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Abstract. In this second part we consider ovoids in the classical compact connected quadrangles.
We solve the problem whether closed ovoids or spreads exist in these quadrangles. In fact we prove
a slightly more general result: we determine whether the normal sphere bundles of the point- or
line space admit sections, or whether they are topologically trivial. We also give explicit geometric
constructions for spreads and ovoids. Some of these spreads are apparently new.
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6. Ovoids in Compact Moufang Quadrangles

By Burns–Spatzier [3] a compact connected quadrangle with aBN-pair in its to-
pological automorphism group arises from a noncompact simple real Lie group of
real rank 2 or from a simple complex Lie group of rank 2, so a complete list of
all compact connected Moufang quadrangles, their parameters (which can be read
off from the dimensions of the root groups) and their Tits diagrams (called there
Satake diagrams) can be extracted from Table VI, Ch. X in Helgason [7] or from
Table 9, p. 312 in Onichshik–Vinberg [18]; cp. Grundhöfer–Knarr [4].

We briefly review the classical compact quadrangles. LetF = R,C,H denote
the reals, the complex numbers, or the quaternions, endowed with the usual topo-
logy. An involution onF is a continuous anti-automorphismσ with σ 2 = id. If f
is a non-singular symplectic orσ -hermitian form of Witt index 2 on anF-vector
spaceV of sufficently large (finite) dimensionn+1, then the collection of all totally
isotropic subspaces ofV forms a compact quadrangle. Up to conjugation, the only
continuous involutions are id (forF = R,C), the ‘standard’ involutionx 7→ x̄ on
C, H, and the involutionα: x 7→ −ix̄i onH. The formf is determined up to a
scalar factor by the involutionσ , the given Witt index (namely 2), and the vector
space dimension dimF V = n+1. Anα-hermitian form onHn+1 has automatically
the maximal possible Witt index, thereforen = 3,4 in this case. Thus, we obtain
the following classical compact quadrangles.
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• The real and complex symplectic quadranglesW(R) andW(C) in R4 andC4,
with parameters(1,1) and(2,2), respectively.

• The real orthogonal quadranglesQn(R) in Rn+1, n > 4, with parameters
(1, n − 3).

• The complex orthogonal quadrangleQ4(R) in C5, with parameters(2,2).
• The complex hermitian quadranglesHn(C) in Cn+1, n > 3, with parameters

(2,2n − 5).
• The quaternion (standard) hermitian quadranglesHn(H) in Hn+1, n > 3, with

parameters(4,4n − 9).
• The quaternionα-hermitian quadranglesHα

n (H) in Hn+1, for n = 3,4, with
parameters(4,1) and(4,5), respectively.

It is convenient to put alsoHn(R) = Qn(R). By the result of Burns–Spatzier
[3] and the classification of the simple real and complex Lie groups (cp. Hel-
gason [7], Onishchik–Vinberg [18]), these quadrangles together with the excep-
tional Moufang quadrangleQ(E6,R) belonging to the simple real Lie group
PE6(−14) form (up to dualtiy) a complete list of all compact connected Moufang
quadrangles. There are the following anti-isomorphisms (and no others)

H3(C) ∼= Q5(R)dual,

Hα
4 (H) ∼= Q7(R)dual

W(R) ∼= Q4(R)dual

W(C) ∼= Q4(C)dual.

Now we look more closely into the different types of classical quadrangles.

7. Standard hermitian quadrangles

Let F = R,C,H, and letσ : x 7→ x̄ be the standard involution. OnFn−1, consider
the positive definiteσ -hermitian form

(x|y) =
n−1∑
ν=1

x̄νyν.

Let f be aσ -hermitian form of Witt index 2 on the(n + 1)-dimensional vector
spaceV . Then we can decomposeV into anf -orthogonal direct sum

V = F⊕ F⊕ V+,
v = (v0, v1, v+),

such thatf (or a form proportional tof ) is given by

f (u, v) = f ((u0, u1, u+), (v0, v1, v+))

= −ū0v0− ū1v1+ (u+|v+).
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Note that the restriction off to V+ is given by the positive definite form(−|−).
Let (P ,L,F ) denote the corresponding classical quadrangle.

The following construction of ovoids from hyperplanes is due to Thas. Since
every standard hermitian quadrangle is contained as a full subquadrangle in a
bigger one, it coincides also with the construction given in Part I [15] 3.1.

7.1. HYPERPLANES AND THAS-OVOIDS

Let w = (w0, w1,0) ∈ V be a nonzero vector and letH denote the hyperplane
H = w⊥ = {v ∈ V | f (v,w) = 0}. The restrictionf |H×H has Witt index 1, so
the set

OH = {p ∈ P | p ⊆ H }
= {p ∈ P |f (p,w) = 0}

is an ovoid: every line of the quadrangle meetsH in some point (since codimH =
1), andH contains no line of the quadrangle, becausef |H×H has Witt index 1.
Moreover,OH is the fixed point set of the involution

v 7→ v − w 2

f (w,w)
f (w, v).

Clearly, the stabilizier of the hyperplaneH in the automorphism group acts onOH .
See Part I [15] 4.11 and 4.12. Note also that for two distinct hyperplanesH 6= H ′
of this type the intersectionH ∩ H ′ = V+ does not contain any nonzero totally
isotropic subspaces, henceOH∩OH ′ = ∅. Using the correspondenceH = wF⊥ 7→
H⊥ = wF, one sees that the set of hyperplanes of this type is parametrized by the
projective lineFP1. 2
7.2. THEOREM The point set of the quadranglesQn(R), Hn(C) andHn(H) can
be partitioned into a family of ovoidsOH , indexed by the projective lineFP1 over
F. The mapP → FP1 that sends a pointvF ∈ P to the ovoid containing it is given
by vF 7→ v⊥ ∩ (F⊕ F) ⊆ F⊕ F⊕ V+; the corresponding ovoid isOvF⊕V+. This
map defines a fibre bundleP → FP1.

Proof. The only thing that remains to show is the fact that this is a locally trivial
bundle; this can easily be seen using homogeneous coordinates inV . 2
Now we construct spreads which are, apparently, new. Let{b2, . . . , bn} be an or-
thonormal basis ofV+ and putb0 = (1,0), b1 = (0,1) ∈ F⊕ F ⊆ V .
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7.3. THE J -SPREADS

We assumeF = R,C and that dimF V = n+ 1 is even. LetJ denote theσ -linear
map

J :
n∑
ν=0

bνβν 7→
(n−1)/2∑
µ=0

(b2µ+1β̄2µ − b2µβ̄2µ+1).

Note thatJ 2 = −id, and thatJ induces an involutive automorphism of the quad-
rangle. To each pointp = wF of the quadrangle we assign the line

r(p) = wF⊕ J (w)F.
Given a liner(p) = ` = wF ⊕ J (w)F, a pointq ∈ D1(`) is of the formq =
(wc + J (w)s)F, for c, s ∈ F with |c|2+ |s|2 = 1. Then

r(q) = (wc+ J (ws̄))F⊕ J (wc + J (ws̄))F
= (wc+ J (w)s)F⊕ (J (w)c − ws)F
= wF⊕ J (w)F
= r(p).

Hencer(P ) = SJ is indeed a spread, consisting of the fixed lines of the auto-
morphism induced byJ . 2
This construction depends on the commutativity ofF, and the even dimension ofV .
Note that forF = R, the mapJ makesV = Rn+1 into aC-moduleC(n+1)/2, and for
F = C into anH-moduleH(n+1)/2, i.e., we introduced a complex or quaternionic
structure onV . It is clear that the centralizer ofJ in the automorphism group acts
on the spreadSJ . ForF = R we obtain a 2-transitive action of PSU(n−1)/2,1C, and
for F = C a 2-transitive action of PU(n−1)/2,1H.

We want to show that in the remaining cases (F = H or n even) no spreads
exist. In case of the real orthogonal quadranglesQn(R), n even, this follows from
Part I, Theorem 4.5. For the other classical quadrangles we have to use different
methods.

7.4. DEFINITION TheStiefel manifoldof two-frames is by definition the set

V2(Fk) = {(x, y) ∈ Fk × Fk | |x|2 = |y|2 = 1, (x | y) = 0}
of all pairs of orthogonal unit vectors inFk. Let G2(V ) denote the Grassmann
manifold of projective lines inV , and consider the map

V2(V+)→ G2(V )

(x, y) 7→ (1,0, x)F ⊕ (0,1, y)F.
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It’s easy to check that this map is a bijection onto the line setL of the quadrangle;
being continuous, it is a even a homeomorphism. Putd = dimR F. The map
(x, y) 7→ x defines a fibre bundle

Sd(k−1)−1 - V2(Fk)

Sdk−1,

?

which has been thoroughly studied by topologists; in particular, the problem whether
this bundle admits a section is completely solved.

7.5. THEOREMLetk > 2. The bundleV2(Fk)→ Sdk−1 does not admit a section,
except for the following cases:F = R,C and k even, orF = H and k ≡ 0
(mod 24).

Proof. The real case is fairly easy, see James [13] p. 2. For the complex and
quaternionic case cp. James [11], Adams–Walker [1], Sigrist-Suter [19] and in
particular James [13] p. 76. 2
7.6. THEOREM Let k > 2. The real Stiefel manifoldV2(Rk) is homotopy equiv-
alent toSk−1 × Sk−2 if and only if if k = 2,4,8. The complex Stiefel manifold
V2(Ck) is homotopy equivalent toS2k−1 × S2k−3 if and only if if k = 2,4. The
quaternion Stiefel manifoldV2(Hk) is not homotopy equivalent toS4k−1 × S4k−5

for anyk > 2. Hence, except for the given values ofk, the bundleV2(Fk)→ Sdk−1

is never topologically trivial.
Proof. From the division algebrasC,H,O it is easy to see thatV2(Rk) ∼=

Sk−1× Sk−2 for k = 2,4,8. Using the fact thatH andO areC-modules, one sees
also thatV2(Ck) ∼= S2k−1 × S2k−3 for k = 2,4. Putd = dimR(F). The following
is proved in James–Whitehead [10] 1.12–1.22. IfV2(Fk) ' Sdk−1 × Sd(k−1)−1,
thenπ2dk−1(Sdk) contains an element of Hopf invariant 1; also one hask > 3
in the quaternionic case. On the other hand, it is known by Adams’ result that
π2n−1(Sn) contains an element of Hopf invariant 1 if and only ifn = 2,4,8, see
eg. Husemoller [9] Ch. 15. The result follows. 2

The complex case of the result above is incorrectly stated in James [12] and in
[13] p. 154. I am indepted to Stephan Stolz for pointing out the correct proof.

We can use these facts to prove a first nonexistence result. Consider the hyper-
planeH = b⊥1 = b0F⊕V+, and the corresponding ovoidO = OH . A typical point
p ∈ O is of the fromp = (1,0, w)F, wherew ∈ V+ is a uniquely determined
unit vector. Suppose that a maps: P → L defines a closed spreadS ⊆ L. Then
s(1,0, w) = (1,0, u)F ⊕ (0,1, v)F is a line containingp. Thusw = u, and the
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compositer: O
s−→ L

∼=−→ V2(V+), w 7→ v is a section into the Stiefel manifold.
By 7.5 we have the following result.

7.7. THEOREM The real orthogonal quadranglesQn(R) and the complex her-
mitian quadranglesHn(C) have closed spreads if and only ifn is odd. The qua-
ternion hermitian quadranglesHn(H) have no closed spreads, except possibly if
n ≡ 1 (mod 24). 2

In Part III we show by different methods that in the quaternionic case no spreads
exist. Now suppose thatL can be partitioned into closed spreads. Then prP : F →
P is a trivial bundle by Part I [15] 5.8; in particular, the restrictionL ∼= FO → O
is a product bundle.

7.8. PROPOSITIONThe real orthogonal quadranglesQn(R) and the complex
hermitian quadranglesHn(C) can be partitioned into spreads if and only ifm +
m′ = 3,7. The quaternion hermitian quadranglesHn(H) cannot be partitioned
into spreads. Thus, the only standard hermitian quadrangles which can be parti-
tioned into closed spreads areQ5(R),Q9(R),H3(C), andH5(C).

Proof. If L can be partitioned into closed spreads, then the bundleF → P is
topologically trivial; in particular, the subbundleFO → O is topologically trivial.
We may identifyFO with L by the map̀ 7→ (o(`), `); it follows thatL is homeo-
morphic toO ×D1(p) = Sm+m′ × Sm′. Therefore, the ‘only if’ part follows from
7.6.

The fact that theQ5(R), H3(C), Q9(R), andH5(C) can indeed be partitioned
into closed spreads follows from the isomorphismsQ5(R)dual ∼= H3(C),
Q9(R)dual∼= FKM(6,8), H5(C)dual∼= FKM(5,8) (see Part III for the definition of
the Clifford quadrangles FKM) and the fact that the quadrangles on the righthand
side can be partitioned into ovoids. 2

8. Summary: Ovoids and Spreads in Compact Moufang Quadrangles

We consider briefly the remaining compact connected Moufang quadrangles. The
complex symplectic quadrangleW(C) has neither closed ovoids nor closed spreads
by Part I [12] 4.1; the real symplectic quadrangleW(R) is the dual ofQ4(R)
and has therefore no closed ovoids by Part I [15] 5.1. Theα-hermitian quadrangle
Hα

3 (H) is dual toQ7(R); therefore, it can be partitioned into closed spreads, and it
has closed ovoids (but cannot be partitioned into closed ovoids), cp. 7.7.

8.1. THE (4,5)-MOUFANG QUADRANGLEHα
4 (H)

It remains to inspect the(4,5)-quadrangleHα
4 (H). The group SU(5) acts flag-

transitively on the quadrangleHα
4 (H). In fact, there is an SU(5)-equivariant im-

bedding of the homogeneous spacesF , P andL into the sphereS19 such that
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F ⊆ S19 is an isoparametric hypersurface, with focal manifolsP and L (the
multiplicities are(4,5)). The following lattice of subgroups gives the stabilizers of
a point, a line and a flag.

SU(5)

�
�
�
�
�

P

@
@
@
@
@

L

SU(2)× SU(3) Sp(2)

@
@
@
@
@

S5

�
�
�
�
�

S4

SU(2)× SU(2)

F

TheF2-cohomology ofP ← F → L is given by the inclusions ofF2-algebras

F2[x4]/(x2
4)⊗

∧
(x9)→ F2[x4]/(x2

4)⊗
∧
(x9, y5, y9)←

∧
(y5, y9),

where the lower subscripts indicate the degrees. cp. Hebda [6], Münzner [17],
Grundhöfer–Knarr–Kramer [5], [14]. We need to compute the Steenrod squares
of these algebras. Lety3, y5, y7, y9 denote the primitive generators of theF2-
cohomology of SU(5). Then

Sq2y3 = y5, Sq4y5 = y9,

and all other Steenrod squares vanish, cp. Borel [2] 11.4, Hsiang-Su [8] 3.2. The
F2-Serre spectral sequence of the fibration Sp(2)→ SU(5)→ L collapses, since
the dimension of theE2-term is already dimF2 E2 = 24 = dim H•(SU(5);F2).
Therefore the map SU(5)→ L induces inF2-cohomology an injection∧

(y3, y5, y7, y0)←−
∧
(y5, y9)

of gradedF2-algebras. This gives us the Steenrod algebra ofL. From the relation
x9 + y9 = x4y5 one sees that Sq4x9 = x4x9, and all other Steenrod squares vanish
on H•(P ;F2).

8.2. PROPOSITIONThe mapF → P in Hα
4 (H) does not admit a section; in

particular, this quadrangle has no closed spreads.
Proof. Suppose thatr: P → F is a section of prP . Then r•(y5) = 0, and

thus r•(y9) = r•(Sq4y5) = Sq4r•(y5) = 0. We also haver•(x4y5) = 0; thus
0= r•(x4y5+ y9) = r•(x9) = x9, a contradiction. 2
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8.3. PROPOSITIONThe bundleF → L in Hα
4 (H) is not topologically trivial; in

particular,Hα
4 (H) cannot be partitioned into closed ovoids.

Proof. Consider the principal bundle

Sp(2) - SU(5)

L.
?

The bundleF → L can be viewed as the sphere bundle of the 5-plane normal
bundle⊥ L of L ⊆ S19; therefore, there exists a real five-dimensional Sp(2)-
moduleX such that⊥L is the associated vector bundle,

⊥L = SU(5)×Sp(2) X.

The elements of this vector bundle are equivalence classes{[g, v]| g ∈ SU(5), v ∈
X}, where[g, v] = [gh−1, hv] for h ∈ Sp(2). The unit sphere in the fibre over
` ∈ L corresponds to the point rowD1(`), and the action of Sp(2) on this four-
sphere is transitive. ThusX is given by the representation of Sp(2) as SO(5) onR5.
The question is whether this bundle is topologically trivial. Restricted to the line
pencil

D1(p) ∼= SU(3)× SU(2)/SU(2)× SU(2) ⊆ L,

the bundle splits off the trivial line bundle given by the section` 7→ (p, `), and we
obtain the four-plane bundle

(SU(3)× SU(2))×SU(2)×SU(2) R4,

where SU(2) × SU(2) acts as SO(4) onR4. The associated unit sphere bundle is
homogeneous, with stabilizer{(a, a−1) | a ∈ SU(2)} ⊆ SU(2) × SU(2). Thus,
it is the Stiefel manifoldV2(C3) (with its canonical bundle structure overS5 ⊆
C3). Adding the trivial bundle that splits of, we obtain the tangent bundle of the
five-sphere. This bundle, which corresponds toV2(R6), is not topologically trivial,
cp. 7.6. 2
8.4. PROPOSITIONThe classical quadrangleHα

4 (H) has no closed ovoids.
Proof. Suppose thatO ⊆ P is a closed ovoid. Letp ∈ P \ O. Then the

fibre bundleD2(p) → D1(p) has a sectionσ1: ` 7→ o(`). Fix another pointq ∈
D4(p)∩O. Then there is another sectionσ2: ` 7→ proj̀ q. Note thatσ1(`) 6= σ2(`):
the lineqσ2(`) meetsO in q, soσ2(`) 6∈ O. In the proof of 8.3 we identified the
bundleD2(p)→ D1(`) as the vector bundle

(SU(3)× SU(2))×SU(2)×SU(2) R4 −→ SU(3)/SU(2) = S5.



COMPACT OVOIDS IN QUADRANGLES II: THE CLASSICAL QUADRANGLES 187

Table I.

Quadrangle Parameters OvoidsP partitioned Spreads L partitioned

into ovoids into spreads

W(R) (1, 1) no no yes yes

W(C) (2, 2) no no no no

Q5(R) (1, 2) yes yes yes yes

Q7(R) (1, 4) yes yes yes no

Q9(R) (1, 6) yes yes yes yes

H3(C) (2, 1) yes yes yes yes

H5(C) (2, 5) yes yes yes yes

Hα3 (H) (4, 1) yes no yes yes

Hα4 (H) (4, 5) no no no no

Q(E6,R) (9, 6) yes yes no no

Q2k(R), k > 2 (1, 2k − 3) yes yes no no

Q2k+1(R), k > 5 (1, 2k − 2) yes yes yes no

H2k(C), k > 2 (2, 4k − 7) yes yes no no

H2k+1(C), k > 3 (2, 4k − 3) yes yes yes no

Hk(H), k > 3 (4, 4k − 9) yes yes no no

Our ovoid yields viaσ1 a section of this bundle which is nowhere zero. If we add a
trivial line bundle, then we end up with the tangent bundle ofS5. So we obtain two
linearly independent vector fields onS5, or, in other words, a sectionS5→ V3(R6).
By Adams’ result [9] Chapter 16, 13.10, this is impossible. 2
Maybe one can prove in a similar way that that the bundle SU(5)/SU(2)×SU(2)→
SU(5)/Sp(2) does not admit a section.

The realE6-quadrangleQ(E6,R) arising from the exceptional real Lie group
PE6(−14) belongs to the Clifford series and will be considered in Part III [16]. Recall
the anti-isomorphisms

H3(C) ∼= Q5(R)dual,

Hα
3 (H,3) ∼= Q7(R)dual,

W(R) ∼= Q4(R)dual,

W(C) ∼= Q4(C)dual.

Taking these anti-isomorphisms as well as the (anti) isomorphisms

FKM(6,8) ∼= Q9(R)dual,

FKM(5,8) ∼= H5(C)dual,

FKM(1, n− 1) ∼= Qn(R),
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FKM(2,2(n − 1)) ∼= Hn(C),
FKM(4,4(n − 1), n− 1) ∼= Hn(H),
FKM(9,16) ∼= Q(E6,R),

between Moufang quadrangles and Clifford quadrangles (see Part III [16]) into
account we get Table 1 about closed ovoids and spreads in compact connected
Moufang quadrangles.

Note that the nonexistence results that we actually proved are slightly stronger
(except for the bundleF → P in Hα

4 (H)): instead of the nonexistence of spreads
or ovoids, we proved that the maps prP : F → P or prL: F → L admit no
sections. See also the remarks at the end of Part III [16].
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