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Abstract. This paper is about ovoids in infinite generalized quadrangles. Using the axiom of choice,
Cameron showed that infinite quadrangles contain many ovoids. Therefore, we consider mainly
closed ovoids in compact quadrangles.

After deriving some basic properties of compact ovoids, we consider ovoids which arise from
full imbeddings. This leads to restrictions for the topological parameters(m,m′). For example, if
there is a regular pair of lines or a full closed subquadrangle, thenm 6 m′. The existence of full
subquadrangles implies the nonexistence of ideal subquadrangles, so finite-dimensional quadrangles
are either point-minimal or line-minimal. Another result is that (up to duality) such a quadrangle
is spanned by the set of points on an ordinary quadrangle. This is useful for studying orbits of
automorphism groups. Finally we prove general nonexistence results for ovoids in quadrangles with
low-dimensional line pencils. As one consequence we show that the symplectic quadrangle over an
algebraically closed field of characteristic 0 has no Zariski-closed ovoids or spreads.
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1. Background on Quadrangles and Regularity

We recall some terminology. Anincidence geometryis a triple (P ,L,F ), con-
sisting of a setP of points, a setL of lines, and a setF ⊂ P × L of flags. Two
elementsx, y ∈ P ∪L areincidentif (x, y) ∈ F or (y, x) ∈ F . Forx ∈ P ∪L we
letD1(x) denote the set of all elements which are incident withx. More generally,
Dk(x) denotes the set of all elementsy ∈ P ∪ L whose graph-theoretic distance
from x is k. We also putx⊥ = {x}∪D2(x). If there is a (unique) line joining points
p, q ∈ P , then this line is denoted bypq.

The canonical mapsF → P and F → L are denoted by prP and prL,
respectively. Asubgeometryis a triple(P ′,L′,F ′), whereP ′ ⊆ P , L′ ⊆ L, and
F ′ = F ∩ (P ′ × L′). Thedual of (P ,L,F ) is (P ,L,F )dual = (L,P ,F −1),
whereF −1 = {(`, p)|(p, `) ∈ F }.
? Research Director at Fund for Scientific Research, Flanders, Belgium.



280 LINUS KRAMER AND HENDRIK VAN MALDEGHEM

DEFINITION 1.1. We callQ = (P ,L,F ) a generalized quadrangle(or quad-
rangle for short) if it satisfies the following two axioms:

(GQ1) For each linè ∈ L the point rowD1(`) has cardinality|D1(`)| > 3
and dually, for each pointp ∈ P the line pencilD1(p) has cardinality
|D1(p)| > 3.

(GQ2) If (p, `) is a nonincident point-line pair, then there exists a unique line
h = projp` passing throughp which is confluent with̀ in the unique
point q = proj`p.

r rp q = proj`ph = projp`

`

Property (GQ1) is also calledthickness. If Q satisfies (GQ2) and the following
weaker version of the first axiom,

(wGQ1) For each linè ∈ L the point rowD1(`) has cardinality|D1(`)| > 2
and dually, for each pointp ∈ P the line pencilD1(p) has cardinality
|D1(p)| > 2,

thenQ is called aweak quadrangle. Clearly,Q is a (weak) quadrangle if and only
if Qdual is a (weak) quadrangle.

A (weak) subquadrangleQ′ of a generalized quadrangleQ is a subgeometry
which is a (weak) quadrangle. A subquadrangle is calledfull if for at least one line
` of Q′ we haveD′1(`) = D1(`) (it follows that this equality holds for all lines of
Q′). Dually, one defines anideal subquadrangle by requiring thatD′1(p) = D1(p)

holds for some (and hence every) point ofQ′.

The verification of the following result is straight-forward.

LEMMA 1.2. Let Q′ ⊆ Q be a (weak) subquadrangle, and let` ∈ L be a line
of Q. If |D1(`) ∩ P ′| > 2, then` ∈ L′ (and dually); thus, ifQ′ is a full (weak)
subquadrangle, then eitherD1(`) ⊂ P ′, or the intersectionD1(`)∩P ′ contains 0
or 1 elements. 2
We need also the following result.

LEMMA 1.3. LetQ′ be a full weak subquadrangle ofQ. If |D′1(p)| = 2 holds for
one pointp ∈ P ′, then every line pencil ofQ′ has cardinality2; thusQ′ is a grid.

Proof. This follows from Tits’ classification of proper weak quadrangles, cf.
Van Maldeghem [33] 1.6.2, because the lines ofQ′ are thick. 2
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Full and ideal subquadrangles play an important rôle in the theory of generalized
quadrangles. For instance, they are used in the classification of Moufang quad-
rangles (in particular to classify the Moufang quadrangles of so-called typeBC2,
see Tits [31] and Tits and Weiss [32] for more details). In the finite case, the ex-
istence of full or ideal subquadrangles puts severe restrictions on the parameters
of the quadrangle. If a finite quadrangle of order(s, t) (i.e., there ares + 1 points
on each point row andt + 1 lines in each line pencil) has a full subquadrangle
of order (s′, t ′), thens = s′ and t > st ′. Combined with the inequalitys2 > t ,
this also impliest ′ 6 s. See Payne and Thas [24] for proofs. We will show that the
inequalityt > st ′ has an analogue in the compact connected case, but the inequality
t ′ 6 s cannot have an analogue.

Full subquadrangles are also used in the finite case to construct ovoids. The
same construction works in the general case, and we will apply this to some com-
pact connected quadrangles. As a further application, we will show that certain
ovoids that we construct have a 2-transitive automorphism group within the quad-
rangle they live in.

DEFINITION 1.4. Let ` and `′ be two opposite lines of a quadrangleQ. Let
{`, `′}⊥ be the set of lines ofQ confluent with both̀ and`′. Leth, h′ ∈ {`, `′}⊥ be
distinct lines. If the set{h, h′}⊥ is independent ofh andh′, then we say that(`, `′)
is a regular pair of lines. In other words,(`, `′) is regular if the linesh′′ and`′′ in
the picture below are always confluent.

s s s

s s s
s e s

`

`′′

`′

h h′h′′

In this case the set of lines{`, `′}⊥ ∪ {h, h′}⊥, for h, h′ ∈ {`, `′}⊥ is the line set of
a full weak subquadrangleQ′ whose line pencils have exactly two elements. This
is also called agrid.

The line` is calledregular if every such pair(`, `′) is regular. Regular points
and pairs of points are defined dually. A regular pointp is calledprojective if
D2(p) ∩ D2(q) ∩ D2(r) 6= ∅ holds for all q, r ∈ D4(p). If q ∈ D4(p), then
pq = p⊥ ∩ q⊥ is also called atrace. Thederived geometryat p is the incidence
geometry

Q(p) = (p⊥, {p⊥ ∩ q⊥|q ∈ P \{p}},⊆).
It is easy to see thatQ(p) is a linear space if and only ifp is regular, and a projective
plane if and only ifp is projective. Projective lines are defined dually.
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DEFINITION 1.5. Anovoid in a generalized quadrangleQ = (P ,L,F ) is a set
O ⊆ P of points with the following property:

(Ov) Every line` ∈ L meetsO in a unique pointo(`) ∈ O.

A spreadS in Q is an ovoid inQdual; thus, it is a setS ⊆ L of lines with the
property that every pointp ∈ P lies on a unique lines(p) ∈ S.

DEFINITION 1.6. A geometric hyperplaneH of a generalized quadrangleQ is
a proper subset of the point set with the property that each point row ofQ which
is not contained inH meetsH in a unique point. IfH does not contain any point
row, then clearlyH is an ovoid. IfH contains a point row, but not the set of points
on the lines of an ordinary quadrangle, then it is easy to see thatH coincides with
p⊥, for some pointp. In all other cases,H is the point set of a full subquadrangle
of Q. If H coincides withp⊥ for some pointp, then we callH trivial , andp is a
deep pointof H .

LEMMA 1.7. LetQ be a generalized quadrangle and letp be any point ofQ.

(i) If all elements ofD2(p) are regular, then alsop is regular.
(ii) If p is projective and an elementq ∈ D4(p) is regular, thenq is projective.
(iii) If all elements ofD2(p) are regular, and ifp is projective, then all points of

Q are projective andQ is isomorphic to the symplectic quadrangle over some
commutative fieldK.

Proof.(i) If x, y ∈ D2(p)∩D2(q)∩D2(r), for pointsq, r ∈ D4(p), with x 6= y,
then, by regularity ofy, every pointz collinear with bothp andq is also collinear
with r (sincex is collinear withp, q, r). HenceD2(p)∩D2(q) = D2(p)∩D2(r).
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(ii) This follows immediately from the proof of Theorem 6.2.1 in Van Malde-
ghem [33].

(iii) Supposex, y, z are three pairwise opposite points with{u, v} ⊆ D2(x) ∩
D2(y) ∩ D2(z), u 6= v, andx ∈ D4(p). We want to show thatx is regular. Ifv
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and/oru is collinear withp, then it is regular, and as in the proof of (i), we conclude
thatD2(x) ∩D2(y) = D2(x) ∩D2(z).

Suppose now thatu andv are oppositep. Sincep is projective, there is at least
one pointw ∈ D2(p) collinear with bothu andv.
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Hence{u, v} ⊆ D2(w) ∩D2(x), and by the regularity ofw we concludeD2(x) ∩
D2(y) = D2(x) ∩D2(w) = D2(x) ∩ D2(z). Hencex is regular. Consequently all
points ofQ are regular and at least one point is projective. The result now follows
directly from Theorem 6.2.1 in [33]. 2
We need one more definition.

DEFINITION 1.8. A generalized quadrangle is calledpoint-antiregularif

|p⊥1 ∩ p⊥2 ∩ p⊥3 | ∈ {0,2}

holds for all triples of pairwise noncollinear points(p1, p2, p3). Line-antiregular
quadrangles are defined dually.

2. Compact Quadrangles

DEFINITION 2.1. A quadrangle(P ,L,F ) is called acompact quadrangleif
P andL are compact Hausdorff spaces, and if the maps(p, `) 7→ projp` and
(p, `) 7→ proj`p defined in 1.1 are continuous on(P × L) \ F . This is equiv-
alent withF being closed in the product spaceP × L, see Grundhöfer and Van
Maldeghem [10] 2.1(a). If one of the spacesP , L or F is not connected, then all
three spaces are totally disconnected, zero-dimensional, and in fact either finite or
homeomorphic to the Cantor set, cf. Grundhöfer and Van Maldeghem [10] p. 466,
Kramer [17] 2.5.6. Typical examples for this are finite quadrangles,p-adic classical
quadrangles, and inverse limits of finite quadrangles, cf. [10]. Here, standard homo-
topy or homology theory is of little use, hence we disregard the zero-dimensional
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compact quadrangles. For technical reasons we will assume that the topological di-
mension of the quadrangle (that is, the covering dimension ofP , L, or F ) is finite
(cf. Grundhöfer and Knarr [8] Section 4). This is very likely a condition which is
automatically satisfied – for example the presence of a sufficiently large group of
topological automorphisms guarantees finite dimension (e.g., an open orbit in the
point space suffices by Szenthe’s result, cf. Grundhöfer, Knarr and Kramer [9] 2.2).
Let (p, `) be a flag ofQ. The dimensions

m = dimD1(`), m′ = dimD1(p),

are independent of the flag(p, `), because any two point rows or line pencils are
homeomorphic via projectivities. The numbersm,m′ are positive if and only ifQ is
finite-dimensional and connected, cf. [8] 3.3; we call such a quadrangle an(m,m′)-
quadrangle, and we call(m,m′) the topological parametersof Q. They play a
similar rôle as theorder (s, t) of a finite quadrangle (cf. Payne and Thas [24]); for
example, dimP = m+m′ +m, dimL = m′ +m+m′ and dimF = 2(m+m′),
cf. [8] 4.3.

We call a (weak) subquadrangleQ′ ⊆ Q compact ifP ′,L′,F ′ are compact (or,
equivalently, closed); this implies that the parameters ofQ′ are also finite (possibly
zero – this is an open problem); however, there exist no thick compact (m,0)-
quadrangles form > 0, i.e., positive dimension of the point rows implies positive
dimension of the line pencils (and dually, of course), see [8] 3.3. Therefore, the fol-
lowing definition is unambiguous:form,m′ > 0, an(m,0)-subquadrangleis a full
weak closed subquadrangle where every point is incident with precisely two lines
and dually, a weak(0,m′)-subquadrangle is an ideal weak closed subquadrangle
with point rows of cardinality 2.

FIBRE BUNDLES IN COMPACT QUADRANGLES 2.2. In a compact quad-
rangle, the map prP : F → P is a fibre bundle with a line pencilD1(p) as a typical
fibre,

{p} ×D1(p) ⊂ - F

P ,
?

and similarly, prL: F → L is a fibre bundle with a point rowD1(`) as a typical
fibre. This is important, since we will see that the existence of ovoids and spreads is
closely related to the existence of sections of these maps (a section of a continuous
mapf :X→ Y is a continuous right inverser: Y → X, i.e.f r = idY ).

DEFINITION 2.3. For our purposes, ageneralizedn-manifold is a locally com-
pact metrizable spaceX which is ann-cmR (n-dimensional cohomology manifold)
for every principal ideal domainR (Bredon’s book [2] provides a comprehensive
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introduction tocmRs). If the covering dimension ofX is finite, then dimX = n, cf.
Löwen [21] 4.1, [2] IV.8. Generalized manifolds have the following nice property:
a productX × Y is a generalized manifold if and only ifX andY are generalized
manifolds (and in that case the dimensions sum up in the right way), cf. [2] V.16.11.
Moreover, they satisfy domain invariance: ifX ⊆ Y , and if bothX and Y are
generalizedn-manifolds, thenX is open inY , cf. [2] V.16.19. If n 6 2, then an
n-cmZ is in fact ann-manifold, cf. [2] V.16.32.

The following results are proved in Grundhöfer and Knarr [8] 4.2. LetQ be an
(m,m′)-quadrangle, and̀∈ L be a line. Ifm > 0, thenD1(`) is an ANR (absolute
neighborhood retract, cf. Hu [12]) and a generalizedm-manifold. Moreover,D1(`)

is homotopy equivalent to anm-sphereSm, and (by the result on low dimensional
cmZs mentioned above) even homeomorphic toSm, provided thatm 6 2. For
everyp ∈ D1(`), the ‘affine line’D1(`)\{p} is locally and globally contractible.
A similar statement holds for the line pencils. By the coordinazation, the spaces
P , L andF are also ANRs and generalized manifolds, of dimensions 2m + m′,
2m′ +m and 2(m+m′), respectively.

If Q is point-antiregular, then there is a geometric bijection between punctured
point rows and punctured line pencils, cf. Schroth [27] 2.1. Thus, in a compact
point-antiregular quadrangle the point rows and line pencils are homeomorphic
and the topological parameters are equal.

LEMMA 2.4. If Q is a compact connected inite-dimensional point-antiregular
quadrangle, thenm = m′. 2
The following results are also due to Schroth.

THEOREM 2.5. Let Q be a compact connected finite-dimensional quadrangle
with a regular pointp. Then the following are equivalent,cf. [28] Cor. 2.

(i) The topological parameters are equal,m = m′.
(ii) The pointp is projective.
(iii) The derived geometryQ(p) is (in a natural way) a compact projective plane.2
THEOREM 2.6. LetQ be a compact connected finite-dimensional quadrangle. If
m = m′ ∈ {1,2}, thenQ or Qdual is point-antiregular,cf. [29] 2.15. 2
The precise result is as follows: theF2-cohomology rings ofP and L are not
isomorphic. Letxm, x2m denote the (unique) generators of Hk(P ;F2) ∼= F2, for
k = m,2m respectively, and define themod 2 twisting numbertP by x2

m = tP ·x2m.
ThenQ is point-antiregular if and only iftP = 0, and in this casetL = 1.

Knarr shows thatm = m′ implies thatm = 1,2,4, see Knarr [15] p. 610,
Kramer [17] 3.3.6. The following theorem follows from recent results of Stolz.

THEOREM 2.7.There exists no compact connected finite-dimensional quadrangle
withm = m′ = 4. 2
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The proof uses the fact thatP is the S-dual of L (see e.g. Husemoller [13]
Chapter 16.3) (this follows from Knarr’s topological Veronese imbedding) and
resulting integrality properties of theK-theory ofP andL.

COROLLARY 2.8. Every compact connected finite-dimensional quadrangle with
equal parameters is (up to duality) point-antiregular. 2
Stolz proved his result for Dupin hypersurfaces in spheres, which are closely re-
lated to compact quadrangles. We are at present not sure if his proof requires
that the point rows and line pencils are locally Euclidean. As the result is yet
unpublished, we will not rely on 2.7 and 2.8.

3. Topological Properties of Compact Ovoids

By Cameron’s result [4], ovoids and spreads abound in infinite quadrangles. Hence
we are going to consider only closed ovoids and spreads in compact quadrangles.
By duality, it suffices to consider either spreads or ovoids.

Given a setX ⊆ P of points, putFX = F ∩ (X × L). Then the following
diagram is a topologically useful reformulation of 1.5 (Ov):

F � ⊃ FO

prL|FO - L

	..
..

..
..

..
..

..

o

P
?
� ⊃ O

?

the setO ⊆ P is an ovoid if and only if prL|FO : FO → L is bijective; in that case
` 7→ o(`) = prP (prL|FO )

−1(`) is the dotted map.
If Q is compact andO is closed (and hence compact Hausdorff), theno is con-

tinuous, and conversely, ifo is continuous, thenO = o(L) is compact. Note that
the map̀ 7→ (o(`), `) is a section of the bundle map prL: F → L. In particular,
the existence of an ovoid implies the existence of a section of prL. Also, (o, id)
mapsL homeomorphically ontoFO. Thuso, being the compositeo = prP ◦(o, id)
is a locally trivial bundle

D1(p) ⊂ - L

O
?
o

overO, with line pencils as fibres. Similar remarks hold, by duality, for compact
spreads.
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COROLLARY 3.1. If Q is a compact connected quadrangle with parameters
(m,m′), and if O ⊆ P is a compact ovoid, thenO is a generalized(m + m′)-
manifold.

Proof.Since the bundleo: L→ O is locally trivial, and since the fibre and the
total space of this bundle are generalizedm′- and(2m′ + m)-manifolds, respect-
ively, the claim follows from the fact that factors of a generalized manifold are
again generalized manifolds (of the right dimension), see Bredon [2]. 2
The fact thatO is a generalized(m + m′)-manifold can also be seen in a more
geometric way. Fix a pointp ∈ O, a line ` ∈ D1(p), putD = D1(`)\{p} and
U = O\{p}. ThenO = U is the closure and the one-point compactification of the
open subsetU ⊆ O. Now consider the mapU → L, q 7→ projq`. The image
of U under this map is precisely the setE of all lines that meet̀ in some point
different fromp, and an inverseE → O is given byh 7→ o(h). It is easy to see
thatE is homeomorphic toD × (D1(p)\{`}). ThereforeU ∼= E is a contractible
generalized(m+m′)-manifold.

COROLLARY 3.2. If O ⊆ P is a compact ovoid in a finite-dimensional compact
connected quadrangleQ with parameters(m,m′), thenO is homotopy equivalent
to an(m+m′)-sphere.

Proof.The setO is a generalized(m+m′)-manifold with the property that the
complement of every point is contractible, hence the claim follows from Löwen
[21] 6.2. 2

4. Ovoids in Subquadrangles

THEOREM 4.1.LetQ′ = (P ′,L′,F ′) be a full subquadrangle of the quadrangle
Q, and letp ∈ P \P ′ be a point ofQ not inQ′. Then the set of pointsOp = p⊥∩P ′
is an ovoid inQ′. If ` is a line ofQ not incident with any point ofQ′, then the set
{Oq|(q, `) ∈ F } is a partition ofP ′ into ovoids.

If Q is compact, thenOp is closed inP . If Q is a compact connected(m,m′)-
quadrangle, andQ′ is a closed(m,m′′)-subquadrangle, thenm′ > m + m′′.
Moreover,m′ = m+m′′ if and only ifP ′ is a geometric hyperplane ofQ.

Proof.First, note thatD1(p) ∩L′ = ∅ sinceQ′ is full. Let `′ be any line ofQ′.
Then there is a unique pointp′ = proj`′p incident with`′ and collinear withp.
The pointp′ belongs toQ′ becauseQ′ is a full subquadrangle ofQ. This shows
thatOp is an ovoid ofQ′.

Suppose thatD1(`) ∩ P ′ = ∅, and letp′ be any point ofQ′. Then there exists
a unique pointq = proj`p

′ on ` collinear withp′. Hencep′ ∈ Oq , and any two
such ovoids are disjoint. This shows that{Oq |q ∈ D1(`)} partitionsP into ovoids.

Now suppose thatQ is compact. Sincep⊥ is closed, the intersectionOp =
p⊥∩P ′ is closed inP ′. If P ′ is closed inP , thenO is compact. Consider the con-
tinuous injectionf : Op → D1(p), p′ 7→ pp′. By compactness,Op andf (Op) are
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homeomorphic. IfQ is finite-dimensional with parameters(m,m′′), then dimOp =
dimf (Op) = m+m′′. But f (Op) ⊆ D1(p), whence dimOp 6 dimD1(p) = m′,
cf. Kramer [17] 3.1.1.

If P ′ is a geometric hyperplane ofQ, then every line throughp must meetP ′
in a point of Op, hencef : Op → D1(p) is a bijection, hencem + m′′ = m′.
Conversely, ifm + m′′ = m′, thenf (Op) ⊆ D1(p) is a closed subset of the full
dimension; by domain invariance,f (Op) = D1(p), cf. Bredon [2] V.16.19. This
holds for everyp ∈ P \P ′, henceQ′ is a geometric hyperplane ofQ. The theorem
is proved. 2
The proof of the following result is straight-forward.

LEMMA 4.2. Let Q′ = (P ′,L′,F ′) be a full weak and nonthick subquadrangle
in a compact quadrangleQ = (P ,L,F ) (so Q′ is a grid by1.3). ThenQ′ is
closed.

Letp ∈ P ′ and leth, ` ∈ D′1(p) be the two unique lines throughp. The point
spaceP ′ is homeomorphic toD1(h)×D1(`) and the line space is homeomorphic
to the disjoint unionD1(h) tD1(`).

Proof.Let (p0, `0, p1, `1, p2, `2, p3, `3) be an ordinary quadrangle inQ′. Then
L′ = (`⊥0 ∩ `⊥2 ) ∪ (`⊥1 ∩ `⊥3 ) is closed, andP ′ is the set of all points which are
incident with this compact set of lines, soP ′ is also compact. 2
A closed ovoid of such an(m,0)-subquadrangleQ′ is readily seen to be a gener-
alizedm-manifold homeomorphic toD1(`) imbedded ‘diagonally’ intoD1(`) ×
D1(h). The proof of Theorem 4.1 also holds in this case and we havem 6 m′.

LEMMA 4.3. If Q is a compact connected(m,m′)-quadrangle with a regular pair
of lines, thenm 6 m′. 2
This was also proved by Schroth [28] Lemma 4 under the stronger assumption that
` is regular. We mention some applications.

DEFINITION 4.4. LetQ be a compact connected finite-dimensional quadrangle.
We say thatQ is line-minimal if Q does not contain any proper full compact
subquadrangles. Dually, one definespoint-minimality.

THEOREM 4.5. Let Q be a compact connected finite-dimensional quadrangle
with parameters(m,m′). If m 6 m′, thenQ is line-minimal, and ifm > m′ thenQ

is point-minimal. Ifm = m′, thenQ has no full or ideal closed subquadrangles.
Proof. We may assume thatm′ 6 m. If Q would have a proper compact full

subquadrangleQ′, then the topological parameters(m,m′′) of Q′ would satisfy
m+m′′ 6 m′, hencem < m′, a contradiction. 2
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LetX be a set of points ofQ. Then we say thatX spansQ if no proper subgeometry
of Q which is closed under joining points, intersecting lines and projecting points
to lines or lines to points containsX. WheneverX contains an ordinary quadrangle,
this is equivalent with saying that no proper weak subquadrangle ofQ containsX.

THEOREM 4.6. Up to duality, every compact connected finite-dimensional gen-
eralized quadrangleQ is spanned by the set of points on the lines of some ordinary
quadrangleQ. Moreover, if in the dual ofQ no ordinary quadrangleQ exists such
that the set of points onQ spansQdual, thenQ is spanned by the set of points on
every ordinary quadrangle ofQ.

Proof. Let (m,m′) be the topological parameters ofQ. Up to duality, we may
again assume thatm > m′. If m > m′, then any compact weak subquadrangle
of Q containing the setX of points on some ordinary quadrangle has parameters
(m,m′′) withm+m′′ 6 m′, hencem 6 m′, a contradiction. Hence we may assume
thatm = m′ andm′′ = 0. We may suppose that in the dual, the set of points on any
ordinary quadrangle is contained in a proper compact weak subquadrangle (which
is a compact grid by the preceeding remarks), hence every point ofQ is regular.
But then, by Schroth [28],Q is a symplectic quadrangle overR orC and the result
follows. 2
More generally, the question whether the set of points on an apartment of a spher-
ical building spans the building has been considered by various authors, see Cooper-
stein and Shult [5], Blok and Brouwer [1], and Ronan and Smith [25]. Usually, in
these papers, the rank 2 case is left out or treated very incompletely. The previous
theorem gives a complete answer for finite-dimensional compact connected quad-
rangles. For Moufang quadrangles, see Van Maldeghem [33]. Another application
is contained in the following results.

LEMMA 4.7. LetQ be a compact connected finite-dimensional quadrangle. Sup-
pose thatp is a regular point and(`, `′) is a regular pair of lines. Thenp is incident
with some element of{`, `′}⊥.

Proof. Suppose thatp is not incident with any element ofS1 = {`, `′}⊥. Put
S2 = {h, h′}⊥, whereh, h′ ∈ S1, h 6= h′. The setsS1 andS2 form the two sets
of lines of a grid, i.e., a full weak subquadrangleQ′ with two lines per point. By
Lemma 4.3, the topological parameters ofQ are equal, say(m,m). This means by
2.5 thatQ(p) is a compact projective plane. LetP ′ be the set of points on the lines
of S1 (or equivalently, ofS2). The set of pointsO = p⊥ ∩ P ′ is a closed ovoid in
Q′ which is clearly a generalizedm-manifold. SinceD1(p) is also a generalized
m-manifold, every line throughp carries a point ofO by domain invariance. Hence
O can be seen as a closed curve in the projective planeQ(p). We want to show that
O is an oval. Let̀ be a line ofQ(p) and suppose that̀ meetsO in at least two
pointsq, q ′. Clearly, this line does not meetp. There is a pointr of P ′ collinear
with bothq andq ′, hence by the regularity ofp, we havè = p⊥ ∩ r⊥. ClearlyO
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does not contain any other point ofr⊥ (otherwise there arises a triangle inQ′), so
` meetsO in exactly two pointsq, q ′.

s
q

s
r

s
q ′

sp

O

   
   

   
   

   
   

   
  

   
   

   
   

   
   

   
  

   
   

   
   

   
   

   
  

   
   

   
   

   
   

   
  

   
   

   
   

   
   

   
  

��
��
��
��
��

��
��
��
��
��@
@
@
@
@
@
@
@
@
@
@
@
@@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Suppose now that̀ is any line ofQ(p) not throughp but containing at least one
point q of O. Let `′′ be a line ofQ′ throughq and letr be the projection of a point
on ` different fromq onto`′′. Sincep is regular,̀ = r⊥ ∩ p⊥. Let h′′ the line of
Q′ throughr different from`′′. Thenh′′ meets̀ in some pointq ′ different fromq;
thus` meetsO in two points.
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HenceO is a closed oval inQ(p), and all the tangent lines go throughp. This is
in contradiction with the fact that the tangent lines constitute an oval in the dual
projective plane, cf. Salzmannet al. [26] 55.17. The lemma follows. 2
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The quadrangleQ in Lemma 4.7 above has equal parametersm = m′. If one is
willing to use Stolz’ result 2.7, thenQ is point- or line-antiregular by 2.8; thus, it
cannot have a regular point and a regular pair of lines. In other words, a quadrangle
with these properties does not exist. In any case, we now have:

THEOREM 4.8. Let Q be a compact connected finite-dimensional quadrangle
with topological parameters(m,m′) and with a regular pointp. If Q has a full
weak subquadrangleQ′ with parameters(m,m′′), thenm = m′, (henceQ′ is a
grid) andp is a point ofQ′.

Proof. The existence ofQ′ forcesm′ > m. The existence of a regular point
forcesm > m′. Hencem = m′. Butm′ > m + m′′, hencem′′ = 0 and the result
follows from the previous lemma and 1.3. 2
Lemma 4.7 states that any projective point in a compact quadrangleQ containing
a full grid Q′ must be a point ofQ′. The following result, which improves a result
by Schroth [28] significantly, implies in particular that not all points of such aQ′
can be projective.

THEOREM 4.9.LetQ be a compact connected finite-dimensional quadrangle and
let H be a closed geometric hyperplane ofQ. Then the following are equivalent:

(i) Q has topological parameters(m,m) and all points ofH are regular;

(ii) all points ofH are projective;

(iii) H is trivial, all its nondeep points are regular, and at least one of them is
projective;

(iv) H is trivial, all its nondeep points are regular and its deep point is projective;

(v) all points ofQ are projective;

(vi) Q is isomorphic to the symplectic quadrangle overR or C.

Proof. By Lemma 1.7 and the main result of [28], it suffices to show thatQ

cannot have a closed full subquadrangle all points of which are projective inQ.
So suppose thatQ contains such a subquadrangleQ′. We know thatQ has then
topological parameters(m,m), and hence by Theorem 4.8,Q′ is a grid. We could
now finish the proof by quoting 2.8 which says that all lines ofQ are antiregular
(because not all points are by the existence of regular points). This contradicts the
existence of the gridQ′.

We now present an independent and rather geometric proof. LetP ′ be the point
set ofQ′ and letp be a point outsideP ′.

(1) Letq be a point outsideP ′ different fromp. Thenp andq induce closed ovals
Op = p⊥ ∩ P ′ andOq = q⊥ ∩P ′ in Q′. SupposeOp andOq meet in at least
three different pointsx, y, z. Let r be one of the two points ofQ′ collinear with
bothx andy.
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By the regularity ofx, we know that{r, p, q} ⊆ D2(x) ∩ D2(y) = D2(x) ∩
D2(z), contradictingr 6∈ D2(z). Hence|p⊥ ∩ q⊥ ∩P ′| 6 2.

(2) Now consider a pointw of Q′ off Op. Consider the set of linesS =
{v⊥ ∩ w⊥ | v ∈ Op} in the projective planeQ(w) defined inw⊥. We show
thatS is a dual closed oval. First we show thatS is a closed curve in the line
space of the compact projective planeQ(w). Letw1, w3 denote the two unique
points onOp collinear withw. Thenw,w1, w3 determine a unique ordinary
quadrangle(w,ww1, w1,w1w2, w2, w2w3,w3, w3w) in Q′.
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Let vx denote the unique point onww1 which is equal to or collinear with
v ∈ Op. We claim thatvx depends continuously onv. For v 6= w1, we have
vx = projw1wv, and forv 6= w3, we havevx = projww1projw2w3v; thusvx
depends continuously onv. Similarly, we definevy . Thenv⊥∩w⊥ is the unique
line throughvx, vy in the projective planeQ(w), henceS = {v⊥∩w⊥|v ∈ Op}
is compact and thus closed in the line space ofQ(w); also, every line through
w meetsS in a unique point.
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(3) No point ofw⊥ can be collinear with three points ofOp, because these three
points are already collinear withp: such a line inQ(w) would be of the form
q⊥ ∩ w⊥, for q ∈ D4(w), and we showed in (1) that|p⊥ ∩ q⊥ ∩P ′| 6 2.

(4) Letw,w1, w2 as in (2), and letv be any point ofOp.
If v ∈ w⊥, thenv ∈ {w1, w3}. Every pointx of the linevw distinct fromv

itself lies on exactly two elements ofS, because every such point is collinear
with exactly two pointsv, v′ of Op.
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Moreover, it is also clear thatv itself is on a unique element ofS. Hence, if
v ∈ {w1, w2}, thenv⊥ ∩w⊥ is, as an element ofS, on a unique ‘tangent point’
of S.
Now letv ∈ O\w⊥. The tracesw⊥∩p⊥ andw⊥∩v⊥ intersect in a unique point
x0; in fact,p, v, x0 are collinear. Thusx0 is not collinear with any element in
O different fromv, i.e.,x0 lies on a unique element ofS.
Let nowx ∈ w⊥ ∩ v⊥ be different fromx0. We have to show thatx is collinear
with exactly two points ofOp. Put y = projpw3x. Theny 6= p,w3. Next,
put z = projvxvy. The pointz is contained inP ′ and hence projective. Now
v, y ∈ z⊥ ∩ x⊥ ∩ p⊥, hencez⊥ ∩ x⊥ = z⊥ ∩ p⊥. The pointz is collinear with
two distinct pointsv, v′ ∈ Op ⊂ p⊥, hence the same is true forx, i.e.,v′ ∈ x⊥.
By (3), x is collinear with at most two points ofOp.
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We have proved thatS is a closed dual oval in the projective planeQ(w).



294 LINUS KRAMER AND HENDRIK VAN MALDEGHEM

(5) We can now finish the proof in two different ways. First, we can remark that
by (4) all tangent pointsx0 belong to the linep⊥ ∩ w⊥. Hence the dual ofS
is not a closed oval, a contradiction to Salzmannet al. [26], Proposition 55.17.
Second, by [26], Proposition 55.14, the point rows inQ have dimension 1 or
2. But then all lines ofQ are antiregular (by 2.6), contradicting the fact thatQ

contains a full grid. 2
We now consider the special case of a Moufang quadrangle. We can state a general
theorem without referring to topology.

THEOREM 4.10. Let Q be a Moufang quadrangle and suppose thatQ′ is a full
subquadrangle ofQ. LetG be the group of all automorphisms ofQ which belong
to the little projective group ofQ and fixQ′ globally. Letp be a point ofQ not
belonging toQ′. Then the stabilizerGp induces on the ovoidOp of Q′ a doubly
transitive permutation group which is permutation isomorphic to a subgroup of the
action onD1(p) of the stabilizer ofGp.

Proof.Letq be any element ofOp. We show thatGp acts transitively onOp\{q}.
Let q1, q2 ∈ Op\{q}. Then both pointsq1 andq2 are oppositeq in Q. Moreover,
they have the same projectionprojpqq1 = projpqq2 = p onto the linepq.
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AAs

s s
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q q1
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P ′Op

By the Moufang property, there exists a collineationθ = θq;q1,q2 of Q fixing all
lines throughq, fixing all points onpq and mappingq1 to q2. Sinceθ fixesp, it
stabilizesOp whenever it stabilizesQ′. Now θ mapsQ′ to some subquadrangle
Q′′. The set of lines ofQ′′ throughq is preciselyD′1(q), and all points on every
line of D′1(q) belong to bothQ′ andQ′′. Moreover,Q′ andQ′′ share an ordin-
ary quadrangle throughq andq2: let `, `′ ∈ D′1(q) be two different lines. Then
θ(`) = ` andθ(`′) = `′. Thus the points{q, proj`q2, q2, proj`′q2} ⊂ P ′ ∩ P ′′
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determine an ordinary quadrangle. By Van Maldeghem [33] Corollary 1.8.5 we
concludeQ′ = Q′′. The theorem is proved by considering the group generated by
all θq;q1,q2, for q, q1, q2 three different points ofOp. 2
COROLLARY 4.11. The ovoids in classical Moufang quadrangles arising from
hyperplanes admit a2-transitive group.

Proof. Let Q be a classical Moufang quadrangle naturally imbedded in some
d-dimensional projective space PG(V ). One can easily check that, in all the finite-
dimensional examples, if we find a hyperplane section which is an ovoid, then there
exists a classical Moufang quadrangleQ′ containingQ as a full subquadrangle and
imbedded in(d+1)-dimensional projective space PG(V ′). If p is a point ofQ′ not
belonging toQ, thenp⊥ is contained in a hyperplaneH of PG(V ′). ButH meets
PG(V ) in a hyperplane of PG(V ), hence the ovoidOp is contained in a hyperplane
of PG(V ) and is now readily seen to be equal to a hyperplane section. 2

EXAMPLES 4.12. We consider examples arising from imbeddings between the
classical compact connected quadrangles, cf. Part II [18] Section 6 for the ter-
minology (all possible imbeddings between the classical compact connected quad-
rangles have been determined recently by Wolfrom [34]). See Onishchik and Vin-
berg [23] for the Lie group terminology.

Let Qk(R) be the real orthogonal quadrangle arising from a nondegenerate
quadratic form of Witt index 2 inRk+1, k > 4. ThenQk(R) has topological
parameters(1, k − 3) and is a full subquadrangle ofQk′(R), for all k′ > k. The
corresponding ovoids are hyperplane sections and admit a 2-transitive orthogonal
group PSOk−1,1R.

LetHk(C) be the complex Hermitian quadrangle arising from a nondegenerate
Hermitian form of Witt index 2 inCk+1, k > 3. ThenHk(C) has topological
parameters(2,2k − 5) and is a full subquadrangle ofHk′(C), for all k′ > k.
The corresponding ovoids are hyperplane sections and admit a 2-transitive unitary
group PSUk−1,1C.

Let Hk(H) be the standard Hermitian quadrangle arising from a standard Her-
mitian form of Witt index 2 inHk+1, k > 3. ThenHk(H) has topological para-
meters(4,4k − 9) and is a full subquadrangle ofHk′(H), for all k′ > k. The
corresponding ovoids are hyperplane sections and admit a 2-transitive quaternion
unitary group PUk−1,1H.

Let Hα
k (H) be the α-Hermitian quadrangle arising from a quaternionα-

Hermitian form inHk+1, k = 3,4. ThenHα
3 (H) has topological parameters (4, 1),

it is dual toQ7(R) and it is a full subquadrangle ofHα
4 (H), which has topological

parameters (4,5). The corresponding ovoid is also a hyperplane section and admits
a 2-transitive quaternionα-unitary group PUα3H ∼= PSU3,1C.

The orthogonal quadrangleQ9(R) is an ideal subquadrangle of the exceptional
Moufang quadrangleQ(E6,R) of typeE6, and henceQ9(R) admits a 2-transitive
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spread. The corresponding group is PSU4,1C. We conjecture that these spreads
coincide with theJ -spreads constructed in Part II [18] 7.3.

For a complete account on existence and nonexistence of spreads, ovoids and
partitions into spreads and ovoids in the Moufang quadrangles, we refer to Part II
[18] of the present paper. It follows e.g. from Part III [19] thatQ(E6,R) is a full
subquadrangle in the (non Moufang) Clifford quadrangle FKM(9, 32), and contains
ovoids.

5. General Nonexistence Results

Using the fibre bundle interpretation of an ovoid, we can prove some general
nonexistence results. IfQ = (P ,L,F ) is a (1, 1)-quadrangle, we can distinguish
betweenQ and its dual by the mod 2 twisting numbertP of the point space, cf. the
remarks after 2.6.

THEOREM 5.1. Q = (P ,L,F ) be a compact connected(1,1)-quadrangle with
mod 2 twisting numbertP = 1. Then the mapF → L does not admit a section;
in particular Q has no closed ovoidO ⊆ P .

Proof.TheF2-cohomology of the map prL: F → L is given by the injection of
gradedF2-algebras

F2[x1, y1, y2]/(x4
1, y

2
1, x

2
1 + y2+ x1y1)← F2[y1, y2]/(y2

1, y
2
2),

see [17], Hebda [11], Münzner [22], Grundhöferet al. [9] (the subscripts indicate
the degrees of the homogeneous generators of the cohomology ring). Ifr: L→ F
is a section of prL, then the composite

H•(L;F2) �
r•

H•(F ;F2) �
pr•L H•(L;F2)

is the identity. Since dimF2H
1(F ;F2) = 2 and dimF2H

1(L;F2) = 1, the induced
map in cohomologyr• has to kill some elementay1 + x1 ∈ H1(L;F2), where
a ∈ F2. Sincer• is a ring homomorphism,

0= r•(((1+ a)y1+ x1)(ay1+ x1)) = r•(y1x1+ x2
1) = r•(y2) = y2 6= 0,

a contradiction. 2
COROLLARY 5.2. The real symplectic quadrangleW(R) has no closed ovoids.2
The dual of Theorem 5.1 is false: the real orthogonal (1, 1)-quadrangleQ4(R) has
closed ovoids.

THEOREM 5.3. Let Q be a compact connected(m,m)-quadrangle, form > 1.
Then the mapsF → L and F → P admit no sections; in particular,Q has
neither closed ovoids nor closed spreads.
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Proof.We use the same method as in the previous proof; however, this time we
use rational cohomology. TheQ-cohomology of the map prL: F → L is given by

Q[xm, x2m, ym, y2m] ← Q[ym, ym]
and we have the relations

x2
m = cx2m, y2

m = dy2m, x2
2m = y2

2m = 0, xmym = x2m + y2m.

The structure constantsc, d are given by(c, d) ∈ {(1,2), (2,1)}. Again, dim Hm(F ;
Q) = 2 and dim Hm(L;Q) = 1. The existence of a sectionr of prL implies that
r•(aym + xm) = 0, for somea ∈ Q. Hence

0 = r•((aym + xm)(xm − (c + a)ym))
= −r•((da2 + acd + c)ym) = −(da2 + 2a + c)ym.

But the polynomialg(a) = da2 + 2a + c has no roots inQ, hence the right-hand
side cannot be 0, a contradiction. 2
COROLLARY 5.4. The complex symplectic quadrangleW(C) has neither closed
spreads nor closed ovoids. 2
This holds in particular for Zariski-closed ovoids inW(C).

COROLLARY 5.5. An algebraic quadrangle over an algebraically closed fieldK
of characteristic0 has no Zariski-closed ovoids or spreads; in particular,W(K)
has neither Zariski-closed ovoids nor Zariski-closed spreads.

Proof.By Kramer and Tent [20], such a quadrangle isK-isomorphic toW(K)
or toQ4(K). By similar model-theoretic transfer methods as in [20], one shows
that the nonexistence of ovoids for the special caseK = C implies the general
result. 2
COROLLARY 5.6. A compact connected finite-dimensional quadrangle which
has a projective point does not have closed ovoids.

Proof. The parameters(m,m′) of Q are equal. Ifm = 1, thenp⊥ ∼= RP2, cf.
Kramer [17] 4.3.1, and thustP = 1. The result follows form = 1 from 5.1 and for
m > 1 from 5.3. 2
If the parameters(m,m′) become large, then the existence problem becomes rather
subtle, as we will see in Parts II, III [18], [19]. However, the nonexistence of
spreads in(1,m′)-quadrangles, form′ > 1 odd, can be settled in full generality.

The point rows of a(1,m′)-quadrangle are homeomorphic to the circleS1; thus,
prL: F → L is a circle bundle. We want to view this as an orthogonal sphere
bundleS(ξ) of a vector bundleξ . Let ξ denote the associated open 2-disk bundle
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of this circle bundle, let TOP(2) denote the group of base-point preserving homeo-
morphisms ofR2, and let O(2) ⊆ TOP(2) denote the subgroup of all orthogonal
transformations. The question is then whether the classifying map

BO(2)

....
....

....
....

....
....

....
....

..*

L - BTOP(2)
?

of the disk bundleξ lifts to BO(2). By a result of Kneser the inclusion O(2) ⊆
TOP(2) is a homotopy equivalence, cf. Kneser [16], Friberg [6], Kirby and Sieben-
mann [14] p. 253, therefore there exists no obstruction to this lifting problem. (The
obstructions are certain elements of Hk(L;πk(TOP(2)/O(2))), for k > 0. Since
TOP(2)/O(2) is contractible, all obstructions vanish.)

The upshot is that we can think ofF → L as the sphere bundleS(ξ) of an
orthogonal vector bundleξ . If m′ > 1, thenL is simply connected, therefore
we can choose an orientation forξ , making ξ into a complexline bundle (thus
we lift the classifying map from BO(2) into BU(1)). Complex line bundles over
a paracompact spaceX are classified by their first Chern class c1 ∈ H2(X) (to
see this, note that BU(1) is an Eilenberg–MacLane spaceK(Z,2), hence there is
an equivalence of homotopy functors H2(−) ∼= [−;BU(1)]). The other piece of
information that we need is the following: in a(1,m′)-quadrangle withm′ > 2,
the generalized manifoldP is orientable if and only ifm′ is even (this is proved in
Kramer [17] 3.4.9, cf. also Grove and Halperin [7] 4.8).

PROPOSITION 5.7.LetQ = (P ,L,F ) be a finite-dimensional quadrangle with
parameters(1,m′), form′ > 3 odd. ThenQ does not have closed spreads.

Proof. Let S ⊆ L be a closed spread, and consider the restrictionFS → S. If
m′ > 2, then H2(S) = H2(Sm′+1) = 0, henceξ |S is a trivial complex line bundle,
andP ∼= FS = S1× S. ThusP is orientable andm′ is even. 2
These arguments do not go through form′ = 1, but this case is already covered by
Theorem 5.1 above.

We will see that the point spaces of the compact Moufang quadrangles can often
be partitioned in ovoids, cf. also 4.1. This property has strong consequences for the
bundle prL: F → L.

PROPOSITION 5.8.Suppose that the point space of a compact quadrangleQ

can be partitioned into closed ovoids. Then the bundleF → L is topologically a
trivial product bundle.

Proof. Let L = D1(`) be a point row, and let(Op)p∈L be a family of ovoids
which partitionsP , and such thatOp∩L = {p}. For each ovoidOp let rp denote the
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corresponding sectionL → F . ThenR = {rp|p ∈ L} is a subspace of the space
C(L,F ) of all continuous maps fromL to F , endowed with the compact-open
topology. The evaluation maprp 7→ rp(`), R → F is continuous and injective.
Its image is the compact setL × {`} ⊆ F ; thereforerp 7→ rp(`), R → L × {`}
is a homeomorphism. The map(rp, h) 7→ rp(h), R × L → F is a continuous
bijection, hence, by compactness ofF , also a homeomorphism. Combining these
homeomorphisms we find thatL×L ∼= F , as claimed. 2
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