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Abstract. In this second part we consider ovoids in the classical compact connected quadrangles.
We solve the problem whether closed ovoids or spreads exist in these quadrangles. In fact we prove
a slightly more general result: we determine whether the normal sphere bundles of the point- or
line space admit sections, or whether they are topologically trivial. We also give explicit geometric
constructions for spreads and ovoids. Some of these spreads are apparently new.
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6. Ovoids in Compact Moufang Quadrangles

By Burns—Spatzier [3] a compact connected quadrangle wBlVapair in its to-
pological automorphism group arises from a noncompact simple real Lie group of
real rank 2 or from a simple complex Lie group of rank 2, so a complete list of
all compact connected Moufang quadrangles, their parameters (which can be read
off from the dimensions of the root groups) and their Tits diagrams (called there
Satake diagrams) can be extracted from Table VI, Ch. X in Helgason [7] or from
Table 9, p. 312 in Onichshik-Vinberg [18]; cp. Grundhdfer—Knarr [4].

We briefly review the classical compact quadrangles.H.et R, C, H denote
the reals, the complex numbers, or the quaternions, endowed with the usual topo-
logy. AninvolutiononF is a continuous anti-automorphisswith o2 = id. If f
is a non-singular symplectic er-hermitian form of Witt index 2 on aff-vector
spaceV of sufficently large (finite) dimensiom+-1, then the collection of all totally
isotropic subspaces &f forms a compact quadrangle. Up to conjugation, the only
continuous involutions are id (fdf = R, C), the ‘standard’ involutiorx +— x on
C, H, and the involutionx: x +— —ixi on H. The form f is determined up to a
scalar factor by the involution, the given Witt index (namely 2), and the vector
space dimension digV = n + 1. Ana-hermitian form orH"+! has automatically
the maximal possible Witt index, therefate= 3, 4 in this case. Thus, we obtain
the following classical compact quadrangles.
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e The real and complex symplectic quadrangié€R) andW (C) in R* andC#,
with parametersl, 1) and(2, 2), respectively.

e The real orthogonal quadrangle®,(R) in R**%, n > 4, with parameters
1,n—3).
The complex orthogonal quadrangig(R) in C5, with parameters2, 2).
The complex hermitian quadranglés (C) in C"*1, n > 3, with parameters
(2,2n —5).

e The quaternion (standard) hermitian quadranglg€) in H*, n > 3, with
parameters4, 4n — 9).

e The quaternionx-hermitian quadrangle&® (H) in H"+2, for n = 3, 4, with
parameterg4, 1) and(4, 5), respectively.

It is convenient to put alsd,(R) = Q,(R). By the result of Burns—Spatzier

[3] and the classification of the simple real and complex Lie groups (cp. Hel-
gason [7], Onishchik—Vinberg [18]), these quadrangles together with the excep-
tional Moufang quadrangle?(Es, R) belonging to the simple real Lie group
PEs(—14 form (up to dualtiy) a complete list of all compact connected Moufang
guadrangles. There are the following anti-isomorphisms (and no others)

H3(C) = Qs(R)™,
Hg (H) = Q7(R)™
W(R) = Q4(R)M
W(C) = Q4"

Now we look more closely into the different types of classical quadrangles.

7. Standard hermitian quadrangles

LetF = R, C, H, and leto: x — X be the standard involution. Qff 1, consider
the positive definiter-hermitian form

n—1
xly) = %y
v=1

Let f be ac-hermitian form of Witt index 2 on thén + 1)-dimensional vector
spaceV. Then we can decomposginto an f-orthogonal direct sum

V= (UO’ V1, U+)’
such thatf (or a form proportional tof) is given by

f(M, U) = f((MOa u, M—l—)a (UO, V1, U+))

= —uovo — U1V + (U4 |vy).



COMPACT OVOIDS IN QUADRANGLES II: THE CLASSICAL QUADRANGLES 181

Note that the restriction of to V, is given by the positive definite forr—|—).
Let (P, £, F) denote the corresponding classical quadrangle.

The following construction of ovoids from hyperplanes is due to Thas. Since
every standard hermitian quadrangle is contained as a full subquadrangle in a
bigger one, it coincides also with the construction given in Part | [15] 3.1.

7.1. HYPERPLANES AND THASOVOIDS

Let w = (wp, w1,0) € V be a nonzero vector and |& denote the hyperplane
H=w'={veV]| f(v,w) = 0}. The restrictionf|y.x has Witt index 1, so
the set
On ={peP|lpCcH
= {pePlf(p,w) =0}
is an ovoid: every line of the quadrangle meAtsn some point (since codil =

1), andH contains no line of the quadrangle, becay$g, y has Witt index 1.
Moreover,@y is the fixed point set of the involution

V> v —w

P, w0

Clearly, the stabilizier of the hyperplar#e in the automorphism group acts 6h;.

See Part | [15] 4.11 and 4.12. Note also that for two distinct hyperplahes H’

of this type the intersectioff N H' = V, does not contain any nonzero totally
isotropic subspaces, hen®g,NO ' = ¥. Using the correspondendg = wF+ —

H+ = wF, one sees that the set of hyperplanes of this type is parametrized by the
projective lineFP*. O

7.2. THEOREM The point set of the quadrangles, (R), H,(C) and H,(H) can
be partitioned into a family of ovoid®, indexed by the projective lingP* over
F. The mapP — FP! that sends a pointF e & to the ovoid containing it is given
by vF > vt N (F @ F) C FaF @ V,; the corresponding ovoid i®,rgy, . This
map defines a fibre bundig@ — FP.

Proof. The only thing that remains to show is the fact that this is a locally trivial
bundle; this can easily be seen using homogeneous coordindtes in O

Now we construct spreads which are, apparently, new{kgt .., b,} be an or-
thonormal basis oV, and puthg = (1,0),b; = (0,1) e FHF C V.
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7.3. THE J-SPREADS

We assumé’ = R, C and that dim V = n + 1 is even. Let/ denote ther-linear
map

n (n—1)/2
J: Z b,B, — Z (b2 1B — b2, Pou+1)-
v=0 n=0
Note that/?2 = —id, and that/ induces an involutive automorphism of the quad-

rangle. To each point = wF of the quadrangle we assign the line
r(p) = wkF & J(w)F.

Given a liner(p) = ¢ = wF & J(w)F, a pointg € D1(¢) is of the formg =
(we + J(w)s)F, for ¢, s € Fwith |c|? + |s|?> = 1. Then

r(g) = (we+ J(ws)F b J(we + J(ws))F
= (wec+ J(w))F & (J(w)c — ws)F
= wF& J(w)F
= r(p).
Hencer (L) = 4, is indeed a spread, consisting of the fixed lines of the auto-
morphism induced by . O

This construction depends on the commutativitffpénd the even dimension of.
Note that forF = R, the map/ makesV = R"*! into aC-moduleC"*+/2 and for
F = C into anH-moduleH"*+Y/2 j.e., we introduced a complex or quaternionic
structure onV. It is clear that the centralizer of in the automorphism group acts
on the spread,. For[F = R we obtain a 2-transitive action of PgU;,» 1C, and
for F = C a 2-transitive action of P{)_1) 2 1H.

We want to show that in the remaining cas®s= H or n even) no spreads
exist. In case of the real orthogonal quadrangbkesR), n even, this follows from
Part I, Theorem 4.5. For the other classical quadrangles we have to use different
methods.

7.4. DEFINITION TheStiefel manifolcbf two-frames is by definition the set
Vo(F) = (v, ) e F x F* | x2 = [y =1, (x | y) = 0}

of all pairs of orthogonal unit vectors iR*. Let G,(V) denote the Grassmann
manifold of projective lines iV, and consider the map

Va(Vy) = Ga(V)
x,y)—~ (1L,0,x)F e (0, 1, y)F.
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It's easy to check that this map is a bijection onto the line&ef the quadrangle;
being continuous, it is a even a homeomorphism. Put dimg F. The map
(x, y) — x defines a fibre bundle

Sd(k—l)—l Vz(Fk)

Sdk—l

which has been thoroughly studied by topologists; in particular, the problem whether
this bundle admits a section is completely solved.

7.5. THEOREM Letk > 2. The bundléV/,(F*) — S? 1 does not admit a section,
except for the following case® = R,C andk even, orfF = Handk = 0
(mod 29.

Proof. The real case is fairly easy, see James [13] p. 2. For the complex and
guaternionic case cp. James [11], Adams—Walker [1], Sigrist-Suter [19] and in
particular James [13] p. 76. O

7.6. THEOREM Letk > 2. The real Stiefel manifold,(R¥) is homotopy equiv-
alent toS¥~1 x S¥=2if and only if if k = 2,4, 8. The complex Stiefel manifold
V>(CK) is homotopy equivalent 8%~ x S%*=3 if and only if if k = 2, 4. The
quaternion Stiefel manifold/,(H*) is not homotopy equivalent &#-1 x S%-5
for anyk > 2. Hence, except for the given valueskpthe bundleV,(F¥) — S¥*-1

is never topologically trivial.

Proof. From the division algebra€, H, O it is easy to see thaV,(R¥) =
Sk=1 % S¥=2 for k = 2, 4, 8. Using the fact thatl andQ areC-modules, one sees
also thatV,(CF) = S%*~1 x S%*—3for k = 2, 4. Putd = dimg(F). The following
is proved in James—Whitehead [10] 1.12-1.22VA{F*) ~ S9-1 x §dk-D-1
then mag_1(S?) contains an element of Hopf invariant 1; also one has 3
in the quaternionic case. On the other hand, it is known by Adams’ result that
m2,—1(S™) contains an element of Hopf invariant 1 if and onlyif= 2, 4, 8, see
eg. Husemoller [9] Ch. 15. The result follows. O

The complex case of the result above is incorrectly stated in James [12] and in
[13] p. 154. | am indepted to Stephan Stolz for pointing out the correct proof.

We can use these facts to prove a first nonexistence result. Consider the hyper-
planeH = b = boF @ V,, and the corresponding ovoi@ = @ A typical point
p € O is of the fromp = (1,0, w)F, wherew € V. is a uniquely determined
unit vector. Suppose that a map? — £ defines a closed spreadC .£. Then
s(1,0,w) = (1,0,w)F & (0, 1, v)FF is a line containingp. Thusw = u, and the
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compositer: O SN N Vo(V,), w — v is a section into the Stiefel manifold.
By 7.5 we have the following result.

7.7. THEOREM The real orthogonal quadrangleg, (R) and the complex her-
mitian quadranglesH, (C) have closed spreads if and onlyrifis odd. The qua-
ternion hermitian quadrangle#l, (H) have no closed spreads, except possibly if
n=1 (mod 24. a

In Part Ill we show by different methods that in the quaternionic case no spreads
exist. Now suppose that can be partitioned into closed spreads. Thes gf —
P is atrivial bundle by Part | [15] 5.8; in particular, the restrictign= £y — O
is a product bundle.

7.8. PROPOSITIONThe real orthogonal quadrangle®,(R) and the complex
hermitian quadrangled7,,(C) can be partitioned into spreads if and onlynif 4

m’ = 3,7. The quaternion hermitian quadranglds, (H) cannot be partitioned

into spreads. Thus, the only standard hermitian quadrangles which can be parti-
tioned into closed spreads a@s(R), Q9(R), H3(C), and H5(C).

Proof. If £ can be partitioned into closed spreads, then the bufAdie £ is
topologically trivial; in particular, the subbundgy, — O is topologically trivial.

We may identifyF, with .£ by the mag — (o(£), £); it follows that.L is homeo-
morphic to@ x Di(p) = S x S™. Therefore, the ‘only if’ part follows from
7.6.

The fact that theDs(R), H3(C), Q9(R), and Hs(C) can indeed be partitioned
into closed spreads follows from the isomorphisms(R)% =  Hy(C),
Qg(R)da = FKM (6, 8), H5(C)%a = FKM(5, 8) (see Part lll for the definition of
the Clifford quadrangles FKM) and the fact that the quadrangles on the righthand
side can be partitioned into ovoids. O

8. Summary: Ovoids and Spreads in Compact Moufang Quadrangles

We consider briefly the remaining compact connected Moufang quadrangles. The
complex symplectic quadrangé (C) has neither closed ovoids nor closed spreads
by Part | [12] 4.1; the real symplectic quadrandi&R) is the dual of Q4(R)

and has therefore no closed ovoids by Part | [15] 5.1. d4ermitian quadrangle

HZ (H) is dual toQ7(RR); therefore, it can be partitioned into closed spreads, and it
has closed ovoids (but cannot be partitioned into closed ovoids), cp. 7.7.

8.1. THE (4,5)-MOUFANG QUADRANGLE H} (H)

It remains to inspect theé4, 5)-quadrangleH; (H). The group S(b) acts flag-
transitively on the quadranglgy (H). In fact, there is an Si%)-equivariant im-
bedding of the homogeneous spades® and £ into the spheréS'® such that
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F < S¥is an isoparametric hypersurface, with focal manifgisand .£ (the
multiplicities are(4, 5)). The following lattice of subgroups gives the stabilizers of
a point, a line and a flag.

SU(5)
P oL

SU2) x SU3) 7 Sp2)
i s*

SU2) x SU2)

TheF,-cohomology ofP < £ — L is given by the inclusions df,-algebras

Falxal/(x§) ® /\ (x) = Falxal/(x}) ® /\ (xo, y5, ) < /\ (¥5. yo),

where the lower subscripts indicate the degrees. cp. Hebda [6], Munzner [17],
Grundhoéfer—-Knarr—Kramer [5], [14]. We need to compute the Steenrod squares
of these algebras. Lefs, ys, y7, y9 denote the primitive generators of tli-
cohomology of SW5). Then

Scfys = ys, Sdtys = yo,

and all other Steenrod squares vanish, cp. Borel [2] 11.4, Hsiang-Su [8] 3.2. The
F,-Serre spectral sequence of the fibratioiZp> SU(5) — L collapses, since

the dimension of thet,-term is already dim, E; = 2* = dimH*(SU(5); F»).
Therefore the map S8) — £ induces inF,-cohomology an injection

A\ O3, y5, 37, y0) <— [\ (35, ¥0)

of gradedF,-algebras. This gives us the Steenrod algebrZ .dfrom the relation
Xg + y9 = x4)5 One sees that $g = x4x0, and all other Steenrod squares vanish
on H'(P; IFy).

8.2. PROPOSITIONThe map¥ — &£ in H; (H) does not admit a section; in
particular, this quadrangle has no closed spreads.

Proof. Suppose that: » — ¥ is a section of ps. Thenr*(ys) = 0, and
thusr*(yg) = r*(Sdfys) = Sdr*(ys) = 0. We also have-*(xays) = 0; thus
0= r*(x4ys + yg9) = r*(x9) = xg, a contradiction. O
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8.3. PROPOSITIONThe bundlef — £ in Hy (H) is not topologically trivial; in
particular, H (H) cannot be partitioned into closed ovoids.
Proof. Consider the principal bundle

Sp2) — SU(5)

L.

The bundle¥ — £ can be viewed as the sphere bundle of the 5-plane normal
bundle L £ of £ < S'% therefore, there exists a real five-dimensiona(2p
moduleX such thatl £ is the associated vector bundle,

1L = SU(S) Xsp2) X.

The elements of this vector bundle are equivalence cldgges]| ¢ € SU(5), v

X}, where[g, v] = [gh™%, hv] for h € Sp(2). The unit sphere in the fibre over

¢ € J£L corresponds to the point row,(¢), and the action of S2) on this four-
sphere is transitive. Thus is given by the representation of @p as S@5) onR®.

The question is whether this bundle is topologically trivial. Restricted to the line
pencil

Di(p) = SU3) x SU®2)/SU2) x SU2) C £,

the bundle splits off the trivial line bundle given by the section- (p, £), and we
obtain the four-plane bundle

(SUB) x SU2)) xsuz xsue R?,

where SU2) x SU(2) acts as S@H onR*. The associated unit sphere bundle is
homogeneous, with stabilizéta, a™) | a € SU2)} € SU2) x SU(2). Thus,

it is the Stiefel manifoldV,(C3) (with its canonical bundle structure ovEf C

C3). Adding the trivial bundle that splits of, we obtain the tangent bundle of the
five-sphere. This bundle, which correspond¥/46R°), is not topologically trivial,

cp. 7.6. O

8.4. PROPOSITIONThe classical quadranglé/; (H) has no closed ovoids.

Proof. Suppose tha C # is a closed ovoid. Lep € £ \ @. Then the
fibre bundleD,(p) — D1(p) has a sectiow,: £ — o(£). Fix another poinyg <
D4(p) NO. Then there is another section ¢ — proj,q. Note thaio;(£) # o2(£):
the linego,(£) meets® in g, sooy(€) ¢ O. In the proof of 8.3 we identified the
bundleD,(p) — D;(£) as the vector bundle

(SUB) x SU2)) xsuzxsuz R* — SUB)/SUR) = S°.
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Table I.

Quadrangle Parameters  Ovoids? partitioned Spreads £ partitioned
into ovoids into spreads

W(R) 1,2 no no yes yes

w(©C) 2,2 no no no no

0s5(R) 1,2 yes yes yes yes

07(R) 1,4 yes yes yes no

Q9(R) (1, 6) yes yes yes yes

H3(C) (2,1) yes yes yes yes

Hs(C) (2,5 yes yes yes yes

H§‘ (H) 4,1 yes no yes yes

Hy (H) (4,5) no no no no

Q(Eg, R) (9, 6) yes yes no no

Qo (R), k> 2 (1,2t —3) yes yes no no

Ox+1MR), k=25 (1,2k—-2) yes yes yes no

Hor (C), k > 2 (2,4 —7) yes yes no no

Hy11(©C), k>3 (2,4k—3) yes yes yes no

H(H),k >3 4,4k —9) yes yes no no

Our ovoid yields viar; a section of this bundle which is nowhere zero. If we add a
trivial line bundle, then we end up with the tangent bundI&%fSo we obtain two
linearly independent vector fields 88, or, in other words, a sectid@® — V3(R®).

By Adams’ result [9] Chapter 16, 13.10, this is impossible. O

Maybe one can prove in a similar way that that the bundl€SpEU(2) x SU(2) —
SU(5)/Sp(2) does not admit a section.

The real Eg-quadrangleQ (Eg, R) arising from the exceptional real Lie group
PEs(—14) belongs to the Clifford series and will be considered in Part Ill [16]. Recall
the anti-isomorphisms

Hy(C) = Qs(R)2,
Hg(H, 3) = Q7(R)™,
W(R) = Q4R)M,
W(C) = Q4"
Taking these anti-isomorphisms as well as the (anti) isomorphisms
FKM(6, 8) = Qg(R)%?
FKM(5, 8) = Hs(C)dual
FKM(1,n -1 = 0,(R),
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FKM@&, 4(n — 1), n — 1) = H,(H),
FKM(9, 16) = Q(FEs, R),

between Moufang quadrangles and Clifford quadrangles (see Part Ill [16]) into
account we get Table 1 about closed ovoids and spreads in compact connected
Moufang quadrangles.

Note that the nonexistence results that we actually proved are slightly stronger
(except for the bundl — £ in H; (H)): instead of the nonexistence of spreads
or ovoids, we proved that the maps,ptF — &£ or pr,: ¥ — £ admit no
sections. See also the remarks at the end of Part 11l [16].
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