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Holomorphic projective planes have been classified by Breitsprecher; he showed 
that up to holomorphic isomorphism, there is only one such plane, namely the 
projective plane over the complex numbers [B1], [B2, 1.5.7]. The idea of his 
proof is roughly as follows: every point row is a Riemann sphere, hence the 
group of all projectivities is isomorphic to PGL2C. It follows by yon Staudt's 
Theorem that the plane is Pappian and thus isomorphic to the projective plane 
over the commutative field C. 

Projective planes are generalized triangles. In this paper we prove that up to 
holomorphic isomorphism, there are precisely five holomorphic polygons (three 
up to duality), namely the Moufang polygons associated to the simple complex 
Lie groups PGL3C, PSP4C ~ PSOsC, and G~ (2.11). 

Now for generalized polygons, no analogue of von Staudt's Theorem is 
presently known (although it seems conceivable that a corresponding result 
holds). Thus our proof follows a different and much more analytic line than 
Breitsprecher's proof. We show directly (using the Riemann-Roch Theorem) 
that the derived incidence structure 9.1p of a holomorphic polygon ~3 is isomor- 
phic to the projective plane over C. Using results of Schroth and Schroth-Van 
Maldeghem, this leads to a classification for n = 4, 6. The Riemann-Roch Theo- 
rem yields also a new (and completely analytic) proof of Breitsprechers result. 

I would like to thank Richard B6di, Michael Joswig, and Andreas Schroth 
for several helpful discussions, and Wilhelm Klingenberg and Stephan Stolz for 
valuable comments concerning the Riemann-Roch Theorem. 

1 Generalized polygons 

Recall that an incidence structure ~3 = ( ~ ,  ~ ,  3 z') is a triple consisting of a 
set ~ of points, a set ~ of lines, and a set 3 z" C_ ~ x S of flags, describing 
the incidence relation. A (polygonal) k-chain (x0,xl , . . .  ,xk) is a sequence of 
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elements xi E , ~  U ~ with the property that xi is incident with x i_  1 for i = 
1 , . . . ,  k.We say that the k-chain stammers i f x i  = x i - 2  for some i with 1 < i < k. 

1.1 Definition An incidence structure ~ = ( ~ ,  ~ ,  ~ r )  is called a genera l i zed  

n - g o n  if it satisfies the following three axioms: 

(i) Every element x E ~ U S (  is incident with at least three other dements. 
(ii) Any two elements x, y E ~ U ~ can be joined by a polygonal chain of 

length _< n. We denote by d ( x ,  y )  the length of a min ima l  cha in  joining x 
and y. 

(iii) If  d ( x , y )  < n, then there is exactly one  minimal chain joining x and y. 

Generalized digons are not interesting, therefore we assume always that 
n > 2 .  

If  x , y  are elements with d ( x , y )  = n - 1, then there is a unique element 
z incident with y such that d ( x , z )  = n - 2 (the pro jec t ion  o f x  to y) .  We put 

fn- l (x ,  y) =z .  
The generalized triangles are precisely the projective planes; for two points 

p ,  q E ~ ,  the element f2(p, q) is simply the line p V q joining p and q. 
For a point p E , ~  we let ~ denote the pencil of lines passing through p. 

Similarly, for a line e E S ,  we let L denote the point row corresponding to ~, 
consisting of all points lying on L 

Finally we put 

p ±  = {q E ~ l  q lies on some line passing through p} 
= {q E "~l d (p ,q )  <_ 2}. 

For our purposes it is convenient to make the following definition. 

1.2 Definition Let ~ = ( ~ ,  ~ ,  ,~") be a generalized n-gon, and let p E ~ be 
a point. We define an incidence structure PAp as follows (cp. [Sch], [S-vM]): the 
points of PAp are the points in p± ,  the lines of PAp are the point rows passing 
through p, as weU as the sets 

pX = {q  e p_t.i d ( q , x )  = n - 2}  

where x E ~ U ~  is an element with d ( x , p )  = n.  T h e  incidence relation of PAp 
is given by the membership relation E. 

For n = 3, i.e. in the case of projective planes, the incidence structure PAp is 
of course isomorphic to ~3. It is immediate from the definition that PAp has the 
following property (*): 

(*) any two points in p ±  can be joined by a (possibly not unique) line of PAp. 

2 Holomorphic polygons 

2.1 Definition Let ~3 = ( ~ ,  ~ ,  3 ~') be a generalized n-gon. Suppose that 
and ~ are manifolds of positive dimension, and that the map fn- 1 is continuous 
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on its domain. Then . ~  and ~ are compact and connected, and the domain 
o f f n - i  is open [G-vM, 2.1(b)], [Kr, Ch.2]. We call ~3 a holomorphic polygon 
if the manifolds . ~  and ~ carry complex structures, and if the map f , - 1  is 
holomorphic on its domain. 

2.2 Examples The complex projective plane is an example of a holomorphic 
projective plane. Here is another one: consider the symplectic form ~ = ( -1 1 ) 

on C 4. Put . ~  = C P  3 and let ~ = {L E G2(C4)[ w[L×L = 0} denote the set 
of  all totally isotropic two-dimensional subspaces of  C 4 with respect to a;. Then 
( 9 ,  ~ ,  C) is a holomorphic quadrangle, the complex symplectic quadrangle. 
For P E ~ and L E ~ with P ~ L we havef3(P,L) = P± n L ,  andf3(L,P) = 
f3(P,L) G P, where ± is taken with respect to ~o. Clearly, the group PSp4C acts 
as a group of automorphisms on this incidence structure. 

2.3 Proposi t ion Suppose that q3 = (~jo, ~ ,  j )  is a generalized polygon, that 
and ~ are complex manifolds, that ~ C ~ × ~ is a complex submanifold, 

and that the projections pr 1 : ~ r  ~ ~ and pr 2 : ,~" ---, S (  are submersions. 
Then ~3 is a holomorphic n-gon. In particular, the Moufang polygons associated 
to the simple complex Lie groups PGL3C, PSP4C ~ PSOPsC,  and G2C are 
holomorphic polygons. 

Proof First, ~ is a compact connected polygon by [G-vM, 2.1(a)], [Kr, 2.5.4]. 
It follows readily from the assumptions and transversality that the set of  all 

(n - l)-chains is a complex manifold. The set of  all non-stammering (n - 1)- 
chains is an open subset and hence also a complex manifold. The map that sends 
a non-stammering (n - 1)-chain (x0 ,x l , . . .  ,xn-1) to (x0,xn-l)  is a holomorphic 
homeomorphism onto the complex manifold consisting of all pairs of  elements 
(x ,y)  with distance d(x ,y)  = n - 1. Hence the inverse of  this map is also 
holomorphic, see [G-H, p. 19] e.g., and thus xn-2 depends holomorphically on 

(x0,x.-1). [] 

2.4 L e m m a  The sphere ~4k does not admit a complex structure for k >__ 1. 

Proof It follows from the Hirzebruch Signature Theorem [M-S, 19.4] that the 
total Pontrjagin class p = l+pk of 54k (with respect to any differentiable structure) 
is trivial. On the other hand, the total Chern class of  the tangent bundle of  a 
complex sphere is necessarily of  the form e = 1 + 2x, where x is the orientation 
class of  the tangent bundle, since the Euler number of  an even-dimensional sphere 
is 2, see [M-S, 14.1, p. 158, 11.12]. I f  the dimension of  a complex sphere is 4k, 
for some k > 0, then we have the relation 

1 = 1 + (--1)kpk = (1 + C2k) 2 = (1 + 2X) 2 = 1 + 4X 

by [M-S, 15.5], a contradiction. [] 
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2.5 Proposition Let ~ = ( ~ ,  c~,  ..~r) be a holomorphic n-gon. Every point row 
L C_. ~ is a complex submanifold and biholomorphicaUy equivalent to the Rie- 
mann sphere C.P I. Thus n E {3, 4, 6} by Knarr's result [Kn2], and ~ has topo- 
logical parameters (2, 2), cp. [Kr, 3.3.6]. (See also Breitsprecher [B1] for the 
case of holomorphie projective planes.) 

Proof Let x be a vertex opposite to the line g corresponding to the point row 
L. The set U = {p E ~ 1  d(p,x)  = n - 1} is open and connected (since it is the 
union of two big cells, cp. [Kr, 2.2, 2.4]), and it contains the point row L. The 
map 

P H f n - l f f n - l ( p , x ) , e )  

is a holomorphic retraction of U onto L, hence L is a complex submanifold of 
U, cp. [B-J, 5.13], [H, p.20], [B-K, 4.2] (the proof given there is also vaild in 
the complex case, since it uses mainly the implicit function theorem). 

By [Kn2, 2.1], [Kr, 4.1.2] the point row L is a topological sphere, and since 
the dimension m of the point rows and the dimension m ~ of the pencils of lines is 
even, we conclude that m = m ~ 6 {2, 4, 8}, see [Kn2], [G-K-K, 1.7], [Kr, 3.3.6]. 
By 2.4, we have m = m ~ = 2. 

Finally, a complex 2-sphere has genus 9 = 0, and thus it is biholomorphicaily 
equivalent to CP l by [G-H, p. 222]. [] 

2.6 Proposition Let ~3 be a holomorphic polygon, and let g E ~ be a line. The 
group of all projectivities II(g) acting on the point row L is isomorphic to PGL2C 
acting in the usual way on the complex projective line CP 1. Thus, H(g) is sharply 
3-transitive on the point row L. The same holds for the group of all projectivities 
H(p) acting on ~p ,  where p is a point. 

Proof The group of all projectivities H(g) is doubly transitive on L by [Knl, 
1.2], [G-K-K, 1.4], or [Kr, 1.8.2]. On the other hand, every projectivity is a 
biholomorphic map of L ~ CP 1. Thus H(g) C_ Aut(CP 1) = PGL2C (see [G-H, 
p. 64]) is a doubly transitive subgroup, and hence H(g) = PSL2C = PGL2C by 
[St, Satz 1]. [] 

2.7 Lemma  Consider the usual action of PGLzC on the topological sphere ~2. 
There are precisely two complex structure's on ~2 such that every element of 
PGL2C acts as a biholomorphic map on ~2. 

Proof We endow PGL2C with the compact-open topology; thus it becomes in 
a unique way a Lie transformation group. It is well-known that the group of all 
continuous (and hence real-analytic) automorphisms of PGL2C is (a) • PGL2C, 
where cr denotes complex conjugation. Thus there are precisely two complex 
analytic Lie group structures on the topological group PGL2C. On the other hand, 
each complex structure on ~2 compatible with the action of PGL2C determines 
a complex structure on this group. 

The following may be compared to the results in [B-K]. 

2,8 Theorem Let ~ be a holomorphic polygon. The complex structure on the 
point space ~ and the line space ~ is uniquely determined by the complex 
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structure on a single row point L C ,~. In particular, the underlying topological 
polygon of a holomorphic polygon admits precisely two complex structures which 
make it into a holomorphic polygon, and the identity map is an anti-holomorphic 
isomorphism between these two holomorphic polygons. 

Proof On L, there are precisely two complex structures compatible with the 
action of the transformation group PGL2C by 2.7. 

Given any other point row L ~, there exists a (necessarily biholomorphic) pro- 
jectivity between L and L r. Thus the complex structure on L determines the 
complex structure on every other point row. Finally, there exists a nonconstant 
holomorphic map of L into some pencil of lines ~ p ,  see [G-K-K, 1.1 ], [B-K, 1.7], 
[Kr, 1.8.1], hence the complex structure on L determines the complex structure 
on each pencil of lines. Thus a continuous automorphism of ~ is either holo- 
morphic or anti-holomorphic on each point row and on each pencil of lines. It 
is an immediate consequence of the coordinatization of the polygon, see [B-K, 
1.6], [Kr, 1.7.2], that an automorphism which is (anti-) holomorphic on each 
point row and on each pencil of lines is (anti-) holomorphic on ~ and .S'5~. 

[] 

2.9 Corollary Let ~ : ~3 --* ~ be a continuous isomorphism between two holo- 
morphic n-gons, cp. [B-K]. Then ~ is either holomorphic or anti-holomorphic. 

[] 

Our next aim is the following result: 

2.10 Theorem Let q3 = ( ~ ,  ~ , , ' ~ )  be a holomorphic polygon. Then the fol- 
lowing statement holds up to duality, i.e. up to exchanging ,~  and S :  

For every point p C ~-~, there exists a homeomorphism of p ± onto the complex 
projective plane CP 2 that maps the lines of flip bijectively onto the point rows of 
Cp 2. 

2.11 Corollary Let ~3 be a holomorphic generalized n-gon. Then 9i3 is biholo- 
morphically isomorphic to one of the following holomorphic Moufang polygons 
associated to the groups PGL3C, PSp4C ~ PSOsC, and Go2, respectively: 

3~ the projective plane over C. 
4~ the symplectic quadrangle over C or its dual, the complex orthogonal quad- 

rangle in CP 4. 
6~ the complex split Cayley hexagon or its dual. 

Proof of the Corollary. (n = 3): By 2.10 there exists an abstract isomorphism 
which is a homeomorphism on the point space. By [B-K, 3.5], this isomorphism 
is a homeomorphism on the line space as well. Hence it is either holomor- 
phic or anti-holomorphic by 2.9. Composing the homomorphism with an anti- 
holomorphic automorphism of the complex projective plane, if necessary, we get 
a holomorphic isomorphism. 
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(n = 4): By 2.10 and Schroth's characterization of the symplectic quadrangle 
over C [Sch], [S-vM, 4.5], we get a homeomorphic isomorphism onto the com- 
plex symplectic quadrangle or its dual. The other steps are the same as in the 
case (n = 3). 

(n = 6): Again, by 2.10 and by Schroth's and Van Maldeghem's characteri- 
zation [S-vM, 1.1] of the split Cayley hexagon over C, we get a homeomorphic 
isomorphism onto the complex split Cayley hexagon or its dual. The other steps 
are as in the case (n = 3). [] 

We divide the proof of 2.10 into several lemmata. 
In the sequel it is convenient to have the following explicit construction of the 

holomorphic Hopf line bundle r/c over CP 1. We use homogeneous coordinates 
in CP 2. 

2.12 Lemma  Consider the projective line 

CP 1 = {[zl,z2,z3] E CP2f z3 = 0} _ p 2 .  

Put 0 = [0,0, 1]. The map [zl,zz, z3] H [zl,z2,0] defines a holomorphic line 
bundle CP 2 - {0} ~ CP 1, the Hopf line bundle tie. The map z ~ [zl,z2,z] 
induces a natural vector space structure on the fiber E[zi,z2,0] of rl~? over [zl, z2, 0]. 

Every point row H C_ CP 2 that does not meet 0 is o f  the form H = 
{[zl, z2, z3] E cPZ[alzl + a2z2 + a3z3 = 0} for  some complex numbers al , a2 E C. 
The map CP 1 ~ H,  [zl, zz, 0] H [Zl, z2, - a l z l  - azz2] provides a holomorphic 
section of  this bundle. Thus we may define a surjective homomorphism ~ from the 
complex vector space I-I°(Cp1; r/•?) of all holomorphic sections of  rl~ as follows: 
pick two distinct fibers Ea, Eb of 71C and consider the map 

q~: H°(CP1;~Tc) ~ E~×Eb ~ C 2 
s ~-+ (s(a), s(b)). [] 

From the Riemann-Roch Theorem we get the following result: 

2.13 Lemma  Let ~7c denote the holomorphic Hopf line bundle over CP l, and let 
flc denote the conjugate bundle, cp. [M-S, p. 167]. The complex vector space 
I-I°(CP1;~Tc) of all holomorphic sections of ~c is two-dimensional, and the 
complex vector space I'I°(CP1;f/c) of all holomotphic sections of  ~Tc is zero- 
dimensional. 

Proof We use the notation of [G-H]. 
Recall that a divisor on a smooth algebraic curve L over C is just a finite 

formal linear combination D = y]~ nipi of points of L. The degree of a divisor is 
deg(D) = ~ ni ; a divisor is called effective, if all coefficients ni are non-negative, 
cp. [G-H, p. 130]. 

To each divisor D one can associate a holomorphic line bundle [D] over L; 
this yields a group homomorphism from the additive group Div(L) of all divisors 
on L to the set of all equivalence classes of holomorphic line bundles on L (with 
the tensor product as group operation), see [G-H], p. 132]. Given a divisor D 
let h°(D) denote the dimension of the complex vector space I-I°(L; G(D) )  of 
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all holomorphic sections of  the line bundle [D], see [G-H, p. 137]. If  D is not 
effective (in particular, if deg(D) < 0), then h°(D) = 0 [G-H, p. 136]. 

Let D be the divisor associated to ~Te, and let K denote the canonical divisor 
of  CP 1, i.e. the divisor associated to the cotangent bundle of C P  l, cp. [G-H, 
p. 146]. The degree of  D is deg(D) = 1, and deg(K) = - 2  by [G-H, p. 144]. Thus 
deg(K - D)  = - 3 ,  and hence h°(K - D) = 0, because the divisor K - D is not 
effective. The genus of  CP  1 is 9 = 0. From the Riemann-Roch Theorem 

h°(D) - h°(K - D) = deg(D) - 9 + 1 

[G-H, p. 245] we conclude that h°(D)  = dime H°(CP~; ~]e) = 2. 
Now - D  is the divisor associated to ~e; it has degree d e g ( - D )  = - 1 ,  hence 

we have h ° ( - D )  = dime H°(CP 1; ~/c) = 0. [] 

Combining the two lemmata above, we get the following corollary: 

2.14 Corol lary  The map c~ defined in 2.12 is a vector space isomorptiism. [] 

Now we return to the holomorphic polygon ~3 = ( ~ ,  oct, , ~ ) .  

2.15 L e m m a  Let p E ~ be a point, and choose an element xo E ~ U ~ with 
d(xo,p)  = n. The map 

_ { p }  - *  

q ~ p V q  

defines a holomorphic line bundle ~1 over ~ "~ CP 1 with zero-section pXO (we 
use the notation of  1.2). 

For every element x E ~ tO S with d ( x , p )  = n, there exists a holomorphic 
section of  ~1 that has pX as its image. 

Proo f  Choose a line g E ~.~p and put y =f~- i (g ,  x0). Next, put cx~x =f~-x(P,Y) ,  
and let (z0 = e ~ K , z l , . . . , z , - z  = p)  denote the unique (n - 2 ) - c h a i n  joining 
c, oK and p. Finally, let K denote the set of  all elements incident with y, and 
let L denote the point row corresponding to g. For each q E p ± -- L we have 
p V q = f , _  1(Zl, q), and thus we get a trivialization of this bundle over ~ - {g} 
by 

p ± - L  ~ ( c ~ _ { g } ) x ( K _ { c x D K } )  

q ~-~ ( f n - l ( z l , q ) , f n - l ( q , y ) ) .  

Next, choose a biholomorphic map (K - {c~K }, x0) -~ (C, 0). Note that this map 
i s  unique up to some scalar factor; hence we get a well-defined complex vector 
space structure on K - {cog } compatible with the linear action o f  H ( y ) ~  K,x0 ~ 
C* on K - {c~t¢}. It is readily verified that the structure group of  this bundle 
with respect to the charts of this type is H(Y)ooK,~0 ~ C*, hence we get indeed 
a holomorphic line bundle. 

Finally, if x is an element of  ~ U 2~- with d ( x , p )  = n, we may define a 
holomorphic section of  ~7 by putting g ~-~ f n -  1 (x, g). [] 
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2.16 L e m m a  Up to duality we may assume that f o r  each p E ~ the cohomology 
ring of  p ± is given by I-I°(p ±)  = Z[x]/(x3).  In this case the holomorphic line 
bundle 7 7 defined in 2.15 is holomorphically equivalent to the complex Hopf  line 
bundle. 

Proof. Up to duality, the cohomology ring of ~ is given as Z[x]/(x3),  7f~[X]/(X4), 
and ~ [ x , y ] / ( x  3 - 2y ,y  2) for n = 3 ,4 ,6 ,  respectively, where x is an element of  
degree 2 and y has degree 6, see [G-K-K, App.]. The inclusion p ±  C_ . ~  induces 
an isomorphism for the cohomology groups in dimension < 2m, and kills the 
cohomology groups of degree > 2m, see [Kr, Ch.4], hence the claim about the 
cohomology ring follows. 

The cohomology ring of the 2-sphere is H ' ( g  2) = Z[x]/(x2).  I f  ~ is a complex 
line bundle over $2 with total Chem class c = 1 + ax, for some a E Z, then the 
Euler class of the underlying oriented real vector bundle is given by e = ax, 
cp. [M-S, p. 158]. Let U~ E H2(E,E0) denote the orientation class of ~, and let 
0 : H ' ( ~  2~) ~ H°(E ,E0)  denote the Thom isomorphism [M-S, p. 110]. Now 
0(1) = U~ = u generates He(E,Eo) ,  and O(x) = v generates Ha(E,E0),  since 1 
and x generate H°(S 2) and H2($2), respectively. On the other hand, U~ = 0(e) = 

aO(x), see [M-S, p. 99]. Therefore the relation u 2 = av  holds in H°(E,  E0). But 
the reduced cohomology of the Thom space ~ is isomorphic to that of  (E, E0); 
thus the cohomology ring of the Thom space of ~ (which is in our case just p ; ,  
the one-point compactification of E)  is given by Z[u,  v] / (v  2, uv,  u 2 - av).  

Hence in our case the total Chern class of  77 is given by c = 1 5: x. The 
holomorphic line bundles over CP  1 are classified up to holomorphic equivalence 
by their first Chern class [G-H, p. 145]. Thus the holomorphic line bundle 77 is 
holomorphically equivalent to the Hopf  line bundle 77c or to its dual f/c. It follows 
from 2.15 and the property (*) in 1.2 that 77 has nontrivial sections, hence it is 
indeed equivalent to the Hopf  line bundle. [] 

Proof o f  Theorem 2.10. Let , ~  denote the collection of all holomorphic sections of  
77 ~ 77e which we obtain by 2.15. From property (*) in 1.2, we have ~b(,~) = C 2. 
Thus , ~  = H°(CP  1; 77) is precisely the set of all holomorphic sections of  the Hopf  
bundle 77, and therefore the isomorphism 77 ~ 77c induces an homeomorphism 
between p ±  and C P  2 that maps the lines o[ 9,tp bijectively onto the point rows 
of CP 2. [] 
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