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We show how the field of definition k of a k-isotropic absolutely almost simple
k-group G “lives” in the group G(k) of k-rational points. The construction which is
inspired by the fundamental work of Borel-Tits is as follows: We choose an
element inside the center of the unipotent radical of a minimal parabolic k-sub-
group P; the orbit under the action of the center Z of a Levi k-subgroup of P
generates a one-dimensional vector space which then carries the additive field
structure in a natural way. The multiplicative structure is induced by the action of
Z. If G is k-simple, our construction yields a finite extension / of k.

As an immediate consequence we obtain an answer to a question of
Borovik—Nesin under the additional assumption that G is k-isotropic:

THEOREM. If G is a k-simple k-isotropic group such that G(k) has finite Morley
rank, then k is either algebraically closed or real closed. If G is absolutely simple
k-isotropic, then k is algebraically closed. — © 1999 Academic Press
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1. PRELIMINARIES

The model theoretic notion of defining a field in a group means giving a
first order formula in the language of groups (just using the group
operation and possibly naming finitely many elements of the group as
parameters) satisfied by a set of elements of the group such that the field
operations on this set are again definable by first order formulas. In this
way the field “lives” inside the group. Our construction yields just such a
realization of the field in the group.

We assume that the reader is familiar with the basic theory of linear
algebraic groups. Most of what is needed here can be found in [Bo] or
[BT1]. Throughout this note, k is a field, K O k its algebraic closure, and
G is a reductive k-group. Even though from the model theoretic point of
view the question of definability becomes somewhat trivial if & is finite, we
still think it worthwhile having a uniform treatment for all fields.

A reductive group is always assumed to be connected. As usual let G,
and G, denote the multiplicative and the additive group of K, respectively.

A group G is called k-almost simple if it has no proper normal
connected subgroup which is defined over k. If G is almost simple, then it
is of course k-almost simple; in this case, G is also called absolutely almost
simple. The converse is false, as a k-simple group need not be absolutely
simple; see the comments in Section 4 below.

Let T be a maximal torus of G defined over k. Then T decomposes into
an almost direct product T =T,-T,, where T, is k-split and T, is
anisotropic.

A Borel subgroup of G is a maximal connected solvable subgroup of G;
it contains some maximal torus of G. A closed subgroup of G containing
some Borel subgroup is called parabolic.

The group G is called isotropic over k if some proper nontrivial
parabolic subgroup of G is defined over k; otherwise it is called anisotropic.
If some Borel subgroup is defined over k, then G is called quasi-split; if
every conjugacy class of parabolic subgroups contains a parabolic k-sub-
group, then G is called split. A reductive k-group is isotropic if and only if
its semisimple part (i.e., its commutator subgroup) contains a nontrivial
k-split torus.

Note that if k is finite or locally finite, then G is quasi-split and hence
isotropic [Bo, 16.6].

We recall some facts about the structure of parabolic k-subgroups, e.g.,
see [BT1]. Let P € G be a parabolic subgroup with unipotent radical
U=%,P. Acomplement L of U in P is called a Levi subgroup of P. Levi
subgroups in parabolic subgroups of reductive groups do always exist and
are again reductive. Since U is normal in P, we have a semidirect product
P =L X U. Moreover, if P is defined over k, then U is defined over k,
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and there exist Levi subgroups of P which are defined over k. If P is
minimal among the parabolic k-subgroups, then the semisimple part L’ of
a Levi k-subgroup L is anisotropic; L’ is also called the semisimple
anisotropic kernel of G.

1.1. Roots and Coroots

Let S € G be a k-torus. The character group X*(S) = Mor(S,G,,) is
free Abelian and denoted additively. Dually, we consider the group X, (S)
= Mor(G,,, S) of all one-parameter subgroups in S. There is a pairing

CL )i X*(S) XX, (S) ~Z

which is defined for a € X*(S), B € X, (S) by a o B(x) = x{*# for all
x € G,,.

Let H be an S-invariant subgroup of G. Then S acts on the Lie algebra
by of H, and the weight spaces of §) with respectto Sare §, ={X € ) |s-
X = a(s)X forall s € S} for « € X*(S). If « # 0and §j, = {0}, then « is
called a root; the set of all roots is denoted by ®(S, H). There are two
important root systems in G, the absolute root system ® = ®(T, G), where
T is a maximal k-torus, and the relative root system ,® = ®(7,, G); the
restriction map X*(T) — X*(T,) induces a map ® — {0} U, P whose
image contains .. Note that in general « € ®(T, G) is defined only over
the separable closure k; of k. For each absolute root a € ®(T, G), there
is a corresponding root group U, isomorphic to the additive group G, of
K, cf. [Bo, 13.18].

Dually to these roots there are the coroots, i.e., certain one-parameter
subgroups « ¥ defined by (B, aY){a, a) = 2(B, a) for all roots g,
where (a, 8) — (a, 8 is a suitable inner product, cf. [Ti, 1.1.1 and BT3,
8.2]. Coroots exist for both the absolute root system & and the relative
root system ,®.

2. THE SETUP

Assume that G is absolutely almost simple and isotropic, and let
T =T, T, be amaximal k-torus. If the root « € ®(T, G) is defined over
k (rather than k), then also the root group U, and the dual root « ¥ are
defined over k. There is some parabolic k-subgroup P € G whose unipo-
tent radical contains U,. Note that the center of the Levi k-subgroup L of
P is contained in T and hence acts as scalars on U, which carries the
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structure of a one-dimensional vector space defined over k. Using the
additive group structure of U, and the multiplicative action of the torus
one can then easily define a field structure isomorphic to k£ on U, (k).

This approach works in particular if G is split or quasi-split over k, since
in that case the highest root « with respect to some Borel k-subgroup B is
defined over k: Every absolute root in ®(T,G) is defined over the
separable closure k, of k, and the Galois group T' = Gal(k,/k) acts on
®(T,G). Since B is defined over k, I' permutes the set of positive roots
®(T, B) € ®(T, G) [Bo, 20.3]. But the highest root « is unique in ®(T, B);
hence it is I'-stable and thus defined over k& [Bo, 8.11].

In general there might not be an absolute root defined over k, and we
have to use the following replacement in order to get a scalar action on
some one-dimensional vector space: Let P € G be a minimal parabolic
k-subgroup, with Levi k-subgroup L < P and unipotent radical U, and
again let T=1T,-T, Cc L be a maximal k-torus. The center Z(U) of U
carries the structure of a k-vector space (see [BT1, Thm. 3.17]) on which L
acts linearly (see [ABS, Lemma 2]). Put Z = Z(L). Note that the con-
nected component Z° of Z is a subtorus of T which has nontrivial
intersection with 7, since the derived Levi group L' is anisotropic.
Suppose that U has the following property:

(*) There exists a k-subgroup V < Z(U) which is an irreducible
L-module.

Assuming (), the center Z of L acts on V' as K-scalars, by Schur’s
Lemma. We require that Z(k) acts on V' via k-scalars: Let f: L — GL(})
be the representation afforded by the action of L on V, and put 4 = f(2).
By Schur’'s Lemma, A consists of multiples of the identity, 4 < G,,. On
the other hand, Z° acts nontrivially on IV, whence A = G,, is a one-dimen-
sional torus. To see that Z(k) acts as k-scalars, albeit not necessarily as all
scalars from k, we need this torus to be k-split: Let S = (Z°), be the split
part of the connected center of L. Then § acts by some nontrivial
character on Z(U). In particular, f(S) = 4 and thus A is k-split.

In the setting above where G is quasi-split over k, B € G is a Borel
k-subgroup, and « is the highest root with respect to B, the root group U,
is contained in the center of the unipotent radical of B, and the Levi
subgroup L = T of B clearly acts irreducibly on V' = U.,.

In general, we apply the following result due to Azad—-Barry—Seitz [ABS,
Section 2] (here, the field of definition k& does not enter).

ProposITION 2.1 [ABS]. Let P € G be a parabolic subgroup of an almost
simple group G, let V = Z(U) be the center of the unipotent radical of P, and
let L C P be a Levi subgroup. Then V is an irreducible L-module, except
possibly if char k = 2 and G is of type B,, C,, F, or G,, or char k = 3 and
G is of type G,.
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PrRoPOSITION 2.2.  Let G be a k-isotropic absolutely almost simple k-group.
Then every parabolic k-subgroup P of G has property ().

Proof. If G is split, all absolute roots and their corresponding root
groups and all parabolic subgroups are defined over k. So, for any
parabolic subgroup P c G with U =%,P any root group U, € Z(U)
satisfies property (). If G is isotropic and of type G,, then G is
automatically split; see [Ti, p. 61]. Hence, unless char k = 2 and G is of
type B,, C, or F,, the claim follows from Proposition 2.1 and the
discussion above.

We now investigate these remaining cases in characteristic 2. Here Z(U)
need no longer be irreducible for the action of a Levi subgroup of P.
Instead we take an irreducible submodule of Z(U) for our k-subgroup V/
in ().

We may suppose that G is a k-isotropic absolutely almost simple
k-group which is neither split nor quasi-split. We consult [Ti, pp. 55-60] for
the type of a parabolic k-subgroup P of G which can occur in this
instance. Let L be a Levi subgroup of P.

Consider the case when G is of type B, and char k = 2. Here the
derived Levi subgroup L’ is of type B,_, where r is the index of the
guadratic form ¢ associated with G. For r > 1 the center of U is the
one-dimensional trivial module for B, _,. If r =1, Z(U) = U and this
space affords the natural module for B, _,. Since char k = 2, this module
is no longer irreducible. There is a one-dimensional trivial submodule
afforded by the radical of the form on Z(U). We may suppose that L’ is
defined over k. Thus the quadratic form associated to L' =B,_, is
defined over k and so is its radical. Note that the center of L acts on the
one-dimensional submodule via scalars in both instances. Thus the trivial
module for L'(k) is realized in U(k) for any r > 1.

Next let G be of type C, and char k = 2. According to [Ti, p. 56] the
type of P depends on an integer d. If d = 1, then L’ is of type 4, _, and
U = Z(U) is isomarphic to the symmetric square of the natural module N
of A,_, (or its dual). Since char k = 2, this module is no longer irre-
ducible. It admits AN, the alternating square of N, and N®, a Frobenius
twist of N, as composition factors with socle N®. Note that the center of
L acts on N® as scalars. Clearly, N is defined over k, and so is N®. If
d > 1, then L' is of type A’,_, X C,_,,. It follows from [ABS] that Z(U)
is isomorphic to the symmetric square of the natural module (or its dual)
of the first 4,_, factor of L’ with the remaining components of L’ acting
trivially. The same argument applies in this instance.

Finally, let G be of type F, and char k = 2. Since G is neither split nor
quasi-split, L' is of type B,. The center of U is the natural module for L’
of dimension 7. This module is no longer irreducible in characteristic 2.
We argue as in the case r = 1 for type B,. |
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3. DEFINABILITY OF k IN G(k)

As above G is a k-isotropic absolutely almost simple k-group.

LEmmA 3.1. Let k be infinite and let L. C P be a Levi k-subgroup of a
parabolic k-subgroup P of G. Then there exists an element x € G(k) such that
the group L(k) of k-rational points of L is the centralizer of x in G(k); in
particular, L(k) is definable in G(k). Let Z denote the center of L. Then
Z(k) is the center of L(k), and thus both 1(k) and Z(k) are definable
subgroups of G(k).

Proof. Let S = Z° be the connected center of L. By [Bo, Prop. 20.6] L
is the G-centralizer of S, and S is a k-torus. By [Bo, Prop. 8.18] there
exists an element x € S(k) such that L is the G-centralizer of x (note that
k is infinite). Therefore, L(k) = L N G(k) is the G(k)-centralizer of x.
Clearly, this is a definable subgroup of G(k). Since L is reductive, the
center Z of L is defined over k, and since L(k) is dense in L, the center
of L(k) is precisely Z(k). 1

THeEOREM 3.2.  If G is an isotropic absolutely almost simple k-group, then
k is definable in G(k).

Proof. Let P be a minimal parabolic k-subgroup of G, and let V' be
the irreducible L-module from (%) whose existence is guaranteed by
Proposition 2.2. Let Z denote the center of a Levi k-subgroup of P.

Let v € V(k) be a nontrivial element. The orbit Z(k) - v is contained in
a one-dimensional k-subspace of 17(k). We now show that it contains all
elements of the form ¢%v, where t € k*. Let S ¢ Z° be a one-dimensional
isotropic torus which acts by some nontrivial k-root « €,® on V. Let a V:
G, — T be the corresponding k-coroot. Since P is minimal among the
parabolic k-subgroups, the semisimple part L’ of L is anisotropic. There-
fore, @ Y(G,,) is contained in the split torus 7,; see [Bo, 8.15]. But L’ is
anisotropic; hence T, N L' is finite and thus o Y(G,) € T, < Z° Now
(a,aV) = 2. Clearly, a V(k*) c Z(k), and for ¢ € k* we have

a’(t)-v=a(a’(t)) =ty =t

Now we define a field k&’ isomorphic to k as follows: consider the subset
k' c V(k) consisting of all elements of the form x-v —y-v with x,y €
Z(k) (resp. x,y € S(k), if k is finite). Clearly, k' is definable by 3.1 (resp.
the fact that S(k) is a finite cyclic group). If char k # 2, then every
element of k is a difference of two squares (4z = (1 +z)? — (1 — 2)?);
hence k' = kv. If char k = 2, then k' = k?v so in any case (k’, +) is an
isomorphic copy of (k, +). A multiplication in k' is defined by (x - v)(y - v)
= (x) v, for x,y € Z(k), and by extending this rule linearly to k’. Thus
we defined an isomorphic copy of k in the group G(k). 1
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If char k = 2 and if k is not perfect, then our construction yields only
the proper subfield of squares in k which is of course isomorphic to k.
Maybe the construction can be modified in such a way that one obtains the
whole field k.

COROLLARY 3.3. Let G be a k-isotropic absolutely simple group. If G(k)
has finite Morley rank, then k is algebraically closed.

Proof. This follows immediately from Theorem 3.2 and the fact that
the only fields of finite Morley rank are algebraically closed ones. |

4. THE k-SIMPLE CASE

A simple complex algebraic group G can also be viewed as a real
algebraic group. However, considered as a real group it is only R-simple,
but not absolutely simple and R is clearly not definable in G. In that sense
R is the “wrong” field of definition of G.

We return to the general situation. Let //k be a separable field
extension of finite degree. There is a functor R, which assigns, by
restriction of scalars, to each affine [-group H an affine k-group G =
R, H such that H(l) = G(k).

The functor preserves parabolic subgroups and central isogenies; see
[BT1]. In the isogeny class of a semisimple k-group G there are two special
groups, the simply connected group ( G and the ' adjoint group G, along with
corresponding central isogenies G - G - G. We need the following
result:

ProposITION 4.1 [BTL, Til. Let G be an almost simple k-group. If G is
either adjoint or simply connected, then there exists a separable field extension
1 /k of finite degree and an absolutely almost simple I-group H such that

R, H=G.

Defining the field in the absolutely simple case relies on the fact that we
have an irreducible action on (some subgroup of) the center of the
unipotent radical. This may fail if the group is only k-simple rather than
absolutely simple. Nevertheless, our construction yields a field also in this
more general context—and in some sense this is the “correct” one.

THEOREM 4.2.  If G is an almost k-simple k-isotropic group, then there is a
finite separable extension field | of k such that l is definable in G(k).

Proof. If G is either adjoint or simply connected, then by Proposition
4.1 there is a finite separable extension / of k and an absolutely simple
I-group H with H(I) = G(k) as groups. By Theorem 3.2, [ is definable in
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H(1) using only the group structure, which gives a definition for [ in G(k)
as desired.

If G is neither adjoint nor simply connected, there might not be any
absolutely simple group corresponding to G. Let G and G be the adjoint
and simply connected groups isogenous with G under central isogenies ¢
and ¢’, respectively. Let [ be the finite separable extension and H the
absolutely simple simply connected /-group as in Proposition 4.1. The
adjoint group H isogenous with H under some central isogeny ¢ corre-
sponds under the functor R, to the adjoint group G and, by the
uniqueness of isogenies (up to k-isomorphism), the following diagram
commutes:

Rl/k G’

=)

¥ R G

¢I

&

Let P be a minimal parabolic k-subgroup of G with Levi k-subgroup L,
U=%,P, and Z = Z(L). Note that Z(k) is definable in G(k) as in the
absolutely simple case.

Since central isogenies preserve parabolic subgroups and induce isomor-
phisms on the unipotent radicals, we may identify U with its image in G
and its preimage in G. Clearly, the Levi complements of these parabolic
subgroups are preserved as well and by VA and Z we denote their
respective centers. As before, we can define / in G(k) and in G(k) using
the action of Z(k) and Z(k), respectively, one the same element v € U.
Let M, M, and M denote the orbits of v under Z(k), Z(k), and Z(k)
respectively. Define AM = {a — b | a,b € M}, and likewise for M and M.
Then the set AM=AMCU carries the desired field structure. However,
we have M € M < M, since ¢(Z(k)) < Z(k) and ¢'(Z(k)) < Z(k). Hence
the set AM C U together with addition and multiplication as defined in
Theorem 3.2 defines the field / in G(k), as desired. 1
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COROLLARY 4.3. Let G be k-simple and k-isotropic. If G(k) has finite
Morley rank, then k is algebraically closed or real closed.

Proof. By the Artin—Schreier Theorem, the only fields which admit
nontrivial algebraically closed extensions of finite degree are the real
closed ones. The rest follows from Theorem 4.2. ||
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