ,  we get the relation ~ ( x  • y) = ~p(x) , '  ~(y) .  

(2.7) COROLLARY. Let v, v,~_~ ~ V be two vertices with d'(q~(v), qo(Vn_l)) = 
n - 1. Put  u = fn-~(vn-1, v) and consider the big cells P._~(u, v) C_ p and 
p~ p '  n_l(~(u), ~(v)) _C a s d e f i n e d i n ( 1 . 6 ) . L e t v a n d v t  d e n o t e t h e ( n  - 1)-chains 
determined by ( v , vn-  ~ ) and ( ~(  v ), ~(  vn-  ~ )), respectively. Setting 

-1 pr u u : ( c v), 
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we get the relation 

qO[ U = ~vi 1 o ((qo [ ]~Vn -- {?3n_l) ) X " '"  X (~  I ~ v 2 -  {Vl) ) )  o ~V. 

The next theorem gives a local characterization of injective homomorphisms. 

(2.8) THEOREM. Let qo : ~3 --+ ~3 ~ be a homomorphism between generalized n- 
gons. Let x be a vertex of  ~.  I f  the restriction qo [ V~ is injective, then qo is injective 
on V, that is, ~p is an embedding o f  generalized n-gons. 

Proof  Suppose that y C V is a vertex of the same type as x. Pick a vertex z with 
d ' (~(x ) ,  qp(z)) = d~(qo(y), qo(z)) = n. Then the projectivity [y, z, x, z, y] = 
idvy is defined, and we conclude that 

v lVy = o I vx) o [x, z, u] 

and 

= o I vx)  o Ix, z]. 

This shows that if ~ is injective on Vx, then it is injective on both 1,'y and 1,'~. 
Thus, if n is odd, then the restriction of qo to any point row and to any pencil of  

lines is injective. 
Next, suppose that n is even, and that ~plVx is not injective. Suppose that 

qo(b) = ~(0L) for two vertices b, 0L E ~;x. Choose two more elements OOL, 1L C 
'l;x with different qg-images. Put v,~-2 = 0L, v,~-i = x, v~, = OOL, and choose a 
vertex v2,~-1 --- OK with dt(qO(Vn-1), q0(V2n-1)) = n. This determines a unique 
ordinary n-gon (vo , . . . ,  v2,~-1, vo), and we may apply the multiplication map of 
(2.6) to show that qo is not injective on K U ( o o g )  = V,, 0. So let u E K - {OK}. 
If ~p(u) ----- ~(o~K), then we are done. Otherwise, we have the relation qo(u • b) - 
qp(u) . '  ~(b) = qO(0K), but u ,b b # OK. Hence qo is not injective on K t_J {OOK}. 

Finally, assume that ~ is not injective on V. By what we have proved so far, 
we have to find two different vertices z, y of distance 2 with qa(x) = ~(y).  To 
that end, we choose two such vertices with minimal distance d(x, y) = k. We 
claim that k = 2. Otherwise, choose a minimal k-chain (z, Vl , . . . ,  vk-1, y). Now 
the restriction ~ I {vl, v2, • • •, y} cannot be injective, because otherwise the image 
qo(~3) would contain an ordinary k/2-gon. But the distance between the k elements 
{vl, v2 , . . . ,  y} is strictly less then k, a contradiction. 

The next lemma, which states that the fibers of ~p in a point row or in a pencil of 
lines are isomorphic via projectivities, leads to a simple proof of Pasini's theorem. 

(2.9) LEMMA. Let a, b be vertices of  ~3. In case that n is even, we assume that a and 
b have the same type. I f n  is odd, then a, b may be arbitrary vertices. Let x EVa  and 
y E Vb, andpu t  X = {z E V~ I qo(z) = ¢p(x)} and Y = {z  e Vb IV(z) = qo(y)}. 
Then there exists a projectivity 7r from a to b with 7r(X) = Y .  
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Proof Let 7r' = [qo(b), qo(vl ) , . . . ,~(vk) ,  ~y(a)] be a projectivity in 9 '  from 
~(a)  to 9~(b) with 7r'(~(x)) = cy(y). Note that by the assumptions, projectivities 
between c~(a) and ~(b) exist, and that 1)6(5) is homogeneous under II(~(b)). Thus 

a projectivity a -t with the property stated above exists. 
By (2.4) we get a projectivity 7r = [b, v~ , . . . ,  vk, a] in ~ from a to b. Now for 

z E X,  we have ~(Tr(z)) = 7r'(qo(z)) = c?(y), hence 7r(X) C Y. Conversely, if 
7r(z) E Y, then ~(y)  = qo(r(z)) = 7r'(~(z)), hence qa(z) = c2(x), and the claim 
follows. 

An immediate consequence is the following theorem, proved first by Pasini [27] 
(see also Dembowski [9], Hughes [20] and Mortimer [26] for n = 3). 

(2.10) THEOREM. Let qp: g3 --+ ~ '  be a non-injective homomorphism between 
generalized n-gons. Then for every pair of incident vertices x, y E ]2, the set 
X = {z E 12u I ~(z  ) = ~(x)} is infinite. In particular, q3 is infinite. 

Proof Let a, b E l? be vertices with d'(qo(a), c2(b)) = n. By (2.8), there 
are two vertices xl ,  Yl E 12~ with ~ ( X l )  --  ~9(X2). Let (a, Xl, X2, . . .  ,Xn_l ,  b) 
and (a, Yl, Y2,. . . ,  Y~-I, b) denote the corresponding n-chains. Clearly, we have 
q~(xi) = 9~(Yi) for 1 _< i < n. We put X = {z E Vx,_, I qo(z) ¢ ~(xn-2)} ,  
Y = {z E Vv, I~(z)  = ~(Y2)}, and 7r = [Yl, x ,-1] .  We claim that re(X) _C Y. 
Indeed, for z E 1)~:,_ l , the distance between p(z)  and ~(Tr(z)) is n - 2 or n - 4 
(because d'(~(a), ~(b)) = n), and it is n - 4 if and only if ~p(z) = ~p(x,-2) and 
~(Tr(z)) = ~(Y2). Thus, if z E X,  then ~(Tr(z)) = ~(Y2). Now let ~ + 1 denote 
the cardinality of qo(12vl ), and let ~ denote the cardinality of Y. By (2.5), we have 
o~ _> 2. By (2.9), the cardinality of X is ~r/. Hence o~ __< r/, and thus r / i s  an 
infinite cardinal number. By (2.9), the cardinality ~ of the fiber is independent of 
the vertices Yl, Y2 if n is odd, and it depends only on the type of Yl if n is even. 

3. Topological Polygons and their Homomorphisms 

(3.1) DEFINITION. Let N = (79, £ ,  5 c) be a generalized n-gon. We say that g3 
is a topological n-gon, if 79 and/2 carry non-trivial (i.e. neither discrete nor anti- 
discrete) topologies such that the map fn-1 is continuous on its domain {(x, y) E 
1; x ~ l d ( x ,  y) = n - 1}. Note that this implies that every projectivity is a 
homeomorphism. 

Our notion of a topological n-gon agrees for n = 3 with the usual definition 
of a topological projective plane, see, for example, Salzmann [30], [33], or Skorn- 
jakov [36]. For n = 4, it agrees with the definitions of Forst [11] and Grundhtffer 
and Knarr [13] of a topological generalized quadrangle. It is stronger than the 
definition of Burns and Spatzier [7]; the continuity of f~_ 1 implies that .~ is closed 
in 79 x £,  see [24], but the converse is not true, unless 79 and/2 are compact spaces 
(cp. Grnndhtifer and Van Maldeghem [14, 2.1(a)]). 

The following facts are proved in [24]. 
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(a) Every point row and every pencil of lines is a doubly homogeneous, closed 
subspace of 79 and £,  respectively. 

(b) The spaces 79, £ and .T', as well as every point row and every pencil of lines 
are non-discrete Hausdorff spaces. 

(c) The point rows are connected if and only if 79, £ ,  and ~ are connected. 

(d) For every vertex x, the set {y C ~;I d(x,  y) = n - 1} is open in ~;. In 
particular, the big cell 79n-l(U, v) defined in (1.6) is open in 79. The map ~v 
is a homeomorphism. 

(3.2) DEFINITION. A homomorphism ~ : ~3 ~ ~3 J between two topological n- 
gons is called continuous if ~ is continuous on 79 and on £.  Note that by (2.3), the 
image qD(~) is again a topological polygon. 

(3.3) THEOREM. Let qa be a continuous homomorphism between topological 
polygons ~3 and ~ .  I f  qa is not injective, then ~ is locally constant on each point 
row and on each pencil o f  lines. Hence if79 is connected, then ~ is injective. 

Proof. Suppose that qa is not injective. Choose an ordinary n-gon v and a vertex 
1L as in (2.6), such that there is a vertex b E L -  {0L} with ~(b) = ~(0L). Consider 
the open set V = {x C K [ qo(x) ~ qO(~K)}. Now ~(V • b) = q~(V) . '  ~p(b) = 
{qO(0K)}, and therefore qo is constant on the open set V • b C_ K.  By (2.9), every 
preimage of a vertex is open in K U {OOK}, hence qa[K tA {eeK} is locally 
constant. Therefore, there exists a point row and a pencil of lines where qo is locally 
constant. 

If ~[ V~ is locally constant, and if y has the same type as x, then we find a 
vertex z with d'(~(x) ,  qo(z)) = d'(qo(y), qo(z)) = n, and thus 

 lVy = o I o Ix, z, y] 

is also locally constant. 

(3.4) COROLLARY. Let ~ be a continuous homomorphism between topological 
polygons ~3 and ~3 t. I f  ~ is not injective, then ~ is locally constant on 7 9 and £.  
(See Salzmann [31], Breitsprecher [4, 3.5], or Stroppel [38, Th. 6] for  the case o f  
topological projective planes.) 

Proof. This follows from (3.3) and (2.7). Note that the set U defined in (2.7) is 
open, and that every point is contained in a set of this type. 

(3.5) PROPOSITION. Let ~ be an (abstract) homomorphism between topological 
polygons ~3 and ~J. I f  the restriction o f  ~ to some point row and to some pencil 
o f  lines is continuous, then ~ is continuous. I f  n is odd, then it suffices that the 
restriction to some point row is continuous. 

In particular, every root collineation (see, e.g., Ronan [29, p. 66]) of  a topo- 
logical polygon ~ is a continuous automorphism. (See Breitsprecher [4, 1.2] for  
n = 3 and Grundh6fer and Knarr [13, 5.1]for n = 4.) 
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Proof Suppose that the restriction ~ [ 1;~ is continuous. If y has the same type 
as x, then we may pick a vertex z with d(qo(z ), qo(x)) - - d ( ~ ( z  ), ~(y)  ) = n. Now 
the restrictions 

and 

 lvz = o I o Ix, z] 

are continuous. Hence the restriction of ~o to any point row and any pencil of lines 
is continuous. By (2.7), the map ~ is continuous on the open set U defined in (2.7). 
Since every point is contained in a set of this type, ~ is continuous on 79. 

4. Smooth Polygons and their Homomorphisms 

The word 'smooth' will be used as a synonym for k-times continuously differen- 
tiable, for some k with 2 _< k _< ~ .  

(4.1) DEFINITION. Let ~ = (79, £,  b v) be a topological polygon. If 7) and £ 
are smooth manifolds of positive dimension, then by [24] the spaces 7) and £ 
are compact and connected. By Gmndh6fer and Van Maldeghem [14, 2.1 (b)], the 
domain of the map f n -  1 is open. We call the polygon ~ smooth, if the map f n -  1 
is smooth. 

(4.2) PROPOSITION. Let ~3 = (79, ~,  f )  be a smooth n-gon. Then every point 
row is a compact, connected, smooth embedded submanifold (see [23]for the case 
n = 3). 

Proof Let £ be a line. Choose a vertex x with d(x, g) = n. The set V = {p C 
7 9 ] d(p, x) = n - 1} is open in 79 and contains the point row L corresponding to 
g. Now we may define a retraction ~ :  V ~ L by p ~ f ~ - l ( f n - l ( P ,  x), g). By 
[6, Satz 5.13], the fixed point set L of ~ is a smooth embedded submanifold. 

Since the point rows and the pencils of lines are smooth submanifolds, every 
projectivity is a diffeomorphism, and the multiplication as well as the addition is 
a smooth map. Similarly, the coordinate map ~v is a diffeomorphism. There is an 
obvious generalization of (3.5) to smooth polygons. 

(4.3) THEOREM. Let K,  L be smooth manifolds of  dimension m and m ~, respec- 
tively. Let OL, 1L E L and OK E K be elements, and suppose that we are given 
smooth m a p s .  : K × L --+ K a n d / :  K x (L - {0L}) ---+ K with theproperties 
(1)-(3) of(1.7). Then K is diffeomorphic to ]~m. 

Proof Let E _C K be a relatively compact, open neighborhood of 0K in K which 
is diffeomorphic to ~m. Such a set E exists, since K is a smooth manifold. We 
shall inductively constmct an increasing sequence (Ej)jer~ of relatively compact, 
open neighborhoods of OK, each of which is diffeomorphic to ~m, such that their 
union is K. 
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We put E1 = E and al = l r .  We may choose a compatible metric d on L 
in such a way that d(al ,  0z) _< 1 holds. Assume that we already have defined 
the sets E l , . . . ,  Ej.  Furthermore, let a l , . . . , a j  E L with d(ak, 0r)  _< k -1 for 
l < _ k < _ j .  

To construct the set Ej+I, we first prove that there exists a neighborhood W of 
OL such that Ej  • W is contained in Ej.  Since the multiplication • is continuous, 
we find for every element e E Ej  a neighborhood We of OL and a neighborhood Ue 
of e with the property that the inclusion Ue • We C_ Ej  holds. Since Ej  is compact, 
we find a finite subcover ( U I , . . . , U n }  of {Uele  C Ej} .  Let { W I , . . . , W n }  be 
the corresponding subfamily of {W~ I e E Ej} ,  and set W = M'~=1Wk. Then, by 
construction, we have Ej  • W C_ Ej .  

Now we choose an element aj+l E W - {0L} with d(aj+l ,  0L) _< 1 / ( j  + 1) 
and we define Ej+I = E j /a j+ l .  Then we have Ej • aj+l C_ Ej  = Ej+I • aj__+l, 
and since the multiplication • is right-cancellable by (1.7), it follows that Ej  C_ 
Ej+I. Moreover, since the map x ~ x • aj+ 1 : K -+ 1( is a diffeomorphism of 
K, we conclude that Ej+I is relatively compact and open and is diffeomorphic to 
]~m. 

Having constructed the sequence of m-cells (Ej)jer~, we have to show that 
Uj>_IEj = K .  To verify this, fix an element x E K. Since the associated 
sequence (aj)jEi~ converges  in L to 0L, we can find an element aj+ 1 such that 
x • aj+l C E1 Q Ej .  Thus we have x E E j / a j + l  = Ej+I.  Now, the equation 
Uj>_IEj = K expresses that K is a regular neighborhood of OK in the sense of 
Siebenmann et al. [35]. Since E1 is diffeomorphic to i~ m, it is a regular neighbor- 
hood of 0K as well. By [35, Th. 2.1 and Section 6], all regular neighborhoods of a 
given point are diffeomorphic. Hence K is diffeomorphic to ~m. 

(4.4) COROLLARY. Let ~ be a smooth polygon. Then every point row is homeo- 
morphic to an m-sphere, and every pencil o f  lines is homeomorphic to an m~-sphere, 
for  some integers m,  m ~ > O. Every 'punctured point row' (i.e. a point row with 
a point removed) is diffeomorphic to ]~m, and every punctured pencil o f  lines is 
diffeomorphic to ]~m' (cp. Knarr [22, 2.1]). 

It is unknown whether the point rows or the pencils of lines are necessarily standard 
smooth spheres or not. 

The fact that the point rows and the pencils of lines are manifolds implies 
that n E {3, 4, 6}, see Knarr [22]. This result is the topological analogue of the 
celebrated Feit-Higman theorem [10]. There are also restrictions on the parameters 
m, m' :  i f n  = 3 , thenm = m'  E {1, 2, 4, 8}, i fn  = 6 , thenm = m' C {1, 2, 4}, 
and i f n  = 4 a n d i f m ,  m ~ > 1, t h e n m  = m ~ E {2, 4} o r m + m  ~ i sodd , s ee  
also Grundh6fer et al. [15, 1.7] and Kramer [24]. In the case of smooth projective 
planes, the topological spaces 79 and/2 are determined up to homeomorphism by 
the number m (see [23]). 

(4.5) COROLLARY. Let (D, 0, 1, +,  •) be a double loop (cp. Grundh6fer and 
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Salzmann [16] or Hofmann and Strambach [19]). Suppose that D is a smooth 
manifold of  positive dimension m. Assume moreover that • : D x D --+ D is a 
smooth map, and that the solution x of  x • a = b depends smoothly on (a, b) C 
(D - {0)) x D. Then D is diffeomorphic to ~m, and m C {1, 2, 4, 8) by Zdams' 
result [1, Th. 1.1.1]. 

(4.6) DEFINITION. A homomorphism ~ between two smooth n-gons is called 
smooth if ~a is smooth on 7" and L and if the images of 7" and L; are smooth 
submanifolds. 

(4.7) THEOREM. Every continuous homomorphism ~ : 92 ~ 92' between smooth 
polygons is a smooth embedding. (See Betten [2, Satz 2]for the case o f  collineations 
of  smooth two-dimensional projective planes.) 

Proof By (3.4), the map cp is a topological embedding. The restriction of ~ to 
any point row and to any pencil of lines is a smooth embedding: 

Let v0 C V be a vertex. Fix an ordinary n-gon v = (v0, Vl , . . . ,  v2r,-1, v0) and a 
vertex a in 92 as in (1.8). Put ti" = Vv0 - {OOK} and K '  = V~(vo ) - {~p(OOK)}. Thus 
we get a continuous, injective homomorphism of the smooth right loop K into the 
smooth right loop K ~. By [3], the restriction ~Pl K is an immersion. Replacing vi 
by v2n-i, we obtain that ~ 1 1'~0 is an immersion. 

By (2.7), the restriction of qD to any big cell is a smooth immersion. Hence ~ is 
an injective immersion, and in fact an embedding, because 92 is compact. 

(4.8) COROLLARY. A topological polygon 92 possesses at most one differentiable 
structure which makes it into a smooth polygon. 

(4.9) COROLLARY. The group o f  all continuous automorphisms of  a smooth 
polygon 92 = (7", •, .T) is a smooth Lie transformation group on 79, £, and .T, 
with respect to the compact-open topology. 

Proof The group of all continuous automorphisms is locally compact by Bums 
and Spatzier [7, 2.1], see Grundh6fer [12] and Salzmann [32] for n = 3. Being a 
locally compact group of diffeomorphisms, it is a smooth Lie transformation group 
(cp. Montgomery and Zippin [25, pp. 208, 212]). 

5. Strong Inhomogeneity of Certain lsoparametric Hypersurfaces 

In this section, we apply our results about smooth polygons to prove a strong 
inhomogeneity result for certain isoparametric hypersurfaces. For basic information 
on isoparametric hypersurfaces see the paper by Ferus et al. [17], as well as the 
book by Cecil and Ryan [8]. 

(5.1) DEFINITION. Let ) r  _C ~r be a complete isoparametric hypersurface with 
# _> 3 distinct principal curvatures. Let 7', L; denote the two focal submanifolds of 
5 t- with the canonical projections 7r1" ~ --+ 7 9 and 7r 2 : 5 t" -+ L. We may embed .T 
into 7 9 × £ by means of the map x ~ (Trl(x), 7r2(x)), and hence we may consider 
the triple (7", L, 5 r ~ 7" x Z;) as an incidence structure. 
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Ferus et al. [17] constructed a large class ofisoparametric hypersurfaces with g = 4 
distinct principal curvatures as follows: let P0, P1 , . . . ,  Pm E 11~ 2kx2k be symmetric 
matrices satisfying the identities PiPj + Pj Pi = 2(5ij 11. Put H ( z ) = ~=o ( Piz , z) 2. 
The set 

J: : {x E  2k-11/t(x) = ½) 

is an isoparametric hypersurface with 9 = 4 distinct principal curvatures, provided 
that m,  k - m - 1 > 0. The focal sets are given by 79 = {a: E $2k-1 [ H ( z )  = 0} 
and £ = {z E ~ 2 k - l [ H ( z )  = 1}, respectively. We denote the corresponding 
incidence structure by ~(P0 , .  • •, Pra ), and we call >- an isoparametric hypersurface 
of FKM-type. 

The following result is due to Thorbergsson [39]: 

(5.2) THEOREM. The incidence structure ~ (  Po, . . . , P,,~ ) is a smooth generalized 
quadrangle. The point rows are spheres o f  dimension k - m - 1, and the pencils 
of  lines are spheres o f  dimension m. 

Let ~ = (7 9, £ ,  .T) be a smooth generalized polygon. To each point p E 79 we 
may attach the number 

d(p) = codim(TvL [ L point row through p), 

where TpL denotes the subspace of the tangent space Tp79 consisting of all vectors 
tangent to the point row L. By (4.7), every continuous automorphism o f ~  preserves 
the number d. 

(5.3) THEOREM. Let ~ ( P 0 , . . . ,  Pro) be a smooth quadrangle associated to an 
isoparametric hypersurface ~ of  FKM-type. I f  m =- 3(4), then the group P, of  all 
continuous automorphisms is not transitive on the point space 7 9. 

Proof. Let v E Np7 9 be a unit normal vector of 7 9 C 5 2k-1. The shape operator 
Sv has eigenvalues 0, t l  ([17, 4.5]), and the kernel of (Sv - 11) is precisely the 
tangent space TpL of the point row L determined by the line £ = eXPv(Tr/4 ) E £. 
It is shown in [17, 5.8] that the number d(p) is not constant on 79, provided that 
m -: 3(4). Thus, by the above remark, the group E cannot be transitive on 79. 

Note that E is precisely the group of all 7rl, 7r2-equivariant homeomorphisms 
of ~'. Due to the rigidity of isoparametric hypersurfaces (2.7 in [17]), the isometry 
group I ( ~ )  is a (compact) subgroup of E. In general (e.g. in the case of Moufang 
quadrangles), the group ~ itself is non-compact and thus strictly larger than the 
isometry group I ( ~ ) .  
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