SPLITTING OFF THE REAL LINE AND PLANE

LINUS KRAMER

Abstract: We show that $S \times \mathbb{R}^m \cong \mathbb{R}^{m+k}$ implies $S \cong \mathbb{R}^k$ for $k \leq 2$. AMS Classification: 57P05, 57N05. Keywords: Generalized manifolds, topology of E^2 .

J. Rätz [4] and J. Tabor [5] prove that $S \times \mathbb{R}^m \cong \mathbb{R} \times \mathbb{R}^m$ implies $S \cong \mathbb{R}$, and mention that this was posed by M.C. Zdun as an open problem. However, a more general result follows easily from old theorems of A. Borel [2] and G. Young [6]. Since the result is of some interest in compact transformation groups and topological geometry, we give a direct proof of the more general statement.

Lemma Let R be a principal ideal domain and let X be a connected, separable and metrizable $n\text{-}cm_R$ (cohomology n-manifold over R, see Bredon [3] V.16.7). If X factors as $X \cong S \times T$, and if $\dim_R(S) = k \leq 2$ (equivalently, if $k = \dim_R(X) - \dim_R(T) \leq 2$), then S is a topological k-manifold.

Proof. The factors S and T are k- and (n-k)- cm_R s, respectively, see [3] V.16.11. A connected k- cm_R is a k- hm_R (homology k-manifold over R) [3] V.16.8, and a separable metrizable k- hm_R is a topological manifold [3] V.16.32, provided that $k \leq 2$.

Corollary Let $X \cong S \times T$ be as above. Suppose that X is 1-connected. If k = 1, then $S \cong \mathbb{R}$; if k = 2, then $S \cong \mathbb{R}^2$ or $S \cong \mathbb{S}^2$. In particular, if $S \times \mathbb{R}^m \cong \mathbb{R}^{m+k}$, for $k \leq 2$, then $S \cong \mathbb{R}^k$.

Proof. By the Lemma, S is a 1-connected k-manifold. It is well-known that every 1-connected 1-manifold is homeomorphic to the real line. Similarly, it follows from the classification of surfaces that a 1-connected surface is either homeomorphic to \mathbb{R}^2 or to the sphere \mathbb{S}^2 .

The result does not carry over to higher dimensions: there is a 3- cm_R E such that $E \times \mathbb{R} \cong \mathbb{R}^4$, but $E \not\cong \mathbb{R}^3$ [1].

References

- [1] R.H. Bing, The Cartesian product of a certain nonmanifold and the line is E^4 , Ann. Math. 70 (1959) 399–412.
- [2] A. Borel et al., Seminar on transformation groups, Annals of Mathematics Studies 46, Princeton (1960).
- [3] G. Bredon, Sheaf theory, second edition, Springer Verlag (1996).
- [4] J. Rätz, On a topological characterization of the real line, Res. Math. 27 (1995) 395-401.
- [5] J. Tabor, On the division by \mathbb{R}^n , Aequationes Math. 49 (1995) 300–303.
- [6] G.S. Young, A characterization of 2-manifolds, Duke Math. J. 14 (1947) 979-990.

Mathematisches Institut der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany E-mail: kramer@mathematik.uni-wuerzburg.de

Eingegangen am 14. Januar 1999