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Abstract. The isoparametric hypersurfaces in spheres with three distinct principal curvatures were 
classified by Cartan in 1939. We give a new proof for this result by showing that every such hyper- 
surface can be naturally identified with the flag space of a compact connected Moufang plane. Our 
approach also leads to a uniform and explicit description of these hypersurfaces. 

Mathematic Subject Classifications (1991): Primary, 53C42; secondary, 51 H25. 

Cartan's classification of isoparametric hypersurfaces in the sphere with three dis- 
tinct principal curvatures is one of the earliest results in the theory of isoparametfic 
submanifolds. His proof is long and computational, and relies on the classification 
of the polynomials that define the hypersurface. After he obtained his classification 
result, he observed that the focal submanifolds are symmetric spaces of rank one, 
and in fact are the projective planes over the four real alternative division algebras 
~ ,  C, ~ O, cp. [2]. For another proof using normed division algebras see Karcher 
[10]. 

In this paper, we give first a uniform and explicit construction for these hyper- 
surfaces and their focal sets. After this, we give two simple geometric proofs for 
Cartan's theorem. The first (and shorter) proof uses tools from topological geome- 
try. The second proof is more along the lines of classical differential geometry and 
uses only techniques that were already known by the time Caftan proved his result, 
i.e. the classification of symmetric spaces of rank one. 

The second author would like to thank J.-H. Eschenburg for various discussions, 
and for pointing out a gap in an earlier version of the proof of 3.11. 

1. lsoparametric Hypersurfaees 

A compact hypersurface 5 TM in the sphere ~n+l is called isoparametric, if it has 
constant principal curvatures, see Cartan [2], Mtinzner [14], Cecil-Ryan [3], Palais- 
Terng [15], or [11]. Let 9 be the number of distinct principal curvatures, and let 
T~Y: = E l ( x )  • E2(x)  ® . . .  @ Eg(z )  be the eigenspace decomposition of the 
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tangent space with respect to the Weingarten map. The leaf Si of the curvature 
distribution Ei is a totally geodesic sphere of dimension rai, cp. [15, 6.2.9]. 

Let 7 9, £ C_ ~ + 1  be the focal submanifolds of ~ with the canonical focal maps 

79 < prl .~" Pr2) £,  see [3, Ch. 2.4]. We may assume that Si(x)  is the fiber ofpri over 
pri(x) for i  = 1,2. 

If the number g of distinct principal curvatures is odd, then -79 = { - p  I P C 
79} = £;  furthermore, we may assume that - . ~  = ~v by passing to a suitable 
parallel hypersurface. 

2. The Veronese Embeddings of the Classical Projective Planes 

In this section we construct the isoparametric hypersurfaces associated with the 
classical projective planes. Let ]D denote one of the four alternative real division 
algebras ~ ,  C, ~-~ or O of real dimension ra = 1, 2,4, or 8, respectively. Basic 
information on these algebras can be found in [4]. We need to know the following 
facts: 

D admits an involutorial antiautomorphism - : D  --~ D with fixed field II~. The 
usual inner product on the vector spaced = 1I~ ~ is given by (x, y} -- ½(xfl+y~). 

2.1. LEMMA. For any three elements x, y, z E D we have 

Proof  Freudenthal ([6, 1.3.1 and 1.3.2]). [] 

Consider now the following set 

M = { ( x l , x z ,  x3) E ~ I Ixll 2 + Ix212 + Ix312, 

xi C ~ for at least one i} 

and define Si = {(Xl, x2, x3) E M I z i  ~ ~}  for i = 1, 2, 3. Note that Si is 
a 2m-dimensional sphere. We define mappings fk: M ~ D 3 x / ~ 2  k = 1, 2, as 
follows 

f l  (X~ y, Z) 

= (vS~y, vS~z, vS~x,-~-(l~12-lyl2),lzl 2-a 2 + lyl 2) , 

f2(a ,b ,c)  

(_v~a~,_vSb~_vSc~,_~_(lbl 2 lal2), 1 2 ) = - ~( la l  + Ibl =) - I c l  2 

For m _< 4, i.e. for D # O, these mappings were used by E. Cartan ([2]) to 
parametrize the focal submanifolds of isoparametric hypersurfaces in spheres with 
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three distinct principal curvatures. He defined them on the whole unit sphere in 
D 3 and showed that this does not work in the case m = 8 since the octonions are 
not associative ([2, p. 355]). It turns out that Cartan's approach does work in the 
octonion case if we restrict the domain of definition of fk to M. 

2,2. LEMMA. Forall (x, y, z) C M we have 

I f l ( x , y , z ) l  = I f z ( x , y , z ) l  = 1, 

Proof This is a straightforward calculation. [] 

The following result is fundamental for our investigations. 

2.3. LEMMA. For all (x, !1, z) E Si and ( a, b, c) E Sj, i ~ j, we have 

( f l (x ,y ,z) , f2(a,b,c))--  3-1 31xa+yb+ zcl2 

Proof It is sufficient to treat the case i = 1, j = 3, i.e. that x, c E 11~. 

(fl(x, y, z), fz(a, b,c)) 
= - 3 ( ~ y ,  ab) - 3(~3z, b5)-  3(2x, cb) + ~(Izl 2 -  lYl2)(Ibl 2 -  lal 2) 

-Izl21cl 2 + ½1zl2(lal 2 + 1512) + ½(Ixl 2 + lYl2)lcl 2 
-¼(Ix l  2 + lYl2)(lal 2 + Ibl 2) 

= -3(yb, x a ) -  3(zc, yb ) -  3(xb, zc} + 3([xbl 2 -  Ixal 2 - lybl 2 + lyal 2) 
-Iz~l 2 + llzl=(lal2 + Ibl 2) + ½(Ixl 2 + lyl2)lcl 2 
-¼(Ixal  2 + Ixbl 2 + lyal 2 + lyb[ 2) 

(here we use that x, c E ~ and apply 2.1) 

= -3(xa,  yb ) -  3(yb, z c ) -  3(zc, x b ) -  Ixa[ 2 -  lyb[ 2 -  [zcl 2 

÷21-(Ixb] 2 ÷ lyal 2 + Iza[ 2 + Izbl2 + Ixc[ 2 + [yc[2) 

= -3(xa,  yb ) -  3(yb, z c ) -  3(zc, x a ) -  3([xa[2 + lybl 2 + Izcl 2) 
+l ( Ixb la  + lyal 2 + Izal 2 + Izbl 2 + Ix~l 2 
+lycl  2 + Ixal 2 + lybl 2 + Izcl 2) 

- - ~ l x a  + yb + zcl 2 + ½ 

since ( x , y, z) and ( a, b, c) are unit vectors. [] 

Remark. In the smallest case D = ]~ we have M = ~2 and fl  = - f2 :~2  ___+ ~4. SO 
Lemma2.3 says that 

1 ( f l (x ,y , z ) , f l (a ,b ,c ) )= 3((x,y ,z) , (a,b,c))2-  ~. 

Hence the spherical distance between f l(x,  y, z) and f1(a, b, c) depends only on 
the spherical distance between (x, y, z) and (a, b, c), but it is not invariant. 
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Now we construct an incidence structure (7 9, £ ,  .T) as follows 

7 ' =  f , ( M ) ,  £ =  fz(M) and .T'= {(p,g) e 7 9 × £ l ( p , g ) =  ½}. 
Note that by Lemma 2.3 a pointp = f l  (x, y, z) is incident with a line g = f2(a, b, c) 
if and only i fxa + yb + zc -- 0, provided that (x, y, z) E S~ and (a, b, c) 6 Sj with 
i # j .  Moreover, p and g are incident if and only if dist(p, g) = dist(79, E), where 
dist denotes the spherical distance. 

2.4. LEMMA. We have 79 = f l (M)  = f l ( S i ) a n d  12 = fa(M) = f2(Si)for 
i = 1,2,3.  

Proof Let i , j  E {1,2 ,3}  and let (Xl,X2,  X3) 6 Si. By Artin's theorem, the 
subalgebra of D generated by the elements Xl, x2 and z3 is associative since at 
least one of them is real. If xj = 0 then (Xl, x2, x3) E Sj. If xj ~ 0 we define 
c = ~j/]xj]. Then we have Icl = 1 and (cxl, cx2, cx3), (xlc, x2c, x3c ) E Sj. Since 
c is contained in the associative subalgebra generated by x 1, x2 and x3 it follows 
that f l ( X l ,  X2, X3) -- fl(CXl, CX2, CX3) and f2(Xl ,  X2, X3) = f2(XlC, X2C, X3C) as 
is easily seen. This shows that fk(Si) = fk(Sj) ,  and since M = $1 tO $2 O $3 the 
result follows. [] 

2.5. THEOREM. The incidence structure (79, E, ~ ) is isomorphic to the projective 
plane over the division algebra D. 

Proof Let the point and the line space of this projective plane be called 791 and 
£ ' ,  respectively. Then we have 

79'= I e D} u {(,) I e D} u {(oo)} 

and 

~ ' =  {[a,b]]a, b6D}  U {[c]]c e D ) t_J {[~]}.  

A point (x, y) is incident with a line [a, b] if and only if y = xa + b for x, y, a, b E D. 
Furthermore, the point (x, y) is incident with the line Ix] and the point (x) is incident 
with the lines [x,b] and [oo] for x ,y ,b  E D. Finally, (oo) is incident with [c] for 
c C D tO { c~ } and there are no further incidences. 

We define mappings 91:7 9' ~ M and g2:/2' --+ M as follows 

1 1 

gl((x,y)) = x/l+lxlZ+lylZ(~,y, 0 g2([a,b])= vq+lalZ+lbl=(a,-1,b ) 

1 1 gl((s)) -- x ~ ( 1 ,  s, 0) g2([c]) = x ~ ( - 1 , 0 ,  c) 

gl(((X))) ~--- (0, 1,0) g2([O0]) = (0,0,--1). 

Using Lemma 2.4 we see that f l  o 91" 79t ___+ 79 and f2 o g2:/:t _+ /: are bijections 
and by Lemma 2.3 they are incidence preserving. [] 
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Remark. The last result and its proof show that the elements of M can serve as 
a sort of restricted homogeneous coordinates for the projective plane over ID. The 
embedding 7 9 ¢--+ 5 3m+1 is called the Veronese embedding of 7 9. See also [13]. 

2.6. PROPOSITION. The sets 79 and £ are 2m-dimensional smooth submanifolds 
of the sphere S 3ra+l. The tangent space at a point p E 79 is given by 

Tp79= { x e ~  × ~ 2 l ( x , e ) - O - ( x , p  ) forall  £ E / ~  with (p,£)= !} 2 " 

Dually, the tangent space at £ E £ is given by 

Tef~ = {y E D 3 × II~2[ (y ,p)= 0 = (y,£) for all p E 79 with (p,e)= ½). 

Proof It is easy to check that the restriction of fk to the set {(xl, x2, x3) E 
Sj [ xj > O} is an embedding for k = 1,2 and j = 1,2, 3. Thus we get coverings of 
79 and £ by three subsets which are homeomorphic to ~Zm. The coordinate changes 
are given by multiplication with elements of ID (cp. the proof of the Lemma 2.4), 
and hence they are smooth. 

Assume now that p C 7 9 and let 7: ( -e ,  s) --+ 7 9 be a smooth curve with 
7(0) = p. Let £ E/~ with (p, / )  = 1. Then Lemma2.3 implies that (7 ( t ) , / )  _< ½. 
Hence we get (7(t) - 7(0), £) _< 0 for - e  < t < E. Dividing by t gives us 

1 { < 0  if t > 0  
(-y(t)-7(0),e) >0 i f t  < 0  

Letting t --+ 0 we see that (~/(0),g) = 0. Let V be the vector space on the 
right-hand side of the stated equation. Then it follows that Tp79 C_ V since 79 is 

! } is the line pencil through p also contained in ~ 3 m + l .  The set {g E /21 (p, •) = 2 
and hence is homeomorphic to an m-dimensional sphere. This implies that V is 
at most 2m-dimensional, and the claim follows. The same argument applies to 
e E £ .  [] 

2.7. PROPOSITION. Let n be a unit normal at p E 7 9 _C ~3m+1. The Weingarten 
map Am has eigenvalues - 1 / v ~ ,  l/x~3, each with multiplicity m. Hence 79 is 
the focal manifold of an isoparametric hypersurface with 9 = 3 distinct principal 
curvatures, see [3, Ch. 2.3] or [9, Th. A]. 

Proof Put g = eXpp(Zr/3)rt E £. By 2.6, the point row L C_ 79 corresponding to 
the line g is a round m-sphere of spherical radius 7r/3, hence the Weingarten map 
Am has an eigenspace of dimension ___ m with eigenvalue 1/v/3. Now A-n = -An .  
We may apply the same argument to g' = eXpp(-(Tr/3)rt), and the claim follows 
from the fact that dim TpP = 2m. [] 

We may define a mapping G: 3 v × [-7r/6, 7r/6] --+ S 3m+1 as follows 

(' ) ) G(p,g , t )= ~ c o s t - s i n t  p +  c o s t + s i n t  g. 
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Note that G(p, g, - r r /6 )  = p and G(p, g, 7r/6) = e. Since (p, e) = ½, i.e. since the 
spherical distance between p and g is r / 3 ,  the mapping G(p, e, .)joins p and e by 
a great circle segment. 

Using the explicit description of the Weingarten map of a tube over a submani- 
fold given in [3, Th. 3.2] we obtain the following corollary. 

2.8. COROLLARY. The mapping G describes an isoparametric foliation o f  
the sphere ~3ra+l For each t C (-7r/6,  7r/6) the set ~ t  = G ( f  , t) is an iso- 
parametric hypersurface with three distinct principal curvatures equal to 
cot(Tr/6 - t), co t ( r /2  - t) and cot(57r/6 - t). The focal submanifolds are 79 = 
G ( . T , - r / 6 ) a n d  £ = G(3r, r /6 ) .  [] 

3. The Classification 

In this section we prove Cartan's classification result. Let .T n C_ ~,~+1 be a com- 
pact isoparametric hypersurface with focal manifolds 7 9, L. First, we associate an 
incidence structure with the triple (79, L, U) as follows 

3.1. DEFINITION. We may embed the hypersurface U into the product 79 × £ 
by means of the map x ~ (prl(x),pr2(x)), and hence we may consider the 
triple (79, £,  .T) as an incidence structure: the elements of 79 are called points, the 
elements of L are called lines, the elements of Jr are calledflags, and a point p and 
a line e are incident if and only if Prl l (p)  N pr~l (Q # O. 

This definition agrees with Thorbergsson's construction of the building associated 
to an isoparametric submanifold of rank >_ 3 (cp. [18],[1 1]). 

Note that a point p and a line g are incident if and only if dist(p, g) = dist(79, L). 
Moreover, the following is true 

3.2. PROPOSITION. We have the identities 

: T =  ( x  E ~n+1[dist(x,79) = dist(~,79) = ~g} 

and 

/ Z - - ( : r E  ~n+l ]dist(x,79) = dist(L;,79) = g } .  

Hence the geometry o f ( P ,  E, .~ ) is completely determined by one focal submanifold 
and by the spherical distance function. [] 

3.3. LEMMA. I f  the number of  principal curvatures is at least three, then the 
incidence structure (79,/~, 5 r )  contains no digons, i.e. two lines intersect in at most 
one point, and two points are joined by at most one line. 

Proof  (due to Thorbergsson, unpublished). Suppose there is a digon consisting 
of two distinct lines h, g and two distinct points p, q. Let x l , . . . ,  x4 E .T be the 
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elements corresponding to (p, g), (q, g), (q, h) and (p, h), respectively. Consider 
the quadrangle obtained by joining xl ,  x2, x3, x4, Xl by straight line segments. On 
one comer, say xl, the angle must be _< 7r/2. But this is impossible, because the 
tangent spaces Ek of the curvature spheres Sk are orthogonal, and because the 
radius vectors of the curvature spheres Sl(Xl) and $2(Xl) meet at Xl at an angle 
ofTr[( 9 - 1 ) / 9 ] >  7r/2. [] 

3.4. PROPOSITION. I f  the number ofprincipal curvatures is 9 = 3, then (79, L;, .T) 
is a compact connected projective plane in the sense o f  Salzmann ([16]). 

Proof We show first that any two lines intersect, and that any two points are 
joined by a line. For x E .T, let 

S12(X) -~ {(y,z)  E .~" x . ~ l y E  Sl (X) ,ZE ~2(Y)} 

and consider the map p(y, z) = prl(z ). Note that p(S12(x)) is precisely the set of 
all points that can be joined with the point pr 1 (x) by a line. Thus, if we can show 
that p(S12(x)) = 7 9, then we have proved that any point in 7 9 is incident to some 
line through pr I (x). 

Now $12(x) is a compact ml  + m2-manifold. The open subset U = {(y, z) E 
$12(x) ] y ~ z} is mapped homeomorphically onto its image p(U), because two 
lines intersect in at most one point. Let (y, z) E U and consider the commutative 
diagram 

.[.p, 

~2 = nral+m2('P; Z2) 79- {p(u,z)};z2) 

The vertical arrow at the right is an isomorphism, because the restriction of p 
to U is a homeomorphism, and because we can excise. If there were a point 
q E 7 9 - p ( S 1 2 ( x ) ) ,  then p would factor as $12(x) --* 79 - {q} --+ 79, and hence 
p.: Hml+m2(S12(x); Z2) --+ Hm~+m2(79; Z2) could not be an isomorphism. By the 
same reasoning, any two lines have some point in common. Finally, (79, L;, F )  is 
a compact connected projective plane, because f is compac t and connected (see 
Grundh0fer ([7, 2.1 ])). ~ [] 

3.5. LEMMA. Let ~b E On+21R be an orthogonalmap with q5(7 9) = 7 9. Then q5 is 
an isometry o f  the isoparametric hypersurface yc and of  the focal submanifold £. 
Moreover, ~ preserves the incidence structure, i.e. ~ E Aut(79,/2, f ' ) .  

Proof This is clear from 3.2. [] 

From now on, we assume that the number g of distinct principal curvatures is 
three. 

3.6. THEOREM. Let .T be an isoparametric hypersurface with three distinct 
principal curvatures. For every point p in the focal submanifold 79, there exists an 
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involution Cp E O~+2~ that maps 79, ~., jr onto themselves, and that has p as an 
isolated fixed point. In particular, 79 is an extrinsically symmetric space (see, e.g., 
Ferus ([5])). 

Moreover, the map Cp has the following properties: 

(i) Every point row L through p is mapped isometrically onto itself. 
(ii) The restriction Cp I L is a reflection of the round sphere L ~ Sin1 that 

fixes p. 

Hence every point row I, is an extrinsically symmetric round sphere under the 
group generated by the reflections {¢p I P E L}. 

Proof Put 

Cp = (1NpP) O (--1TpP). 

Then Cp fixes p and every point in p+ N~79. Since P is a projective plane, it suffices 
to show that Cp maps every point row L through p isometrically onto itself. But 
this follows from the fact that the center of the round sphere L is contained in 
p q- Np79, and from Cp I TpL = - 1 .  [] 

3.7. DEFINITION. Let if) = (¢p I P ~ P) be the group generated by the reflec- 
tions Cp. - J 

Since 7 9 is a symmetric space, ff~ is a normal subgroup of the isometry group of 79, 
and • is transitive on 79. 

Now we can give our first proof for Cartan's classification result: 

3.8. THEOREM. Let jr3m be a compact isoparametric hypersurface in the 
sphere ~3m+1 with three distinct principal curvatures. Then jr is a tube around 
the Veronese embedding of one of the four classical projective planes, as given in 
Section 2. 

Proof The group • is a compact point-transitive collineation group on the 
compact connected projective plane (7 9, £ ,  jr) ,  hence by the results of Salzmann 
([17]) and LOwen ([12]), (79,/:, ~') is one of the four classical Moufang planes 
over the real or complex numbers, over the quaternions or over the octonions, and 
the identity component of ,I~ is one of the groups SO3]K, PSU3C, PU3~ or F4, 
respectively. 

It remains to show that the embedding 79 ~ ~3m+l is uniquely determined by 
the group if). Now • acts irreducibly on ]~3m+2, because every orbit is full, and 
the groups SO3~, PSU3C, PU3H and F4 have only one irreducible representation 
in dimension 5, 8, 14 and 26, respectively. [] 

Note that ,I) is the elliptic motion group of (79, £ ,  jr);  the elliptic polarity is given 
by the antipodal map - 1 .  

This completes our first proof of Cartan's result. For the second proof, we need 
the following lemmata: 
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3.9. LEMMA.  The Z2-Poincarg polynomial of  the focal manifold P is 1 + t ml + 
t 2ra 1. 

Proof This was proved for compact projective planes whose lines are manifolds 
by Breitsprecher ([1, 2.3]). If  we use the fact that 79 is the focal submanifold of  
an isoparametric hypersurface with three distinct principal curvatures we can also 
refer to Mtinzner ([14, Satz 5]) and Hebda ([8]). D 

3.10. LEMMA.  The group • is transitive on ~ and hence on the point rows 
in 79 . 

Proof Clearly, ,I, commutes with the map - 1  that interchanges 79 and £.  [] 

3.11. THEOREM. Let L be a point row. Then L is two-point homogeneous under 
the stabilizer ~L,  and 79 is two-point homogeneous under the group 0 .  

Proof The point rows are extrinsically symmetric round spheres under the 
group (~bp I P C L) _< 'I'L by 3.6, and hence two-point homogeneous. 

Since any two points are contained in a point row, and since ,I} is transitive on 
the point rows, 79 is two-point homogeneous as well. [] 

Second proof of  Cartan's Theorem. The compact two-point homogeneous sym- 
metric spaces are precisely the compact symmetric spaces of rank 1, see Wolf ([19, 
8.12.2]). Using 3.10, we find that 79 is isometric to one of the four classical pro- 
jective planes 792]R : SO3]R/O2]~, 792C : PSU3C/U2C, 792]I-]I : P U a H / P ( U I ~  x 
U2]E) or 792© = F4/Spin9, and the identity component of  • is one of  the groups 
SO3~, PSU3C, PU3H or F4. Thus the claim follows as in 3.8. [] 
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