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In this paper we prove the following: Over each algebraically closed field K of
Ž .characteristic 0 there exist precisely three algebraic polygons up to duality ,

namely the projective plane, the symplectic quadrangle, and the split Cayley
Ž .hexagon over K Theorem 3.3 . As a corollary we prove that every algebraic Tits

system over K is Moufang and obtain the following classification:

Ž .THEOREM. Let G, B, N, S be an irreducible effectï e spherical Tits system of
rank G 2. If G is a connected algebraic group o¨er an algebraically closed field of
characteristic 0, and if B is closed in G, then G is simple and B is a standard Borel
subgroup of G. Q 1996 Academic Press, Inc.

INTRODUCTION

w xGeneralized polygons were introduced by Tits in 22 in order to give a
geometric interpretation for certain simple algebraic groups. More gener-
ally, spherical buildings provide a beautiful and uniform geometric inter-
pretation for all simple algebraic groups, even the exceptional ones.
Generalized polygons are exactly the spherical buildings of rank 2. The
irreducible spherical buildings of rank G 3 have been classified by Tits;
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they are essentially the buildings arising in a standard way from the simple
w xalgebraic groups or the classical groups 23 . This generalizes the well-

known fact that a projective space of dimension G 3 is desarguesian
Ž .projective k-space is a building of type A .k

Ž .In contrast to this, nonclassical that is non-Moufang generalized poly-
gons abound. Hence one has to impose some additional conditions on the
polygon in order to obtain more specific results. Probably one of the
earliest results in that direction is the famous Feit]Higman Theorem:

w xfinite generalized n-gons exist only for n s 3, 4, 6, 8 7 . Later, Weiss and
w xTits proved that Moufang n-gons exist only for n s 3, 4, 6, 8 28, 26 . The

Moufang 3, 6, and 8-gons have been classified explicitly. The classification
w xof the Moufang quadrangles was announced in 24 although a complete

Ž w x w xproof has not been published yet but see 27 , and 16, Ap. 1 for an
.overview of the classification .

Yet another approach is to impose topological conditions on generalized
polygons. Knarr proved that compact generalized n-gons of finite and

w xpositive topological dimension exist only for n s 3, 4, 6, see 11, 12 . As in
the finite case, there is no hope to classify all compact polygons. The
picture changes drastically for holomorphic polygons: the only holomor-
phic polygons are the three Moufang polygons mentioned above over the

w xcomplex numbers 13 . Complex manifolds are close to complex algebraic
varieties; thus it seems reasonable to conjecture that the only algebraic
polygons over an algebraically closed field are the three Moufang polygons
over that field.

In this paper we prove the following: over each algebraically closed field
ŽK of characteristic 0 there exist precisely three algebraic polygons up to

.duality , namely the projective plane, the symplectic quadrangle, and the
Ž .split Cayley hexagon over K Theorem 3.3 . As a corollary we prove that

every algebraic Tits system over K is Moufang; this corresponds to the
result of Burns and Spatzier that every BN-pair consisting of Lie groups is

w x ŽMoufang 5 they call this ‘‘topologically Moufang,’’ which is a bit mislead-
.ing, since it is merely the Tits condition .

Algebraic projective planes have been investigated and classified by
w x w xStrambach, see 21 , as well as 8 ; however, our approach is slightly more

general in characteristic 0, because we do not make any assumptions like
completeness or one-dimensionality of the point rows.

The classification of the holomorphic polygons depends very much on
the well-developed tools from topological geometry, which are not avail-
able over fields other than C. Therefore we follow a different line: we

Žconsider first the special case of algebraic polygons over C which is a
.rather straightforward consequence of the holomorphic case . The general

case then follows by some standard model theoretic reasoning. For exam-
ple, the existence of an algebraic n-gon over an algebraically closed field K
of characteristic 0 implies the existence of an algebraic n-gon over C;
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hence n s 3, 4, 6. Similarly, the existence of two nonisomorphic algebraic
n-gons over K would imply the existence of two nonisomorphic algebraic
n-gons over C.

We conjecture that the same result holds over algebraically closed fields
of positive characteristic; however, the proof would certainly require a very
different kind of reasoning. We do not touch upon any rationality ques-
tions. Presumably the result does not hold over fields which are not
algebraically closed.

The authors thank F. Knop for some remarks on algebraic transforma-
tion groups.

1. GENERALIZED POLYGONS

1.1. DEFINITION. Recall that an incidence structure is a triple
Ž .PP, LL , FF consisting of a set PP of points, a set LL of lines, and a set
FF : PP = LL of flags. We assume always that PP and LL are nonempty

Ž .disjoint sets. If p, l is a flag, then we say that the line l passes through p,
and that the point p lies on l, or that p and l are incident. The set of all
lines passing through p is called the line pencil LL ; the set of all pointsp
lying on l is called the point row L. The dual incidence structure is given

Ž .dual Ž y1 . y1 �Ž . < Ž . 4by PP, LL , FF s LL , PP, FF , where FF s l, p p, l g FF .
Ž .A k-chain joining x , x g PP j LL is a sequence x , x , . . . , x of0 k 0 1 k

points and lines with the property that x is incident with x fori iq1
0 F i - k. The k-chain is called minimal if there is no i-chain joining x0
and x for i - k; in that case we say that x and x have distancek 0 k
Ž .d x , x s k.0 k
If x s x , and if x / x for all 0 F i - j - k, then we call the set0 k i j

� 4x , . . . , x an ordinary kr2-gon.0 ky1

Ž .1.2. DEFINITION. An incidence structure P s PP, LL , FF is called a
generalized n-gon if it satisfies the following three axioms:

Ž .i Every element is incident with at least three other elements.
Ž .ii Any two elements x, y g PP j LL can be joined by some k-chain,

for some k F n.
Ž .iii If x , x , . . . , x is a minimal k-chain, and if k - n, then this0 1 k

chain is uniquely determined by x and x .0 k

These geometries are sometimes also called ‘‘thick’’ generalized poly-
gons.

Ž . Ž .If x, y g PP j LL are elements with d x, y s k - n, then axiom iii says
Ž .that there is a unique element z incident with y, with d x, z s k y 1. We

Ž .put f x, y s z.k
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Ž . Ž .dualNote that PP, LL , FF is a generalized n-gon if and only if PP, LL , FF

is a generalized n-gon; therefore, we will sometimes state and prove a
result only for the set of points.

Ž .The generalized digons are trivial incidence structures PP, LL , PP = LL ,
or in other words complete bipartite graphs; hence we will assume from
now on that n G 3.

The generalized triangles are precisely the projective planes.
Generalized n-gons exist for every n G 2; in fact one can start with any

Ž .collection of points and lines satisfying axiom iii and complete this
incidence structure via some free construction to a generalized n-gon, see
w x25 .

Ž Ž .1.3. EXAMPLES. Let K be a commutative field in 3 we assume for
.simplicity that the characteristic of K is / 2 .

Ž . 31 If we take for PP the set of all one-dimensional subspaces of K
3 Ž .and for LL the set of all two-dimensional subspaces of K , then PP, LL , :

is a generalized triangle, the projective plane over K. This incidence
Ž .structure is self-dual, and the simple group PSL K acts as a group of3

automorphisms on it.
Ž . 42 Consider the symplectic polarity on K given by the matrix

Ž0 y1. 4. Let PP denote the set of all one-dimensional subspaces of K , and01
let LL denote the set of all two-dimensional totally isotropic subspaces of

4 Ž .K . Then PP, LL , : is a generalized quadrangle, the symplectic quadran-
Ž .gle over K, and the simple group PSp K acts as a group of automor-4

phisms on it.
Ž . 83 Let K s O denote the split Cayley algebra over K. It consists of

Ža u. 3all matrices of the form , where a, b g K and u, ¨ g K . The multipli-¨ b
cation is defined as

a u a9 u9 aa9 y u ? ¨ 9 au9 q b9u q ¨ = ¨ 9s ,ž / ž / ž /¨ b ¨ 9 b9 a9¨ q b¨ 9 q u = u9 bb9 y ¨ ? u9

where ? and = denote the standard dot and cross product on K 3. Now let
PP denote the set of all one-dimensional subspaces X of O with XX s 0
and let LL denote the set of all two-dimensional subspaces Y of O with

Ž .YY s 0. Then PP, LL , : is a generalized hexagon, the split Cayley hexagon.
Ž .The simple exceptional group G K acts as a group of automorphisms on2

w xit, see 17 .

Ž . Ž . Ž .We have listed the Moufang polygons 1 , 2 , 3 rather explicitly,
because they will eventually turn out to be the only algebraic polygons over
an algebraically closed field of characteristic 0.
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1.4. DEFINITION. Let x, y g PP j LL be elements of a generalized n-gon
Ž .P with distance d x, y s n. Let X, Y denote the set of all elements

w xincident with x and y, respectively. Then there is a perspectï ity x, y :
Ž . w xY ª X, given by z ¬ f z, x . Note that x, y is a bijection with inverseny1

w xy, x . A concatenation of perspectivities is called a projectï ity. The set of
Ž .all projectivities of P forms a groupoid P. The group P x of all

projectivities from x to x is a doubly transitive permutation group on X,
w x Žsee 10 ; moreover, if x , x are elements of the same type i.e., both x1 2 1

.and x are points, or both x and x are lines , then there always exists a2 1 2
projectivity between x and x . If n is odd, then there exist also projectivi-1 2
ties between points and lines.

Ž .1.5. DEFINITION. Let p, l be a flag of the generalized n-gon
Ž . Ž . Ž .PP, LL , FF . Let PP l, p denote the set of all points q g PP with d p, q2 k

Ž . Ž .s 2k and d l, q s 2k q 1, for k G 0. Similarly, let PP p, l denote2 kq1
Ž . Ž .the set of all points q g PP with d l, q s 2k q 1 and d p, q s 2k q 2,

Ž . Ž . Ž .for k G 0. Thus we have a partition PP s PP l, p j PP p, l j PP l, p0 1 2
j ??? of PP into n Schubert cells. Similarly, the line space can be parti-
tioned into n Schubert cells.

2. ALGEBRAIC POLYGONS

Throughout this section, we let K denote an algebraically closed com-
mutative field.

In modern terminology a K-variety is in an integral separated K-scheme
of finite type, i.e., a sheaf of rings with special properties, see Hartshorne
w x w x9 and Mumford 15 . However, in our case the older definition which
states that a variety X is patched together from a finite collection of affine

m Ž .varieties living in some K is more convenient see Section 3 . The two
Ž wconcepts are equivalent see, e.g., 15, Chap. II.3, Theorem 2 and II.6,

x.Corollary I . The ‘‘concrete’’ variety X corresponds precisely to the set of
all closed points of the associated scheme.

Ž .2.1. DEFINITION. Let P s PP, LL , FF be a generalized n-gon, for some
Ž .n G 3. Assume that PP and LL are K-varieties and hence infinite . Assume

�Ž . < Ž . 4moreover that the domain x, y x, y g PP j LL , d x, y s n y 1 of the
Žmap f is locally closed i.e., the intersection of an open and a closedny1

. Ž . Ž . Žset in PP j LL = PP j LL note that this is the scheme theoretic prod-
. Ž .uct, hence it does not carry the product topology . We call PP, LL , FF an

Ž .algebraic polygon over K if the map f is a K-morphism on eachny1
irreducible component of its domain. We say that two algebraic polygons
P , P9 are isomorphic up to duality if there exists an incidence-preserving
K-isomorphism between P and P9 or between Pdual and P9.
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Note that the domain of f has at least two irreducible components,ny1
depending on whether the first argument of f is a point or a line. Sinceny1
we are dealing with noetherian spaces, the domain of f decomposesny1
uniquely into a finite collection of irreducible components.

Note also that an algebraic polygon, endowed with the Zariski topology,
is not a topological polygon. Indeed, the point set of a topological polygon
is always a Hausdorff space, whereas an algebraic variety of positive
dimension is not a Hausdorff space. However, if K happens to be a

Ž .topological locally compact field, then P can be made into a topological
Ž . w xlocally compact polygon, see 15, Chap. I.10 .

Ž .2.2. LEMMA. Let PP, LL , FF be an algebraic n-gon, let u be a line if n is
odd, or a point if n is e¨en, and let ¨ be incident with u. Then the ‘‘big ’’

Ž .Schubert cell PP u, ¨ is open in PP.ny1

w xProof. The proof in 12 for topological polygons goes through without
any changes.

Ž .Let p g PP u, ¨ , and let X , . . . , X denote the Schubert cells withny1 0 ny1
Ž . Ž .respect to u, ¨ . For every Schubert cell X different from PP u, ¨ wei ny1

Ž . Ž .can find an element ¨ such that d ¨ , p s n y 1 s d ¨ , r holds for alli i i
Ž .r g X , and such that the map r ¬ f r, ¨ has constant value differenti ny1 i

Ž .from f p, ¨ on X .ny1 i i
Indeed, suppose that n y i is even. Inductively we may choose elements

Ž . Ž .x s ¨ , x s u, x , . . . , x with the property that d x , p G n y 10 1 2 nyiy1 j
Ž .and such that the relation d x , r s i q j holds for all r g X . Thus wej i

Ž . Ž .have f r, x s x / f p, x for all r g X , and weny1 nyiy1 nyiy2 ny1 nyiy1 i
may put ¨ s x . The case that n y i is odd is similar.i nyiy1

Hence there is an open neighborhood U of p that does not meet X .i i
The open neighborhood U l ??? l U of p is therefore contained in0 ny2

Ž .PP u, ¨ .ny1

Ž .2.3. LEMMA. Let PP, LL , FF be an algebraic polygon. Then e¨ery point
row and e¨ery line pencil is a nonsingular, closed, and doubly homogeneous
sub¨ariety.

Ž .Proof. Let l be a line, and let ¨ be an element with d ¨ , l s n.
Choose two elements u , u incident with ¨ . Now the union of the two big1 2

Ž . Ž . � < Ž . 4cells U s PP ¨ , u j PP ¨ , u s q g PP d q, ¨ s n y 1 is an openny1 1 ny1 2
neighborhood of the point row L corresponding to l, and the map

Ž Ž . .q ¬ f f q, ¨ , l is a retraction of U onto L. Therefore Lis closed inny1 ny1
U. We may cover PP by neighborhoods of L of this kind, since given any

Ž . Ž .point q g PP, there exists an element u with d u, p s n y 1 and d u, l
w xs n, see 23, 3.30 ; therefore the point row L is closed in PP.

Now L is doubly homogeneous and hence either irreducible or discrete.
But if the point rows are discrete, then the line pencils are discrete as well,
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since there are nonconstant maps from line pencils to point rows which
w xmay be expressed by means of the map f , see 2 . This would imply thatny1

Ž . Ž .the big Schubert cells PP u, ¨ are discrete and even finite , contradict-ny1
ing the fact that PP is a variety; therefore L is a closed subvariety of PP,
and being homogeneous it cannot have singular points.

Ž .2.4. LEMMA. Let PP, LL , FF be an algebraic polygon. Then the ¨arieties
PP and LL are nonsingular.

Proof. Let X be a point row with one point removed, and let Y be a
line pencil with one line removed. There exists a bijection of each big

Ž . Ž .Schubert cell PP u, ¨ onto X = Y = X . . . n y 1 factors which can inny1
w x wboth directions be expressed in terms of the map f , see 2, 1.6 or 11,ny1

x2.5 . Thus each big cell is a nonsingular open subvariety, and since PP may
be covered by n big cells, it is nonsingular as well.

2.5. PROPOSITION. Let P be an algebraic polygon o¨er the field of
Ž .complex numbers C. Then up to duality P is isomorphic to the complex

projectï e plane, the complex symplectic quadrangle, or the complex split
Cayley hexagon.

Proof. Since PP and LL are nonsingular complex algebraic varieties, we
can make them into complex manifolds, thus obtaining a holomorphic

w xpolygon, see 20, Chap. VII; 15, I.10; 9, App. B . Now the claim follows
w xfrom 13 .

A group G that acts transitively on the ordinary ordered n-gons of a
w xgeneralized n-gon has a BN-pair, see 4, 16, 23 . Conversely, given a Tits

Ž .system G, B, N, S , the group G acts strongly transitively on the building
w xconsisting of the lattice of all parabolic subgroups of G, see 16, Chap. 5 .

Ž .We call a Tits system spherical irreducible, of rank k if its Coxeter
Ž .system is finite irreducible, of rank k , and we call it effective if the action

of G on the building is effective i.e., if B contains no normal subgroup
of G.

Ž .2.6. PROPOSITION. Let G, B, N, S be an irreducible spherical Tits sys-
tem of rank 2. Assume that G is an algebraic group o¨er an algebraically
closed field K of characteristic 0, and that the Borel subgroup B is closed in G.
Then the corresponding generalized polygon is an algebraic polygon. In partic-
ular, the generalized polygons corresponding to the simple algebraic groups

Ž . Ž . Ž . Ž .PSL K , PSp K ( PSO K , and G K , i.e, the projectï e plane, the3 4 5 2
symplectic quadrangle, and the split Cayley hexagon o¨er K, are algebraic
polygons.

Proof. The assumptions about G and K allow us to identiy a G-orbit
G ? y on some variety with GrG .y



KRAMER AND TENT442

� 4Let S s s , s be the set of involutive generators of the Coxeter group1 2
Ž .W s Nr N l B and let P s B j Bs B be the standard parabolic sub-i i

groups of G, for i s 1, 2. Now we may define PP s GrP and LL s GrP ,1 2
�Ž . < 4and FF s gP , gP g g G . Thus PP and LL are nonsingular algebraic1 2

varieties, and the group G acts transitively on the ordered ordinary n-gons
Ž . Žof the generalized n-gon PP, LL , FF note that N is just the stabilizer of an

Ž ..ordinary n-gon in PP, LL , FF .
It remains to show that the map f is a K-morphism.ny1

ŽLet aP be an element with distance n y 1 from the point P g PP thusi 1
. �Ž . <i s 1 if n is odd, and i s 2 if n is even . The G-orbit X s gP , gaP g1 i

4g G : GrP = GrP consists of all pairs of elements of distance n y 1,1 i
where the first element is a point.

Ž .Now put bP s f P , aP . We want to show that the map f :j ny1 1 i ny1
Ž . y1 Ž .gP , gaP ¬ gbP is a K-morphism. Since P l aP a fixes the n y 1 -1 i j 1 i
chain from P to aP , we have P l aP ay1 : bP by1. Now we may1 i 1 i j

Ž . Ž y1 . y1decompose f as gP , gaP ¬ g P l aP a ¬ gbP b ¬ gbP . Theny1 1 i 1 i j j

Ž y1 .first map is a K-isomorphism, since we have X ( Gr P l aP a . The1 i
Ž y1 . y1second map is the K-morphism Gr P l aP a ª GrbP b , and the1 i j

last map is just right translation by b, which is again a K-isomorphism.

3. SOME MODEL THEORY

w xSince Proposition 2.5 relies on 13 where a corresponding result is
w xproved over C using 11 and the machinery of holomorphic function

theory, there is no direct way to transfer this result to other algebraically
closed fields.

There have been several attempts to formalize the so-called Lefschetz’s
principle, which in its strongest form states that any statement of algebraic
geometry which is true over the complex numbers is true over any

w xalgebraically closed field of characteristic 0, see 14, Appendix . This
problem lends itself to model theory in a very natural way since if the
statements that one is concerned about can be expressed in an appropriate
language, model theory provides tools for transferring them from one
algebraically closed field to another. Unfortunately it quickly turns out
that finitary first order languages, i.e., languages that allow only finite
conjunctions and disjunctions, finite sequences of quantifiers, and no
quantification over subsets, are not able to capture the general concepts of
algebraic geometry. On the other hand infinitary andror higher order
languages don’t have the same nice model theoretic properties. The
Ž . w xinfinitary language proposed by Barwise and Eklof 1 , for example, is
able to express concepts like that of a variety or a K-morphism, but at the
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same time it can distinguish between finite and infinite transcendence
degrees, so that statement in this language which are true over C transfer
only to algebraically closed fields of infinite transcendence degree. Since
we are interested in a result that concerns all algebraically closed fields of
characteristic 0, we have to find a finitary language instead.

w xThe important observation in 1 is the fact that the concepts of
algebraic geometry are finitely determined, e.g., polynomials are deter-
mined by finitely many coefficients; varieties and K-morphisms are each
determined by finitely many polynomials, etc.

We use this fact to express particular instances of algebraic geometry in
a finitary language designed explicitly to capture that specific instance.

ŽFrom the description below it seems reasonable to expect that at least
.most statements of algebraic geometry true over C could be dealt with in

Ž .a similar if not uniform manner.
In order to transfer Proposition 2.5 from C to arbitrary algebraically

Ž w x.closed fields we need the following model theoretic facts see, e.g., 6 .

Ž . Ž3.1. Facts and Definitions. i Let T be a theory i.e,. a set of sen-
.tences in some finitary first order language L. A model of T is an

L-structure in which all the sentences of T hold. The theory T is
< <consistent if it has a model in every cardinality k G T . In particular any

Žcountable, consistent theory has a model in every infinite cardinality see
w x.6, 3.1.5, 3.1.6 .

Ž . Ž .ii Conversely, if we start with an L-structure M, the theory Th M
is the collection of all L-sentences true in M. By definition, such a theory
is consistent.

Ž .iii The theory T of algebraically closed fields of characteristic 0acf, 0
is / -categorical; i.e., there is a unique model in every uncountable1

Ž .cardinality up to isomorphism . This is a generalization of the well-known
fact that C is up to isomorphism the unique algebraically closed field of
characteristic 0 in cardinality 2/ 0 and follows directly from Steinitz’ Ex-
change Lemma.

Ž .3.2. PROPOSITION. If PP, LL , FF is an algebraic n-gon o¨er an alge-
� 4braically closed field of characteristic 0, then n g 3, 4, 6 .

Proof. Assume that there is an algebraically closed field K over which
Ž .there is an algebraic n-gon P s PP, LL , FF for n other than 3, 4, or 6.

� 4We start with the language of fields L s q, ? . Following the definition
w xof variety in 15, Chap. I , we will add new function and relation symbols to

L so that the theory of K in this extended language specifies that
Ž .PP, LL , FF is an algebraic n-gon.
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Let PP and LL be pieced together from affine varieties U , . . . , U and1 k1

V , . . . , V , respectively. Recall that an affine variety is the zero-set of a1 k 2
w xprime ideal in some polynomial ring K X , . . . , X . We can assume that1 m

all these live in K m, hence each of these affine varieties is given by a finite
w xcollection of polynomials in K X , . . . , X . Similarly, there is a finite1 m

collection of polynomials defining the K-isomorphic transition maps be-
Ž .tween open subsets of the U ’s V ’s resp. . An open subset of an affinei j

variety is the complement of a zero-set of finitely many polynomials. A
subset of a product variety is open if and only if its intersection with each
affine patch U = V is open in U = V, hence the fact that the diagonal in

Ž .PP = PP and LL = LL is closed may be expressed by finitely many polynomi-
als. And finally the K-morphism f is locally given by polynomials onny1
the affine charts.

All this information is given by finitely many polynomials over K for
each of which we add a function symbol to the language. The theory of K
in the language extended by these function symbols says that each of these
functions is a polynomial in m variables of some fixed degree.

Next we add names for the affine varieties U , . . . , U , V , . . . , V , i.e,.1 k 1 k1 2

ˆŽm-ary relation symbols which we should denote by U to distinguishi
.between the name and its interpretation. The sentences stating that each

of these is the zero set of the corresponding polynomials are part of the
theory as are sentences expressing the irreducibility: Remember that an
affine variety is irreducible if and only if every two nonempty open subsets
have nonempty intersection.

Ž .For each q and each U resp. V , there are sentences saying that anyi j

two nonempty open subsets of U given by q polynomials in m variables ofi
degree q have nonempty intersection in U . These clearly are sentences ini
the extended language true in K.

In the same way we can add to the language function symbols f ,i, j
1 F i, j F k and c , 1 F i, j F k for the transition maps which the1 i, j 2
theory will specify as K-isomorphisms given by the appropriate polynomi-

Ž . Žals on affine open subsets of the U resp. V where again the theory saysi j
.that the open subsets are defined by the appropriate polynomials.

ŽWe also add m-ary predicates PP and LL to be interpreted in the
.obvious way as the union of the corresponding affine sets and a 2m-ary

predicate FF for the incidence relation. The theory contains sentences
saying that FF defines an incidence relation satisfying Definition 1.2 above
and respecting the coherency conditions imposed by the transition maps,

Ž . Ž Ž . Ž ..namely if FF x, y then also, e.g., FF f x , f y for all transition mapsi, j i9, j9
f , f and x, y in their respective domains. The fact that the diagonalsi, j i9, j9
in PP = PP and LL = LL are closed will also be part of the theory since this
is again expressible in the language.
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Obviously the map f as defined above is definable in this language sony1
its definition is part of the theory as are the coherency conditions imposed

Ž . Ž Ž ..by the transition maps, namely, e.g., f x s y implies f f x sny1 ny1 i, j
Ž .f y , etc.i9, j9

Let T denote the theory of K in this extended language. Obviously
T : T. It is now clear that in any other model of this theory theacf, 0

Ž .interpretation of the language symbols PP, LL , FF will be an algebraic
n-gon. By Fact 3.1 there must be a model of power 2/ 0. But any model of
this theory in particular has to be an algebraically closed field of character-
istic 0, so the only possible model in that cardinality is C contradicting
Proposition 2.5.

Next we turn to showing that the algebraic n-gons for n s 3, 4, 6 are
unique up to algebraic isomorphism and duality:

3.3. THEOREM. If P is an algebraic polygon o¨er some algebraically
Ž .closed field K of characteristic 0, then up to duality P is isomorphic to the

Žprojectï e plane, the symplectic quadrangle, or the split Cayley hexagon o¨er
.K .

Proof. By Proposition 2.6, the projective plane, the symplectic quadran-
gle, and the split Cayley hexagon over K are algebraic n-gons for n s 3, 4,
and 6, respectively, and by Proposition 3.2 there are no algebraic n-gons

� 4for n other than 3, 4, 6. So it is left to show that for n g 3, 4, 6 there is a
Ž .unique algebraic n-gon over K up to isomorphism , which then, clearly, is

isomorphic to the specific n-gon from this list.
Suppose otherwise and let K be an algebraically closed field of charac-

� 4teristic 0 over which for some n g 3, 4, 6 there are two nonisomorphic
algebraic n-gons.

As in Proposition 3.2 we can extend the language of fields to a language
L9 such that the theory of K in the language L9 says that there are two
algebraic n-gons. The theory also specifies that there is no algebraic
isomorphism betwen these two polygons as for every q - v there is a
sentence in L9 saying that whenever there is a K-isomorphism between
these pairs of algebraic varieties, possibly switching the roles of points and

Žlines, such that all the ‘‘data’’ i.e., all the pieces of the K-morphisms and
.the open subsets are given by at most q polynomials of degree F q, there

Ž .is an instance where the incidence relation or its dual is not preserved.
As above, by assumption this theory is consistent, hence C would have to

be a model, contradicting Proposition 2.5.

3.4. Remark. For two nonisomorphic fields K, K 9, the associated alge-
braic polygons are not isomorphic. This can be seen as follows: the derived
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incidence structure of such a polygon is isomorphic to the projective plane
w xover the corresponding field, see 18, 19 , hence the field can be recovered

from the geometry.

3.5. COROLLARY. Let K be an algebraically closed field of characteristic
Ž .0, and let G, B, N, S be an irreducible effectï e spherical Tits system of rank

2. Assume that G is a connected algebraic group o¨er K, and that the
Ž .parabolic subgroups are closed. Then G, B, N, S is Moufang, i.e., G g

� Ž . Ž . Ž .4PSL K , PSp K , G K , and B is a standard Borel subgroup, i.e., a3 4 2
w xmaximal sol̈ able subgroup of G, see, e. g., 3, Chap. IV .

Combining this with Tits’ classification of the irreducible spherical
buildings of rank G 3, we get the following result:

Ž .3.6. COROLLARY. Let G, B, N, S be an irreducible effectï e spherical
Tits system of rank G 2. If G is a connected algebraic group o¨er an
algebraically closed field of characteristic 0, and if B is closed in G, then G is
simple and B is a standard Borel subgroup of G.
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