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Abstract. This paper is about ovoids in infinite generalized quadrangles. Using the axiom of choice,
Cameron showed that infinite quadrangles contain many ovoids. Therefore, we consider mainly
closed ovoids in compact quadrangles.

After deriving some basic properties of compact ovoids, we consider ovoids which arise from
full imbeddings. This leads to restrictions for the topological parameiers:’). For example, if
there is a regular pair of lines or a full closed subquadrangle, theqa m’. The existence of full
subguadrangles implies the nonexistence of ideal subgquadrangles, so finite-dimensional quadrangles
are either point-minimal or line-minimal. Another result is that (up to duality) such a quadrangle
is spanned by the set of points on an ordinary quadrangle. This is useful for studying orbits of
automorphism groups. Finally we prove general nonexistence results for ovoids in quadrangles with
low-dimensional line pencils. As one consequence we show that the symplectic quadrangle over an
algebraically closed field of characteristic 0 has no Zariski-closed ovoids or spreads.

Mathematics Subject Classifications1991):51E12, 51H10.

Key words: generalized quadrangles, ovoids, spreads.

1. Background on Quadrangles and Regularity

We recall some terminology. Aimcidence geometris a triple (2, £, ), con-
sisting of a setP of points a setL of lines and a setF C J’ x L of flags Two
elements:, y € L UL areincidentif (x, y) € F or(y,x) € F.Forx € UL we
let D;(x) denote the set of all elements which are incident witMore generally,
Dy (x) denotes the set of all elementse » U £ whose graph-theoretic distance
from x is k. We also putrt = {x} U D, (x). If there is a (unique) line joining points
p,q € &, then this line is denoted byg.

The canonical map¥ — £ and ¥ — L are denoted by pr and prg,
respectively. Asubgeometrys a triple (#’, L', ¥'), wherep’ C », L' C £, and
F' = F NP x L). Thedualof (P, L, F)is (P, L, F )d“a'= (£, P, F,
whereF ~t = {(¢, p)|(p, £) € F).
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DEFINITION 1.1. We callQ = (£, £, ) ageneralized quadranglér quad-
rangle for short) if it satisfies the following two axioms:

(GQy) For each line¢ € £ the point row D;(¢) has cardinality|D1(¢)| > 3
and dually, for each poinp € £ theline pencil D1(p) has cardinality
ID1(p)| = 3.

(GQ) If (p,£) is a nonincident point-line pair, then there exists a unique line
h = proj,t passing througlp which is confluent with¢ in the unique

pointg = proj,p.

P h = proj,t q = projep

Property (GQ) is also calledthickness If £ satisfies (GQ) and the following
weaker version of the first axiom,

(WGQ,) For each line¢ € £ the point rowD+(¢) has cardinality| D,(¢)| > 2
and dually, for each poinp € £ the line pencilD,(p) has cardinality
|ID1(p)| = 2,

thens is called aweak quadrangleClearly, £ is a (weak) quadrangle if and only
if Qdualis a (weak) quadrangle.

A (weak) subguadrangle®)’ of a generalized quadrangi® is a subgeometry
which is a (weak) quadrangle. A subquadrangle is cdliédf for at least one line
¢ of Q" we haveD;(£) = D1(¢) (it follows that this equality holds for all lines of
12'). Dually, one defines aideal subquadrangle by requiring tha% (p) = D1(p)
holds for some (and hence every) point¥t

The verification of the following result is straight-forward.

LEMMA 1.2. LetQ’ € 9 be a (weak) subquadrangle, and ket £ be a line
of Q. If ID1(¢) N 2’| > 2, thent e £’ (and dually); thus, ifQ’ is a full (weak)
subquadrangle, then eithdy,(¢) C &', or the intersectionD,(£) N $’ contains 0
or 1 elements. O

We need also the following result.

LEMMA 1.3. LetQ’ be a full weak subquadrangle &¥. If |D;(p)| = 2 holds for

one pointp € £/, then every line pencil al)’ has cardinality2; thus Q' is a grid.
Proof. This follows from Tits’ classification of proper weak quadrangles, cf.

Van Maldeghem [33] 1.6.2, because the lines)ofre thick. O
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Full and ideal subquadrangles play an important réle in the theory of generalized
guadrangles. For instance, they are used in the classification of Moufang quad-
rangles (in particular to classify the Moufang quadrangles of so-calledBype

see Tits [31] and Tits and Weiss [32] for more details). In the finite case, the ex-
istence of full or ideal subquadrangles puts severe restrictions on the parameters
of the quadrangle. If a finite quadrangle of order?) (i.e., there arg + 1 points

on each point row and + 1 lines in each line pencil) has a full subquadrangle

of order (s', '), thens = s’ andt > st'. Combined with the inequality? > 1,

this also implies’ < s. See Payne and Thas [24] for proofs. We will show that the
inequalityr > st’ has an analogue in the compact connected case, but the inequality
" < s cannot have an analogue.

Full subquadrangles are also used in the finite case to construct ovoids. The
same construction works in the general case, and we will apply this to some com-
pact connected quadrangles. As a further application, we will show that certain
ovoids that we construct have a 2-transitive automorphism group within the quad-
rangle they live in.

DEFINITION 1.4. Let¢ and ¢’ be two opposite lines of a quadrangle Let
(¢, ¢} be the set of lines af) confluent with botly and?’. Leth, b’ € {¢, ¢/} be
distinct lines. If the seth, h'}* is independent ok and/’, then we say thatt, ¢')
is aregular pair of lines In other words(¢, £') is regular if the lines:” and¢” in
the picture below are always confluent.

E/

E//

In this case the set of lindg, ¢/} U {h, h'}*, for h, k' € (£, ¢’} is the line set of
a full weak subquadrangl®’ whose line pencils have exactly two elements. This
is also called arid.

The line? is calledregular if every such pair¢, £’) is regular. Regular points
and pairs of points are defined dually. A regular pgints called projective if
D>(p) N Dy(g) N Da(r) # @ holds for allg, r € D4(p). If g € D4(p), then
p? = pt Ngqgtis also called @race Thederived geometrat p is the incidence
geometry

A(p) = (p". {pNg*lg € P\{p}}, ©).

Itis easy to see thad(p) is a linear space if and only jf is regular, and a projective
plane if and only ifp is projective. Projective lines are defined dually.
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DEFINITION 1.5. Anovoidin a generalized quadrangle = (£, £, ) is a set
O C &2 of points with the following property:

(Ov) Every linet € £ meets® in a unique poinb(¢) € O.

A spreads in 9 is an ovoid inQ2: thus, it is a se C .£ of lines with the
property that every poing € £ lies on a unique line(p) € §.

DEFINITION 1.6. Ageometric hyperplang? of a generalized quadrangi® is

a proper subset of the point set with the property that each point rawwhich

is not contained iR meets# in a unique point. I£# does not contain any point
row, then clearly# is an ovoid. If#¢ contains a point row, but not the set of points
on the lines of an ordinary quadrangle, then it is easy to see/haiincides with
p*, for some pointp. In all other cases is the point set of a full subquadrangle
of Q. If # coincides withp* for some pointp, then we call# trivial, andp is a
deep poinbf .

LEMMA 1.7. LetfQ be a generalized quadrangle and jebe any point of).

() If all elements ofD,(p) are regular, then als is regular.
(i) If p is projective and an elemente D4(p) is regular, thery is projective.
(i) If all elements ofD,(p) are regular, and ifp is projective, then all points of
) are projective and) is isomorphic to the symplectic quadrangle over some
commutative field .

Proof. (i) If x, y € D2(p)ND2(q)NDy(r), for pointsq, r € D4(p), withx # y,
then, by regularity of, every pointz collinear with bothp andgq is also collinear
with  (sincex is collinear withp, g, r). HenceD(p) N Da(g) = Dy(p) N Da(r).

r

q

(i) This follows immediately from the proof of Theorem 6.2.1 in Van Malde-
ghem [33].

(i) Supposex, y, z are three pairwise opposite points with v} € Dy(x) N
Dy(y) N Dy(z), u # v, andx € D4(p). We want to show that is regular. Ifv
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and/oru is collinear withp, then itis regular, and as in the proof of (i), we conclude
that D(x) N Dy(y) = Da(x) N Do(z).
Suppose now that andv are opposite. Sincep is projective, there is at least

one pointw € D,(p) collinear with bothu andv.
Z

y

Hence{u, v} € Dy(w) N D,(x), and by the regularity ofv we concludeD,(x) N
D5(y) = Dy(x) N Da(w) = Da(x) N Do(z). Hencex is regular. Consequently all
points off] are regular and at least one point is projective. The result now follows
directly from Theorem 6.2.1 in [33]. O

We need one more definition.

DEFINITION 1.8. A generalized quadrangle is callgoint-antiregularif
P NPz Np3l€{0.2)

holds for all triples of pairwise noncollinear pointg1, p», p3). Line-antiregular
guadrangles are defined dually.

2. Compact Quadrangles

DEFINITION 2.1. A quadranglg®, £, ) is called acompact quadrangléf

P and L are compact Hausdorff spaces, and if the mgpe) — proj,¢ and

(p, &) — proj,p defined in 1.1 are continuous @ x £) \ F. This is equiv-

alent with# being closed in the product spage x £, see Grundhéfer and Van
Maldeghem [10] 2.1(a). If one of the spac®s L or F is not connected, then all
three spaces are totally disconnected, zero-dimensional, and in fact either finite or
homeomorphic to the Cantor set, cf. Grundhéfer and Van Maldeghem [10] p. 466,
Kramer [17] 2.5.6. Typical examples for this are finite quadranglesglic classical
guadrangles, and inverse limits of finite quadrangles, cf. [10]. Here, standard homo-
topy or homology theory is of little use, hence we disregard the zero-dimensional
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compact quadrangles. For technical reasons we will assume that the topological di-
mension of the quadrangle (that is, the covering dimensian,at, or &) is finite

(cf. Grundhofer and Knarr [8] Section 4). This is very likely a condition which is
automatically satisfied — for example the presence of a sufficiently large group of
topological automorphisms guarantees finite dimension (e.g., an open orbit in the
point space suffices by Szenthe’s result, cf. Grundhéfer, Knarr and Kramer [9] 2.2).
Let (p, £) be a flag ofQ. The dimensions

m = dim D]_(E)7 m/ =dim Dl(P)’

are independent of the flag, ¢), because any two point rows or line pencils are
homeomorphic via projectivities. The numbersm’ are positive if and only if) is
finite-dimensional and connected, cf. [8] 3.3; we call such a quadrangie,an')-
guadrangle, and we callz, m’) the topological parameterof Q. They play a
similar réle as therder (s, ¢) of a finite quadrangle (cf. Payne and Thas [24]); for
example, dmP =m +m’ + m,dimL = m’' + m + m’ and dim¥ = 2(m + m'),

cf. [8] 4.3.

We call a (weak) subquadrangl¥ C 9 compactif®’, L', ¥’ are compact (or,
equivalently, closed); this implies that the parameterQ'adre also finite (possibly
zero — this is an open problem); however, there exist no thick compad){
guadrangles fom > 0, i.e., positive dimension of the point rows implies positive
dimension of the line pencils (and dually, of course), see [8] 3.3. Therefore, the fol-
lowing definition is unambiguousgor m, m’ > 0, an(m, 0)-subquadranglés a full
weak closed subguadrangle where every point is incident with precisely two lines
and dually, a weakO0, m’)-subquadrangle is an ideal weak closed subquadrangle
with point rows of cardinality 2.

FIBRE BUNDLES IN COMPACT QUADRANGLES 2.2. In a compact quad-
rangle, the map pr: # — & is a fibre bundle with a line pencid,(p) as a typical
fibre,

{p} x D1(p) —— F

P,

and similarly, pr: # — £ is a fibre bundle with a point rouD,(¢) as a typical

fibre. This is important, since we will see that the existence of ovoids and spreads is
closely related to the existence of sections of these maps (a section of a continuous
map f: X — Y is a continuous right inverse Y — X, i.e. fr = idy).

DEFINITION 2.3. For our purposes, generalized:-manifoldis a locally com-
pact metrizable spacé which is amm-cm i (n-dimensional cohomology manifold)
for every principal ideal domai® (Bredon’s book [2] provides a comprehensive
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introduction tocm zS). If the covering dimension of is finite, then dinX = n, cf.
Lowen [21] 4.1, [2] IV.8. Generalized manifolds have the following nice property:
a productX x Y is a generalized manifold if and only ¥ andY are generalized
manifolds (and in that case the dimensions sum up in the right way), cf. [2] V.16.11.
Moreover, they satisfy domain invariance: Xf € Y, and if bothX andY are
generalized:-manifolds, thenX is open inY, cf. [2] V.16.19. Ifn < 2, then an
n-cmy is in fact ann-manifold, cf. [2] V.16.32.

The following results are proved in Grundhofer and Knarr [8] 4.2. Qebe an

(m, m")-quadrangle, and € £ be aline. Ifm > 0, thenD1(£) is an ANR @bsolute
neighborhood retractcf. Hu [12]) and a generalized-manifold. MoreoverD1(¢)

is homotopy equivalent to an-sphereS™, and (by the result on low dimensional
cmzS mentioned above) even homeomorphicStg provided thatn < 2. For
everyp € D1(£), the ‘affine line’ D,(€)\{p} is locally and globally contractible.

A similar statement holds for the line pencils. By the coordinazation, the spaces
P, L andF are also ANRs and generalized manifolds, of dimensionst2mn’,

2m’' + m and 4m + m'), respectively.

If 9 is point-antiregular, then there is a geometric bijection between punctured
point rows and punctured line pencils, cf. Schroth [27] 2.1. Thus, in a compact
point-antiregular quadrangle the point rows and line pencils are homeomorphic
and the topological parameters are equal.

LEMMA 2.4. If 9 is a compact connected inite-dimensional point-antiregular
quadrangle, them = m’. O

The following results are also due to Schroth.

THEOREM 2.5. Let £ be a compact connected finite-dimensional quadrangle
with a regular pointp. Then the following are equivalerdf. [28] Cor. 2.

(i) The topological parameters are equal= m’.
(i) The point p is projective.
(iii) The derived geometryd(p) is (in a natural way) a compact projective plane.

THEOREM 2.6. LetQQ be a compact connected finite-dimensional quadrangle. If
m=m' e {1, 2}, thenQ or Q% s point-antiregular,cf. [29] 2.15. O

The precise result is as follows: th&-cohomology rings of and £ are not
isomorphic. Letx,, x2, denote the (unique) generators df(¥p; F,) = F,, for
k = m, 2m respectively, and define timeod 2 twisting numbet, by x2 = 75 - x2,,.
Theng] is point-antiregular if and only if, = 0, and in this case, = 1.

Knarr shows thain = m’ implies thatm = 1, 2, 4, see Knarr [15] p. 610,
Kramer [17] 3.3.6. The following theorem follows from recent results of Stolz.

THEOREM 2.7.There exists no compact connected finite-dimensional quadrangle
withm =m’ = 4. O
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The proof uses the fact tha® is the S-dual of £ (see e.g. Husemoller [13]
Chapter 16.3) (this follows from Knarr's topological Veronese imbedding) and
resulting integrality properties of th€-theory of 2 and.L.

COROLLARY 2.8. Every compact connected finite-dimensional quadrangle with
equal parameters is (up to duality) point-antiregular. O

Stolz proved his result for Dupin hypersurfaces in spheres, which are closely re-
lated to compact quadrangles. We are at present not sure if his proof requires
that the point rows and line pencils are locally Euclidean. As the result is yet
unpublished, we will not rely on 2.7 and 2.8.

3. Topological Properties of Compact Ovoids

By Cameron’s result [4], ovoids and spreads abound in infinite quadrangles. Hence
we are going to consider only closed ovoids and spreads in compact quadrangles.
By duality, it suffices to consider either spreads or ovoids.

Given a setX € £ of points, putfy = F N (X x J£). Then the following
diagram is a topologically useful reformulation of 1.5 (Ov):

Prelsg

F © Fo

P —0

the set® < # is an ovoid if and only if pg|#,: Fo — L is bijective; in that case
€+ o(f) = pry(prels,) ~1(¢) is the dotted map.

If Qis compact and is closed (and hence compact Hausdorff), théscon-
tinuous, and conversely, if is continuous, the® = o(L) is compact. Note that
the mapt — (o(£), £) is a section of the bundle mapprF — L. In particular,
the existence of an ovoid implies the existence of a section gf flso, (o, id)
maps.L homeomorphically ont&y. Thuso, being the composite = pr, o (o, id)
is a locally trivial bundle

Di(p) ——— <L
o

O

over @, with line pencils as fibres. Similar remarks hold, by duality, for compact
spreads.
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COROLLARY 3.1. If 9 is a compact connected quadrangle with parameters
(m,m’), and if @ C £ is a compact ovoid, the® is a generalizedm + m’)-
manifold.

Proof. Since the bundle: £ — © is locally trivial, and since the fibre and the
total space of this bundle are generalized and (2n" + m)-manifolds, respect-
ively, the claim follows from the fact that factors of a generalized manifold are
again generalized manifolds (of the right dimension), see Bredon [2]. O

The fact that@ is a generalizedm + m’)-manifold can also be seen in a more
geometric way. Fix a poinp € O, alinef € Dy(p), putD = D,(€)\{p} and

U = 0\{p}. Then® = U is the closure and the one-point compactification of the
open subsetV/ € @. Now consider the mapy — £, g — proj,£. The image

of U under this map is precisely the sgtof all lines that meet in some point
different from p, and an invers& — @ is given byh +— o(h). It is easy to see
that E is homeomorphic t@d x (D1(p)\{¢}). ThereforeU = E is a contractible
generalizedm + m’)-manifold.

COROLLARY 3.2. If @ € & is a compact ovoid in a finite-dimensional compact
connected quadrangl@ with parametergm, m’), then® is homotopy equivalent
to an(m + m’)-sphere.

Proof. The set® is a generalizedm + m’)-manifold with the property that the
complement of every point is contractible, hence the claim follows from Léwen
[21] 6.2. 0

4. Ovoids in Subquadrangles

THEOREMA4.1.Let) = (£, L', ¥') be a full subquadrangle of the quadrangle
0, and letp € £\ %’ be apoint ofd notinQ’. Then the set of point8, = pNP’

is an ovoid inY'. If £ is a line ofQ not incident with any point of)’, then the set
{041(q, £) € F}is apartition of 2’ into ovoids.

If Q is compact, the®,, is closed in. If Q is a compact connecte@h, m')-
guadrangle, andQ’ is a closed(m, m”)-subquadrangle, them’ > m + m”.
Moreover,n’ = m + m” if and only if 2’ is a geometric hyperplane @i.

Proof. First, note thatD,(p) N L = ¥ since’ is full. Let £’ be any line ofY’.
Then there is a unique poipt = projy p incident with¢’ and collinear withp.
The pointp’ belongs to)’ because?’ is a full subquadrangle a). This shows
that®,, is an ovoid ofQ’.

Suppose thab(¢) N £’ = @, and letp’ be any point of’. Then there exists
a unique poiny = proj,p’ on ¢ collinear with p’. Hencep’ € @,, and any two
such ovoids are disjoint. This shows thé, |g € D1(¢)} partitionss into ovoids.

Now suppose thaf) is compact. Sincg* is closed, the intersectio®, =
ptN P’ isclosed in?’. If £ is closed in?, then® is compact. Consider the con-
tinuous injectionf: @, — Di(p), p' — pp’. By compactness?, and f(0,) are
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homeomorphic. If2 is finite-dimensional with parametega, m”), then din9,, =
dim f(0,) =m +m". But f(Q,) € Di(p), whence din®, < dimD1(p) = m’,
cf. Kramer [17] 3.1.1.

If ' is a geometric hyperplane @i, then every line througlp must meetP’
in a point of@,, hencef: 0, — Di(p) is a bijection, hencen + m” = m'.
Conversely, ifm + m” = m’, then f(9,) € D1(p) is a closed subset of the full
dimension; by domain invarianc¢,(9,) = D1(p), cf. Bredon [2] V.16.19. This
holds for everyp € £\ %', hence)’ is a geometric hyperplane . The theorem
is proved. O

The proof of the following result is straight-forward.

LEMMA 4.2. LetQ = (&, L', F’) be a full weak and nonthick subquadrangle
in a compact quadrangl®) = (£, £, ) (soQ’ is a grid by1.3). ThenQ' is
closed.

Letp € #’ and leth, £ € Dj(p) be the two unique lines through The point
space?’ is homeomorphic t@,(h) x D1(£) and the line space is homeomorphic
to the disjoint unionDy (k) U D1(£).

Proof. Let (po, £o, p1, £1, p2, £2, p3, £3) be an ordinary quadrangle '. Then
L' = (Lg N Ly) U (L1 N £3) is closed, and?’ is the set of all points which are
incident with this compact set of lines, $t is also compact. O

A closed ovoid of such afm, 0)-subquadrangle)’ is readily seen to be a gener-
alized m-manifold homeomorphic t@,(¢) imbedded ‘diagonally’ intaD,(£) x
D1(h). The proof of Theorem 4.1 also holds in this case and we havem’.

LEMMA 4.3. If  is a compact connectda:, m’)-quadrangle with a regular pair
of lines, them < m'. O

This was also proved by Schroth [28] Lemma 4 under the stronger assumption that
¢ is regular. We mention some applications.

DEFINITION 4.4. LetQ be a compact connected finite-dimensional quadrangle.
We say thatQ is line-minimal if  does not contain any proper full compact
subquadrangles. Dually, one definesnt-minimality

THEOREM 4.5. Let  be a compact connected finite-dimensional quadrangle

with parametergm, m’). If m < m’, theng is line-minimal, and ifn > m’ thenQ

is point-minimal. Ifm = m’, thenQ has no full or ideal closed subquadrangles.
Proof. We may assume that’ < m. If Q would have a proper compact full

subquadrangleY’, then the topological parameteta, m”) of Q" would satisfy

m+m” < m’, hencen < m’, a contradiction. O
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Let X be a set of points o). Then we say thaX spans if no proper subgeometry

of 9 which is closed under joining points, intersecting lines and projecting points
to lines or lines to points contairks. WhenevetX contains an ordinary quadrangle,
this is equivalent with saying that no proper weak subquadrangle afntainsX.

THEOREM 4.6. Up to duality, every compact connected finite-dimensional gen-
eralized quadrangle®) is spanned by the set of points on the lines of some ordinary
quadrangleQ. Moreover, if in the dual of no ordinary quadrangle? exists such
that the set of points o® spansQ9@, theng is spanned by the set of points on
every ordinary quadrangle af.

Proof. Let (m, m") be the topological parameters Qf Up to duality, we may
again assume that > m’. If m > m’, then any compact weak subquadrangle
of 9 containing the seX of points on some ordinary quadrangle has parameters
(m, m")y withm +m"” < m’, hencen < m’, a contradiction. Hence we may assume
thatm = m’ andm” = 0. We may suppose that in the dual, the set of points on any
ordinary quadrangle is contained in a proper compact weak subquadrangle (which
is a compact grid by the preceeding remarks), hence every poiltisfregular.

But then, by Schroth [28] is a symplectic quadrangle ov&ror C and the result
follows. a

More generally, the question whether the set of points on an apartment of a spher-
ical building spans the building has been considered by various authors, see Cooper-
stein and Shult [5], Blok and Brouwer [1], and Ronan and Smith [25]. Usually, in
these papers, the rank 2 case is left out or treated very incompletely. The previous
theorem gives a complete answer for finite-dimensional compact connected quad-
rangles. For Moufang quadrangles, see Van Maldeghem [33]. Another application
is contained in the following results.

LEMMA 4.7. Let£Q be a compact connected finite-dimensional quadrangle. Sup-
pose thatp is a regular point and ¢, ¢') is a regular pair of lines. Thep is incident
with some element ¢¢, ¢'}+.

Proof. Suppose thap is not incident with any element of; = {¢, ¢'}*. Put
8, = {h,h'}*, whereh, h' € 81, h # h'. The sets$; and 8, form the two sets
of lines of a grid, i.e., a full weak subquadrangl with two lines per point. By
Lemma 4.3, the topological parametersdhire equal, saym, m). This means by
2.5 thatQ(p) is a compact projective plane. L&Y be the set of points on the lines
of 8, (or equivalently, ofs,). The set of point®) = p' N £’ is a closed ovoid in
£’ which is clearly a generalizegi-manifold. SinceD;(p) is also a generalized
m-manifold, every line througlp carries a point o® by domain invariance. Hence
O can be seen as a closed curve in the projective plane. We want to show that
O is an oval. Let? be a line ofQ(p) and suppose tha meets@ in at least two
pointsq, ¢'. Clearly, this line does not meet There is a point of #’ collinear
with bothg andq’, hence by the regularity gf, we havet = p* N rt. Clearly®
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does not contain any other point of (otherwise there arises a trianglesilt), so
£ meetsQ in exactly two pointsy, ¢’.

4/’61 /'r
Suppose now that is any line ofQ(p) not throughp but containing at least one
pointg of ©. Let£” be a line ofQ’ throughg and letr be the projection of a point
on ¢ different fromg onto ¢”. Sincep is regular,¢ = r+ N p*. Let 4" the line of
£’ throughr different from¢”. Thenh” meetst in some point;’ different fromg;
thus?¢ meets® in two points.

Hence( is a closed oval im)(p), and all the tangent lines go through This is
in contradiction with the fact that the tangent lines constitute an oval in the dual
projective plane, cf. Salzmarat al. [26] 55.17. The lemma follows. O
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The quadrangle) in Lemma 4.7 above has equal parameters= m’'. If one is
willing to use Stolz’ result 2.7, thef) is point- or line-antiregular by 2.8; thus, it
cannot have a regular point and a regular pair of lines. In other words, a quadrangle
with these properties does not exist. In any case, we now have:

THEOREM 4.8. Let Q be a compact connected finite-dimensional quadrangle
with topological parametergm, m’) and with a regular pointp. If Q has a full
weak subquadrangl€)’ with parametergm, m”), thenm = m’, (hencef’ is a
grid) and p is a point ofQ’".

Proof. The existence of)’ forcesm’ > m. The existence of a regular point
forcesm > m’. Hencem = m’. Butm’ > m + m”, hencem” = 0 and the result
follows from the previous lemma and 1.3. O

Lemma 4.7 states that any projective point in a compact quadrahgltntaining

a full grid Q" must be a point of". The following result, which improves a result
by Schroth [28] significantly, implies in particular that not all points of suah’'a
can be projective.

THEOREM 4.9.LetQ be a compact connected finite-dimensional quadrangle and
let # be a closed geometric hyperplanes®f Then the following are equivalent:

(i) 2 has topological parameter@z, m) and all points of# are regular;
(i) all points of # are projective;
(iii) #¢ is trivial, all its nondeep points are regular, and at least one of them is
projective;
(iv) # is trivial, all its nondeep points are regular and its deep point is projective;
(v) all points ofLQ are projective;
(vi) 9 isisomorphic to the symplectic quadrangle ofeor C.

Proof. By Lemma 1.7 and the main result of [28], it suffices to show that
cannot have a closed full subquadrangle all points of which are projectise in
So suppose thal contains such a subquadranglé. We know thatQ) has then
topological parameter@n, m), and hence by Theorem 4.8/ is a grid. We could
now finish the proof by quoting 2.8 which says that all linesbére antiregular
(because not all points are by the existence of regular points). This contradicts the
existence of the gridd'.

We now present an independent and rather geometric proof? Le¢ the point
set of)’ and letp be a point outsider’.

(1) Letg be a point outsider’ different fromp. Thenp andq induce closed ovals
O, = p* NP andy, = ¢+ N P’ in Q'. Supposey, and¥, meet in at least
three different points, y, z. Letr be one of the two points a’ collinear with
bothx andy.
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qy

A'x /'r

By the regularity ofx, we know that{r, p, g} € D,(x) N D2(y) = Dy(x) N
D(z), contradicting: ¢ D»(z). Hence|p Ngt N P'| < 2.

Now consider a pointw of Q' off @,. Consider the set of lineg =
{vt Nw* | v € 9,} in the projective planed(w) defined inw*. We show
that 8 is a dual closed oval. First we show thfis a closed curve in the line
space of the compact projective plaléw). Letw,, ws denote the two unique
points on®, collinear withw. Thenw, w1, ws determine a unique ordinary
quadranglgw, wwi, wy, wiwsy, W, Wrwsz, w3, waw) iN L.

w2 w3

w1 Uy w

Let v, denote the unique point omw,; which is equal to or collinear with
v € O,. We claim thatv, depends continuously an Forv # w1, we have
Uy = Proju,wv, and forv # ws, we havev, = projyu, proju,w,v; thus v,
depends continuously an Similarly, we define),. Thenv-Nw+ is the unique
line throughw,, v, in the projective plan&(w), hences = {v-Nw*|v € O,}
is compact and thus closed in the line spac6f); also, every line through
w meetss in a unique point.
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(3) No point ofw! can be collinear with three points 6f,, because these three
points are already collinear with: such a line inQ(w) would be of the form
gt Nwt, for g € Dy(w), and we showed in (1) thap- Ngt N P'| < 2.

(4) Letw, w1, wp asin (2), and lev be any point 0f9,,.
If v e wt, thenv e {wy, ws}. Every pointx of the line vw distinct fromv
itself lies on exactly two elements &f, because every such point is collinear

with exactly two points, v" of O,,.
/%,

,U/

7

v X w
Moreover, it is also clear that itself is on a unique element &. Hence, if
v € {w1, wo}, thenvt Nwt is, as an element of, on a unique ‘tangent point’
of 8.
Now letv € @\w. The tracesv-Np+ andwNv* intersect in a unique point
xo; in fact, p, v, xg are collinear. Thusgg is not collinear with any element in
O different fromu, i.e., xg lies on a unique element &f.
Let nowx € w*Nvt be different fromxy. We have to show that is collinear
with exactly two points of®,. Puty = proj,,,x. Theny # p, ws. Next,
putz = proj,,y. The pointz is contained in®’ and hence projective. Now
v,y € zFNxtnpt, hencezt Nxt =zt N pt. The pointz is collinear with
two distinct points, v' € @, C p*, hence the same is true fori.e.,v’ € x*.
By (3), x is collinear with at most two points @ ,.

p

w3

w1 Uy w
We have proved that is a closed dual oval in the projective plafgw).
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(5) We can now finish the proof in two different ways. First, we can remark that
by (4) all tangent points, belong to the lingp~ N w*. Hence the dual of
is not a closed oval, a contradiction to Salzmanal. [26], Proposition 55.17.
Second, by [26], Proposition 55.14, the point rowsdrhave dimension 1 or
2. But then all lines of are antiregular (by 2.6), contradicting the fact tiat
contains a full grid. O

We now consider the special case of a Moufang quadrangle. We can state a general
theorem without referring to topology.

THEOREM 4.10. Let Q be a Moufang quadrangle and suppose thgtis a full
subquadrangle of). Let G be the group of all automorphisms Qf which belong
to the little projective group of2 and fixQQ’ globally. Letp be a point ofQ not
belonging toQ'. Then the stabilizeG,, induces on the ovoid, of Q' a doubly
transitive permutation group which is permutation isomorphic to a subgroup of the
action onD;(p) of the stabilizer oG ,.

Proof.Letq be any element a?,,. We show thaG , acts transitively o®,\{¢}.
Let ¢1. q2 € O,\{g}. Then both pointg; andg, are opposite; in Q. Moreover,
they have the same projecti@moj,,q1 = proj,;q> = p onto the linepq.

q2
0, 2

p

By the Moufang property, there exists a collineatton= 6,.,, ,, of Q fixing all
lines throughy, fixing all points onpg and mappingy; to ¢». Sincef fixes p, it
stabilizes®, whenever it stabilize®)’. Now 6 mapsQ’ to some subquadrangle
£". The set of lines o)” throughgq is preciselyD;(q), and all points on every
line of Dj(q) belong to bothQ" and Q". Moreover,QQ" and Q" share an ordin-
ary quadrangle through andg.: let £, ¢ € D)(q) be two different lines. Then
0(£) = £ and9(¢’) = ¢'. Thus the pointdq, proj.qs, g», projeg,} C P’ N P”
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determine an ordinary quadrangle. By Van Maldeghem [33] Corollary 1.8.5 we
conclude)’ = Q". The theorem is proved by considering the group generated by
all 6,.4,.4,, for g, q1, g» three different points o) ,. O

COROLLARY 4.11. The ovoids in classical Moufang quadrangles arising from
hyperplanes admit a-transitive group.

Proof. Let Q be a classical Moufang quadrangle naturally imbedded in some
d-dimensional projective space P%). One can easily check that, in all the finite-
dimensional examples, if we find a hyperplane section which is an ovoid, then there
exists a classical Moufang quadranglécontaining as a full subquadrangle and
imbedded ind + 1)-dimensional projective space P®B). If p is a point ofQ’ not
belonging toQ, thenp is contained in a hyperplang of PG(V’). But H meets
PG(V) in a hyperplane of P@G7), hence the ovoid, is contained in a hyperplane
of PG(V) and is now readily seen to be equal to a hyperplane section. O

EXAMPLES 4.12. We consider examples arising from imbeddings between the
classical compact connected quadrangles, cf. Part Il [18] Section 6 for the ter-
minology (all possible imbeddings between the classical compact connected quad-
rangles have been determined recently by Wolfrom [34]). See Onishchik and Vin-
berg [23] for the Lie group terminology.

Let O/ (R) be the real orthogonal quadrangle arising from a nondegenerate
quadratic form of Witt index 2 iR, k > 4. Then Q,(R) has topological
parametergl, k — 3) and is a full subquadrangle @, (R), for all ¥’ > k. The
corresponding ovoids are hyperplane sections and admit a 2-transitive orthogonal
group PSQ_; 1R.

Let H,(C) be the complex Hermitian quadrangle arising from a nondegenerate
Hermitian form of Witt index 2 inC**1, k¥ > 3. Then H,(C) has topological
parameterg2, 2k — 5) and is a full subquadrangle df, (C), for all ¥’ > k.

The corresponding ovoids are hyperplane sections and admit a 2-transitive unitary
group PSY_, ;C.

Let H,(H) be the standard Hermitian quadrangle arising from a standard Her-
mitian form of Witt index 2 inH*!, k > 3. ThenH,(H) has topological para-
meters(4, 4k — 9) and is a full subquadrangle d@f, (H), for all ¥’ > k. The
corresponding ovoids are hyperplane sections and admit a 2-transitive quaternion
unitary group Py_; ;H.

Let HZ(H) be the o-Hermitian quadrangle arising from a quaternian
Hermitian form inH**1, k = 3, 4. ThenH$ (H) has topological parameters (4, 1),
it is dual toQ7(R) and it is a full subquadrangle @3 (H), which has topological
parameters (4,5). The corresponding ovoid is also a hyperplane section and admits
a 2-transitive quaternioa-unitary group P§H = PSU; ;C.

The orthogonal quadranglgq(R) is an ideal subquadrangle of the exceptional
Moufang quadrangl€® (Es, R) of type Eg, and hencaq(R) admits a 2-transitive
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spread. The corresponding group is R30. We conjecture that these spreads
coincide with the/-spreads constructed in Part |1 [18] 7.3.

For a complete account on existence and nonexistence of spreads, ovoids and
partitions into spreads and ovoids in the Moufang quadrangles, we refer to Part Il
[18] of the present paper. It follows e.g. from Part 11l [19] thatEe, R) is a full
subquadrangle in the (non Moufang) Clifford quadrangle FKM(9, 32), and contains
ovoids.

5. General Nonexistence Results

Using the fibre bundle interpretation of an ovoid, we can prove some general
nonexistence results. & = (£, £, ) is a (1, 1)-quadrangle, we can distinguish
between) and its dual by the mod 2 twisting numbser of the point space, cf. the
remarks after 2.6.

THEOREM5.1.Q = (£, £, ) be a compact connectdd, 1)-quadrangle with
mod 2 twisting number, = 1. Then the maF — £ does not admit a section;
in particular Q has no closed ovoid C 2.

Proof. TheF,-cohomology of the map pr. # — £ is given by the injection of
gradedF,-algebras

Falx1, y1, Y21/ (x3, y2, x5 + y2 + x131) < Faly1, 21/ (2, y3),

see [17], Hebda [11], Munzner [22], Grundho#dral. [9] (the subscripts indicate
the degrees of the homogeneous generators of the cohomology ringf. ¥ F
is a section of pr, then the composite

. re /7 pr:C °
H*(L; o) «—— H*(F; F2) ~—— H*(L; )

is the identity. Since dimH(F; F,) = 2 and dim,H(£L; F,) = 1, the induced
map in cohomology* has to kill some elementy; + x; € H(L; F,), where
a € F,. Sincer* is a ring homomorphism,

0=r*((L+a)y1 + x1)(ay1 + x1)) = r*(yix1 + x3) =r*(y2) = y2 # 0,
a contradiction. 0O

COROLLARY 5.2. The real symplectic quadrangl& (R) has no closed ovoids.

The dual of Theorem 5.1 is false: the real orthogonal (1, 1)-quadradg(l®) has
closed ovoids.

THEOREM 5.3. LetQ be a compact connectdd:, m)-quadrangle, form > 1.
Then the map¥ — £ and ¥ — £ admit no sections; in particulag) has
neither closed ovoids nor closed spreads.
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Proof. We use the same method as in the previous proof; however, this time we
use rational cohomology. TH@-cohomology of the map pr ¥ — £ is given by

Q[xm’ X2ms Ym s yZm] <~ Q[ym’ ym]

and we have the relations

2 2 2 2
Xp = CX2m, Y = d)’2m, Xom = Yo = O, XmYm = Xom + Yom-

The structure constantsd are given by(c, d) € {(1, 2), (2, 1)}. Again, dim H"(F;
Q) = 2 and dimH'(L; Q) = 1. The existence of a sectianof pr, implies that
r*(ay, + x,,) = 0, for somex € Q. Hence

0 = r*((aym + xpn) (X — (¢ +a)ym))
= —r*((da® + acd + ¢)y,) = —(da® + 2a + ¢)y.

But the polynomialg(a) = da® + 2a + ¢ has no roots i), hence the right-hand
side cannot be 0, a contradiction. O

COROLLARY 5.4. The complex symplectic quadrangigC) has neither closed
spreads nor closed ovoids. O

This holds in particular for Zariski-closed ovoids Wi(C).

COROLLARY 5.5. An algebraic quadrangle over an algebraically closed fi&ld
of characteristicO has no Zariski-closed ovoids or spreads; in particuléf(K)
has neither Zariski-closed ovoids nor Zariski-closed spreads.

Proof. By Kramer and Tent [20], such a quadrangleKissomorphic toW (K)
or to Q4(K). By similar model-theoretic transfer methods as in [20], one shows
that the nonexistence of ovoids for the special ckse- C implies the general
result. O

COROLLARY 5.6. A compact connected finite-dimensional quadrangle which
has a projective point does not have closed ovoids.

Proof. The parametergn, m’) of Q are equal. Ifn = 1, thenpt = RP?, cf.
Kramer [17] 4.3.1, and thug = 1. The result follows forr = 1 from 5.1 and for
m > 1 from 5.3. 0

If the parametergm, m’) become large, then the existence problem becomes rather
subtle, as we will see in Parts Il, 1l [18], [19]. However, the nonexistence of
spreads in(1, m’)-quadrangles, fom’ > 1 odd, can be settled in full generality.

The point rows of &1, m’)-quadrangle are homeomorphic to the citethus,
pre: F — J£L is a circle bundle. We want to view this as an orthogonal sphere
bundleS(¢) of a vector bundlé. Let & denote the associated open 2-disk bundle
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of this circle bundle, let TOR) denote the group of base-point preserving homeo-
morphisms ofR?, and let @2) € TOP(2) denote the subgroup of all orthogonal
transformations. The question is then whether the classifying map

80Q)

£ BTOP(2)

of the disk bundlet lifts to BO(2). By a result of Kneser the inclusion(®) C
TOP(2) is a homotopy equivalence, cf. Kneser [16], Friberg [6], Kirby and Sieben-
mann [14] p. 253, therefore there exists no obstruction to this lifting problem. (The
obstructions are certain elements df(i; 7 (TOP(2)/O(2))), for k > 0. Since
TOP(2)/0(2) is contractible, all obstructions vanish.)

The upshot is that we can think & — £ as the sphere bundI&&) of an
orthogonal vector bundl€. If m’ > 1, thenL is simply connected, therefore
we can choose an orientation for making & into a complexline bundle (thus
we lift the classifying map from B®) into BU(1)). Complex line bundles over
a paracompact space are classified by their first Chern class € H?(X) (to
see this, note that BQ) is an Eilenberg—MacLane spa&dZ, 2), hence there is
an equivalence of homotopy functorg(H) = [—; BU(1)]). The other piece of
information that we need is the following: in(@, m’)-quadrangle withn’ > 2,
the generalized manifol@® is orientable if and only ifz’ is even (this is proved in
Kramer [17] 3.4.9, cf. also Grove and Halperin [7] 4.8).

PROPOSITION5.7LetQ = (£, £, F) be a finite-dimensional quadrangle with
parameterg1, m’), for m’ > 3 odd. TherQ does not have closed spreads.

Proof. Let 8 C £ be a closed spread, and consider the restriciipn—> §. If
m’' > 2, then H(8) = HZS™*1) = 0, hence |4 is a trivial complex line bundle,
andP = F5 = St x 8. Thus® is orientable andh’ is even. a

These arguments do not go through#gr= 1, but this case is already covered by
Theorem 5.1 above.

We will see that the point spaces of the compact Moufang quadrangles can often
be partitioned in ovoids, cf. also 4.1. This property has strong consequences for the
bundle p;: F — L.

PROPOSITION 5.8. Suppose that the point space of a compact quadrasple
can be partitioned into closed ovoids. Then the bursElle> £ is topologically a
trivial product bundle.

Proof. Let L = D;(¢) be a point row, and let®,) ,e, be a family of ovoids
which partitions®, and such tha® ,NL = {p}. For each ovoi®,, letr, denote the
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corresponding sectio® — ¥ . ThenR = {r,|p € L} is a subspace of the space
C (L, F) of all continuous maps front to ¥, endowed with the compact-open
topology. The evaluation map, — r,(¢), R — ¥ is continuous and injective.
Its image is the compact sétx {¢} C ¥ ; thereforer, — r,(£), R — L x {{}

is a homeomorphism. The map,, h) — r,(h), R x £ — F is a continuous
bijection, hence, by compactness®f also a homeomorphism. Combining these
homeomorphisms we find thatx £ = ¥, as claimed. O
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