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Abstract

We introduce hermitian generalized quadrangles over the octonions. These
quadrangles extend the classical hermitian quadrangles over the reals, the
complex numbers and the quaternions in a natural way. For the smallest
quadrangle, H3O, we show that the group Spin(9) acts as a line-transitive
automorphism group.

Introduction

Octonions or Cayley division algebras are complex and beautiful objects which are,
unfortunately, absent in finite geometry. They can be used to construct a family of
particularly nice generalized quadrangles. The smallest of these quadrangles, H3O,
has a line-transitive automorphism group. These quadrangles generalize and extend
in a natural way the classical standard hermitian quadrangles over the reals, the
complex numbers, or the quaternions. They where first described by Ferus-Karcher-
Münzner [1] in connection with Clifford algebras and isoparametric hypersurfaces;
later, Thorbergsson [7] proved by a topological argument that they are quadrangles.

We here take a different approach to these quadrangles: instead of real Clifford
algebras we use the octonions, and we give an algebraic proof that the geometries
are quadrangles. The approach via Clifford algebras can be found in [2]. It should
be said that although the quadrangles originate from differential and topological
geometry, the whole construction is purely algebraic and works whenever the field
R of real numbers is replaced by a real closed field.
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The first section gives the definition of these geometries, and a proof that they
are quadrangles. In the second section we examine the smallest example, H3O. It
turns out that this quadrangle can be reconstructed from a group of automorphisms
by Stroppel’s method [5, 6], and that the subgroup lattice of this group contains all
the information needed to recover the quadrangle.

1 Definition of the quadrangles

We denote the real numbers by R, the complex numbers by C, the (real) qua-
ternion skew field by H, and the (real) octonion division algebra by O. All facts we
need about these alternative fields can be found in the first chapter of the book by
Salzmann et al. [4]. There are inclusions R ⊆ C ⊆ H ⊆ O. Let F be any of these
four alternative fields. An element x ∈ F whose square is a nonpositive real number
is called pure; accordingly, there is a direct sum decomposition

F = R⊕ Pu(F)

of F into real and pure elements. The standard involution x 7−→ x̄ is the identity on
real elements, and −id on the pure elements. Thus, it is an anti-automorphism of F
of order two (if F = R, then x̄ = x). Put Re(a) = 1

2
(a+ ā). Then F becomes a real

euclidean vector space with respect to the inner product (a, b) 7−→ 〈a, b〉 = Re(ab̄);
the euclidean norm is |a| =

√
aā. Put V = Fn and d = dimR F. Then V is a real

euclidean dn-dimensional vector space. Consider the R-bilinear map

V × V −→ F, (x, y) 7−→ (x|y) = x1ȳ1 + · · · + xnȳn.

It has the following properties.

Re(x|y) = 〈x, y〉 (1)

〈ax, y〉 = 〈x, āy〉 (2)

(x|y) = (y|x) (3)

(ax, āy) = a(x|y)a (4)

(x|ax) = |x|2ā (5)

(ax|x) = a|x|2 (6)

|(x|y)| ≤ |x| · |y|. (7)

These relations are well-known for F = R,C,H, so the interesting case is F = O.
Equations (5), (6) hold because O is an alternative field; (4) is a Moufang identity,
and (7) is proved below.

Lemma 1 (Cauchy-Schwarz principle)
Suppose that x 6= 0. The equality

|(x|y)| = |x| · |y|

holds if and only if y = ax for some a ∈ F. Moreover, this implies (x|y) = |x|2ā.
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Proof. We have the following chain of inequalities.

|(x|y)| = |x1ȳ1 + · · ·+ xnȳn|
≤ |x1ȳ1|+ · · ·+ |xnȳn| = |x1| · |y1|+ · · ·+ |xn| · |yn|

≤
√
|x1|2 + · · ·+ |xn|2

√
|y1|2 + · · · + |yn|2

= |x| · |y|

This establishes (7). Suppose that equality holds. We may assume that x 6= 0 6= y.
If the first line and the second line are equal, then there exists an element c ∈ F of
norm |c| = 1, such that xν ȳν = |xν ȳν |c for ν = 1, . . . , n. The next equality shows
that there exists a real number t such that |yν| = |xν|t, for ν = 1, . . . , n. This yields
yν = c̄txν and thus y = (c̄t)x. �

Definition 1
Let V = Fn. We call the elements of the set

P =
{

(x, y) ∈ V ⊕ V | |x|2 + |y|2 = 1, |(x|y)| = |x| · |y|
}

points and the elements of the set

L =
{
(u, v) ∈ V ⊕ V | |u|2 = |v|2 = 1/2, (u|v) = 0

}
lines. Note that L 6= ∅, provided that n ≥ 2. Let S = {(c, s) ∈ R ⊕ F| c2 + |s|2 =
1} ∼= Sd. By Cauchy-Schwarz, the point space can be rewritten as

P = {(cw, sw) ∈ V ⊕ V | w ∈ V, |w| = 1, (c, s) ∈ S} .

Note that

〈(cw, sw), (u, v)〉 = 〈cw, u〉 + 〈sw, v〉
= 〈w, cu〉 + 〈w, s̄v〉
= 〈w, cu+ s̄v〉 ≤ 1/

√
2.

By Cauchy-Schwarz, equality holds if and only if w =
√

2(cu+ s̄w). We use this to
define the incidence:

(cw, sw) I (u, v) if and only if 〈(cw, sw), (u, v)〉 = 1/
√

2.

We denote the resulting incidence structure by

Hn+1F = (P ,L, I),

for n ≥ 2.

It is clear that there are commuting inclusions
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HkR //

��

HkC //

��

HkH //

��

HkO

��
Hk+1R //

��

Hk+1C //

��

Hk+1H //

��

Hk+1O

��
H∞R // H∞C // H∞H // H∞O

for k ≥ 3. The bottom line is the direct limit of these geometries. The condition for
the incidence is equivalent to

(cw, sw) = 1/
√

2
(
(1 + (c2 − |s|2))u+ 2csv, 2cs̄u+ (1− (c2 − |s|2))v

)
.

Consider the map φ : P −→ S

(cw, sw) 7−→ (|cw|2 − |sw|2, 2(cw|sw)) = (c2 − |s|2, 2cs̄).

For (c, s) ∈ S put

Bc,s =

(
c Ls
Ls̄ −c

)
,

where Ls = (x 7−→ sx). It is a straight-forward calculation that Bc,s is an orthogonal
involution on V ⊕ V . Moreover, Bc,s permutes P and L; since Bc,s preserves the
inner product, it preserves the incidence. Note also the following:

Bφ(p)p = p

for all p ∈ P , and conversely, if z ∈ V ⊕ V is a unit vector which is invariant under
some Bc,s, then z ∈ P . Let K denote the group of automorphisms generated by the
Bc,s. Each Bc,s acts on R⊕ F as the orthogonal map

Bc,s : (r, t) 7−→ − ((r, t)− 2〈(r, t), (c, s)〉(c, s)) .

Equivalently, one can imbed R⊕F into EndR(V ) by the map (r, t) 7−→ Br,t; then Bc,s

acts by conjugation on this vector space of endomorphisms. If we endow EndR(V )
with the positive definite inner product

〈X, Y 〉 = trace(X · Y trsp)/dn,

then this is an isometric linear imbedding

R⊕ F ↪→ EndR(V ).

The map φ : P −→ S is K-equivariant, i.e. g(φ(p)) = φ(g(p)) for all g ∈ K. Note
that up to the sign, Bc,s acts as a reflection on R⊕ F; therefore K acts transitively
on the unit sphere S ⊆ R⊕ F.
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Lemma 2
The point rows of Hn+1F are d-spheres.

Proof. A point p incident with the line ` = (u, v) is of the form

p = 1/
√

2 (1 +Bc,s) `

where (c, s) ∈ S ∼= Sd. �

Lemma 3
The line pencils of Hn+1F are d(n − 1)− 1-spheres.

Proof. Let p ∈ P . We may assume that φ(p) = (1, 0), i.e. that p = (w, 0)
for some unit vector w ∈ V . Let ` = (u, v) ∈ L. Then p I ` if and only if
p = 1/

√
2 (1 +B1,0) `. This implies u = 1/

√
2w, (u|v) = 0, and |v|2 = 1/2. The

kernel of the R-linear map x 7−→ (u|x) is d(n − 1)-dimensional. �

Therefore Hn+1F is a thick geometry, unless n = 2 and F = R.

Lemma 4
Two lines h, ` ∈ L are confluent if and only if (h − `)/|h − `| ∈ P .

Proof. The lines are confluent if and only if (1 + Bc,s)` = (1 + Bc,s)h for some
(c, s) ∈ S. This is equivalent with h − ` = (−Bc,s)(h − `); thus h − ` has to be
an invariant vector for some Bc,s. But the invariant unit vectors are precisely the
points of the geometry Hn+1F. �

Lemma 5
Let p, q ∈ P be points, and put P = Bφ(p) and Q = Bφ(q). Then p, q are collinear

if and only if
√

2(p − q) = (P − Q)` for some ` ∈ L. Collinearity implies that
(p− q)/|p− q| ∈ L.

Proof. The first claim is clear. Multiplying the equation with P − Q we obtain√
2(P −Q)(p− q) = (P −Q)2` = |P −Q|2`. Since (P −Q)/|P −Q| ∈ K, the second

claim follows. �

Theorem 1
The geometry Hn+1F is a generalized quadrangle, unless F = R and n = 2.

Proof. Let (p, `) ∈ P × L be a non-incident point-line pair. We have to show
that there exists a unique point q which is incident with ` and collinear with p.
Applying a suitable automorphism in K, we may assume that φ(p) = (1, 0), i.e.
that p = (w, 0). Put ` = (u, v). The non-incidence implies that u 6= 1/

√
2w. A

typical point incident with ` is of the form q = 1/
√

2((1 + c)u+ sv, s̄u+ (1− c)v).
Collinearity of p and q implies by lemma 5 that

((1 + c)u+ sv −
√

2w|s̄u+ (1− c)v) = 0.

Note that the solution (c, s) = (1, 0) is not allowed, since then (q − p)/|q − p| 6∈ L.
We expand the above equation as

s−
√

2(w|s̄u− cv) =
√

2(w|v);
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so we have to show that there is a unique solution. Consider the R-linear map

f : R⊕ F −→ F, (c, s) 7−→ s−
√

2(w|s̄u− cv).

The kernel N of f has dimension at least 1. If c = 0 6= s, then f(0, s) = s −√
2(w|s̄u) 6= 0 by Cauchy-Schwarz. Therefore, the hyperplane 0 ⊕ F ⊆ R ⊕ F

intersects N trivially, and thus dimRN = 1. It follows that N ∩ S consists of
precisely two elements, N ∩ S = {(1, 0), (c, s)}. This establishes the uniqueness of
the point q.

To prove that q is collinear with p, we have to check first that (q−p)/|q−p| ∈ L.
We can apply another automorphism such that φ(p) = (1, 0) and φ(q) = (c, s),
where s is a real number. Then the equation takes the simpler form

√
2〈w, v〉 = s−

√
2〈w, s̄u− cv〉

= s−
√

2〈w, u〉s +
√

2〈w, v〉c.

Using the relation s2 = (1− c)(1 + c), it is easy to see that

|(1 + c)u+ sv −
√

2w|2 = |su+ (1− c)v)|2;

this shows that (q − p)/|p − q| ∈ L. According to lemma 5, the last condition
to check is that

√
2|p − q| = |P − Q|. This follows from P = Bφ(p) = B1,0 and

Q = Bφ(q) = Bc,s. �

Remarks

(1) The restriction of φ to a point row is a bijection. Therefore the fibers of φ are
ovoids: each line meets the fiber φ−1(c, s) in a unique point.

(2) The proof of theorem 1 shows that lemma 5 can be improved as follows: two
points p, q ∈ P are collinear if and only if (p− q)/|p− q| ∈ L.

Proposition 1
If F = R,C,H, then HnF is the classical quadrangle belonging to the standard
hermitian form of Witt index 2 on Fn+1.

Proof. To any point p = (cw, sw) we assign the subspace (c, s, w̄)F, and to any
line ` = (u, v) the subspace (1, 0,

√
2ū)F⊕ (0, 1,

√
2v̄)F. These subspaces are totally

isotropic with respect to the hermitian form

−x−2ȳ−2 − x−1ȳ−1 + x1ȳ1 + x2ȳ2 + · · ·+ xn−1ȳn−1

on Fn+1. It is easy to see that this correspondence is bijective and incidence pre-
serving. �
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Remarks

(1) The limits H∞F are ’stable’ versions of the compact quadrangles. Note that
H∞O contains all the quadrangles occuring here as subquadrangles; in par-
ticular, it contains all compact connected Moufang quadrangles, except for
the three which are not standard hermitian (i.e. the complex symplectic
quadrangle W (C), the ’bigger’ α-hermitian quadrangle Hα

4H, and the real
E6-quadrangle).

(2) The line spaces of these quadrangles are (rather obviously) the real, complex,
quaternionic, or octonionic Stiefel manifolds of orthonormal 2-frames. A closer
inspection of the map φ shows that the point space is the sphere bundle of
the Whitney sum of n copies of the Hopf bundle over the projective line F ∪
{(∞)}. These bundles are closely related to Bott periodicity and K-theory
of spheres. Thus, the underlying topological spaces of these quadrangles are
quite interesting in themselves, cp. [2].

2 Groups of automorphisms and reconstruction

We have already seen that the group K generated by the orthogonal involutions Bc,s

acts transitively on S. The subgroup G generated by the maps

Bc,sB1,0 =

(
c −Ls
Ls̄ c

)

has at most index 2 in K. Since the involution Bc,s 7−→ B−c,−s induces an auto-
morphism of K which fixes G elementwise, K/G ∼= Z/2. Note that the group G is
connected. The kernel of the action on R⊕F has order 2, hence G ∼= Spin(d+1), cp.
Porteous [3] Ch. 15,16. The representation of G on V ⊕ V = (F⊕ F)n decomposes
into a direct sum of n (irreducible) representations.

For F = R,C,H, this yields the classical quadrangles, hence we consider from now
on only the case F = O, so G ∼= Spin(9). To understand the subgroups of Spin(9), we
consider the action of Spin(9) on the affine Cayley plane AG2O. The first chapter of
the book [4] by Salzmann et al. provides a beautiful and comprehensive introduction
to the Cayley plane. Let ` = 1/

√
2((1, 0, 0, · · · ), (0, 1, 0, · · · )). The stabilizer of ` is

the compact exceptional Lie group G2, the automorphism group of O, cp. [4] 17.15.
The orbit G/G` of ` has dimension 36 − 14 = 22 = 7 + 7 + 8. The dimension of
the line space is the dimension of a point row plus two times the dimension of a
line pencil; in our case, we have dimL = 8 + 2(8(n − 1) − 1). Therefore, G acts
transitively on the line space L of Hn+1O if and only if n = 2.

Proposition 2
H3O has a line-transitive automorphism group. �

Suppose from now on that n = 2. Since G = Spin(9), the stabilizer of the line

` = (u, v) = 1/
√

2((1, 0, ), (0, 1))

is G` = G2, cp. [4] 17.15. We compute the stabilizers of points incident with `.



360 L. Kramer

A point incident with ` is of the form

p = 1/
√

2((1 + c)u+ sv, s̄u+ (1− c)v) = ((1 + c, s), (s̄, 1− c))

where (c, s) ∈ S. If s ∈ R, then G` fixes p, since G2 fixes the real subplane R⊕R ⊆
O⊕O elementwise,G` = Gp,`. Note that the stabilizerG(a,b) of a point (a, b) ∈ O⊕O,
fixes also the points (ra, rb), for r ∈ R, because the action is linear. If (a, b) 6= (0, 0),
then G(a,b) is a group isomorphic to Spin(7), cp. [4] 17.15. Thus, the stabilizer of
(1 + c, s) is isomorphic to Spin(7). If s ∈ R, then

G(1+c,s) = G(s,1−c) = Gp,

since s2 = (1− c)(1+ c). Therefore, the stabilizer of such a point is conjugate to the
stabilizer G(1,0)

∼= Spin(7) of the point (1, 0) ∈ O⊕O. The G-orbit of such a point
is a 15-sphere.

Suppose that s ∈ O \ R. We can apply an element of G` = G2 = Aut(O) such
that s ∈ C. Then Gp,` fixes the points (1 + c, s), (s̄, 1 − c) ∈ C ⊕ C. Therefore,
Gp,` = G(1+c,s),(s̄,1−c) = SU(3), cp. [4] 11.34. The space O ⊕ O is in a natural way
an 8-dimensional complex vector space, cp. [4] 11.34. The stabilizer of the point
p is the elementwise stabilizer of the complex 1-dimensional subspace spanned by
(1 + c, s); this is a group isomorphic to SU(4) ∼= Spin(6). We obtain the following
diagram of subgroups of Spin(9).

Spin(9)

Spin(7)

�������������

S7

?????????????

Spin(6)

S7

============= G2

�������������

SU(3)

Now Spin(7)/G2
∼= S7 ∼= Spin(6)/SU(3); thus, the stabilizer Gp acts in any case

transitively on the line pencil through p. By Stroppel [5, 6], this is the crucial
condition for reconstructing the geometry from the group G. Put

G = {Gp| p I `}.

Proposition 3
The triple (G,G, G`) = (Spin(9),G,G2) represents the geometry H3O: put

P ′ = {gHG`| g ∈ G,H ∈ G} and L′ = G/G`,

and call gHG` and g′G` incident if g′G` ⊆ gHG`. The resulting geometry is iso-
morphic to (P ,L, I), cp. Stroppel [5, 6].
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This is not completely satisfying, since the definition of the set G still involves
the original geometry. Instead, we want a purely group-theoretic description of
this collection of subgroups. In order to understand the subgroups of Spin(9), we
consider again its action on the affine Cayley plane AG2O. Identify the point space
of AG2O with O⊕O. There are two types of subgroups in G: subgroups conjugate
to G(1,0)

∼= Spin(7), and subgroups conjugate to G(1,0),(i,0)
∼= Spin(6).

Let A = gG(1,0)g
−1. The fixed point set of G(1,0), acting on O ⊕ O, is the real

point row R⊕0. The fixed point set of G2, acting on O⊕O, is R⊕R. If A contains
the group G2, then g(R ⊕ 0) ⊆ R ⊕ R, and therefore g(1, 0) is a point with real
coordinates. Such a group A fixes a point p with φ(p) ∈ R ⊕R, and thus A ∈ G.

Let B = gG(1,0),(i,0)g
−1. The fixed point set of G(1,0),(i,0), acting on O⊕O, is C⊕0,

and the fixed point set of SU(3), acting on O ⊕ O, is C ⊕ C. Thus, if SU(3) ⊆ B,
then g(C ⊕ 0) ⊆ C ⊕ C, and therefore A fixes a point p ∈ P with φ(p) ∈ R ⊕ C.
Hence B ∈ G. We have proved the following.

Theorem 2
The quadrangle H3O is represented by the triple

(G,G, G`) = (Spin(9)),G,G2),

where the collection G of subgroups of Spin(9) is given as follows. Consider the stand-
ard action of Spin(9) on O⊕O. Then G consists of all conjugates of G(1,0)

∼= Spin(7)
which contain G2, and of all conjugates of G(1,0),(i,0)

∼= Spin(6) whose intersection
with G2 is isomorphic to SU(3).
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