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Abstract. In this third part, we consider those compact quadrangles which arise from isoparametric
hypersurfaces of Clifford type and their focal manifolds. Sections 9-11 give a comprehensive intro-
duction to these quadrangles from the incidence-geometric point of view. Section 10 contains also a
new (algebraic) proof that these geometries are quadrangles.

We determine which of these quadrangles have ovoids or spreads and also whether the normal
sphere bundles of the focal manifolds admit sections, or whether they are topologically trivial. We
give explicit geometric constructions for spreads, ovoids, and sections.
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9. Clifford Systems and Clifford Algebras

We consider the quadrangles discovered by Ferus—Karcher—Minzner [5] and Thor-
bergsson [20]. First we review the Veronese imbedding of the standard Hermitian
quadranglesdd, (), whereF = R, C, H. Putd = dimg F.

9.1. THE VERONESE REPRESENTATION

Let H,(F) = (2, £, ¥) be a standard Hermitian quadrangle. We have seen in
Part 1l [15] 7.4 that the line spac€ is homeomorphic to the Stiefel manifold
Vo(F"~1), and we can push it into the unit sphere by mappingy) € Vo(F"~1)

to the unit vector1/+/2) (u, v) € S¥¢-D-1: |et £ C S2"~D4-1 denote the image
of this map. The points of the standard Hermitian quadrangles are of thepferm
(c, s, w)F, wherec, s € F are scalarsy € F*~1, and|c|? + |s|? = |w|?. We can
assume that € R is real, and thafw|? = 1. The trlple(c, s, w) is not well-defined,
but the unit vectorwe, ws) € S**~P-1is, and the map = (¢, s, w)F —
(we, ws) is an injection. Let? < S%@-D-1 denote its image. The incidence
relation becomes very simple in terms £f L < S2=D4-1 et (we, ws) € P
and(u, v) € £. Then

((we, ws), (u,v)) = {(wc, u) + (ws, v)
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= (w, uc) + (w, vs)

= (w, uc + vs)

1
< e —
< wlfuce +vs| 7
(the last equality holds becauge| = 1, and because@:s | vc) = 0). By Cauchy—
Schwarz, the inequality becomes an equality if and only it= v2(uc + vs).
Translating this back into the quadrangtg (F), we find that this is equivalent
with

(c, s, \/é(uc +vs)F = ((1,0, «/éu)c + (0, 1, N/EU)S)F
C (1,0, v2u)F & (0, 1, v/2v)F.

This shows that the Euclidean inner prodyet, —) in R?"~Y4 contains all the
information about the incidence. This is tieronese representatiaf H,(F). The
sets?, L are the focal manifolds of an isoparametric hypersurfacehich can
be identified with# .

The main ingredients in this description are the Euclidean inner praduct)
and the positive definite Hermitian fort-|—). The idea for the Clifford quadran-
gles is to replacé—|—) by a bilinear magf—, —J onV,

[— =1:V®V — Ends(V)

with special propertiesThis is a purely algebraic procesthus, we assume for the
next two sections only th& is a real closed field, i.e. an ordered fidldecessarily
of charcteristicO), where every positive element is a square, and where every poly-
nomial of odd degree has a zeithe algebraic closure of such areal closed field
is the fieldC = R[+/—1]. See Jacobson [9] Chapter 5 for properties of these fields.
By a Euclidean vector spac¥ overR we mean a vector space endowed with a
positive definite symmetric bilinear forfa-, —); put|x| = +/(x, x). Note that one
can perform Gram—-Schmidt orthonormalizatlon over real closed fields. We call the
set of all unit vectors ifRk+! ak-sphere.

Let V = R" be a EuclidearR-vector space, with the standard Euclidean inner
product(—, —). Suppose thak, ..., E,_1 are orthogonal matrices which satisfy
the relations

0 fori#j,

=2id for i =j.

In other words, the matrices anti-commute and are skew symmetric. Such a set of
matrices is called &lifford systemPutEq = id and letA € Endk(V) denote the

R-vector space spanned By, E., ..., E,,_1. We identifyRwith R- Eg C A, and
we define theClifford bracketof x, y € V by

aa+ga:{

m—1

Ix, yI =) (x, E.Y)E,.

v=0
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Thus we obtain a bilinear map ® V — A, with the property[x, x] = |x|?. Two
vectorsx, y areClifford orthogonalif [x, y] = 0. TheClifford Stiefel manifoldbf
2-frames is defined as

Vo(l—, =) = {(x,y) e R" x R"| [x, y] = 0, |x|* = |y|* = 1},

cf. Pinkall-Thorbergsson [18]. Here is an exampleHeatenote the unique quater-
nion division algebra oveR, let R* = H*, and letEq, E,, E; denote right multi-
plication by the imaginary units j, k. ThenA = H and Va([—, —1)) = Va(H*),

as is easily checked, cf. Jacobson [9] p. 404, Example 3. The general construction
of such sets of matrices is a matter of Clifford modules. We explain this briefly;
cp. Jacobson [10] Chapter 4.8, Atiyah—Bott—Shapiro [2], Lawson—Michelsohn [16]
Chapter 1 for more details.

9.2. CLIFFORD ALGEBRAS

Letg: W — R be a quadratic form on aR-vector spacéV. TheClifford algebra
Cl(g) is the associative algebra (with unit 1) generatedibysubject to the rela-
tionsv? — g(v)1 = 0, for allv € W. It has the following universal property: £
is an associativR-algebra with unit 1, and if: W — A is a linear map such that
f(v)? = ¢g(v)1, then there exists a unique extensidrCl(g) — A which makes
the following diagram commute.

f

w A

g

Clg).

There is an injectioW — Cl(q); if U < W is a subspace, then the inclusion
U — W extends to an inclusion Gl|y) < Cl(g), cf. Jacobson [10] p. 235.

The map—id: W — W extends uniquely to an involutive automorphism-—
x* of Cl(q). Consider the anti-isomorphism:i@l(g) — Cl(g)°PP onto the opposite
algebra. By the universal property of Clifford algebras, its restrictioW textends
to an isomorphism @) = Cl(g)°PP. Therefore, Qlg) has an anti-automorphism
x — x® given byvi...v, = v,...vq, fOorvy, ..., v, € W. The composition
x > X = (x*)" is the anti-automorphism which we are really interested in; it is
given byvy...v, = (—=1)"v,... vy, fOor vy, ..., v, € W. The involutionx — x*
induces &./2-grading of the Clifford algebra

Cl(g) = Cl(g)* = Cl(¢)° ® Cl(9)*,

where Clg)° consists of the fixed elements of the involution andyG} consists
of the elements which are mapped to their negatives. The elementsqf @te
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the elements which can be written as linear combinations of products of an even
number of elements dv.

9.3. CLIFFORD MODULES

A Clifford moduleis anR-vector spac&’, endowed with a homomorphism@) —
Endk(V). We are particularly interested in the Clifford algebra @$sociated to
the quadratic formv > —[v|? on W = R¥ and its modules. I, ..., ¢ is an
orthonormal basis dR*, then we have the relations

0 fori #j,

ciejtejei = { 2 fori=j
in Cl,. Thee; generate a finite group; with 21 elements, theClifford group
If V is a Ck-module, then there existsB-invariant positive definite inner prod-
uct (—, —) on V. With respect to this inner product, all e R¥, w e V satisfy
law|? = |a|?|w|?; in particular, the elements of unit length|a|?> = 1 in R* act as
orthogonal maps, cp. Lawson—Michelsohn 1.5.16. We call thieréitogonal rep-
resentationof Cl,. The imagest,, ..., E; of thee; in Cl;, form a Clifford system
in Endk (V). Therefore, the classification of all Clifford systems is equivalent to
the classification of all modules of the algebrag.Cl

We will also have to consider the Clifford algebrag ghssociated to the quadratic
form v +— |v|% Here, similar remarks apply. There is an isomorphism
CIQH’0 = Cl,, which can be seen as follows. L&, ..., b, be an orthonormal
basis of W. Thene, = bgbs,...,ex = bob, generate a Clifford algebra Gl
cp. Jacobson [10] 4.14.

The first Clifford algebras are g= R and C} = C (withe; =1 = 4/—1). The
next Clifford algebra is the quaternion division algebra €IH overR, generated
by the imaginary elements, = i,e, = j, 1> = —1 = j?,ij +ji = 0. The next

Clifford algebrais G} = H®H (with ey = id(—i),e2 = | D(—]), ea = ij B (—ij)).
The irreducible modules over the first three Clifford algebrasRar€, andH; the
modules over these algebras are the finite-dimensional vector spaceR,d@er
andH. We denote these representations hy u,, u3 (note that there is a shift
in the subscripts). The Clifford algebras3$ not simple; it has two nonequivalent
irreducible four-dimensional representatignsandu; . A Cls-module is therefore
given by a sunap; +bpuy . Given a skew field?, put F(n) = Endr(F"). The next
Clifford algebras are GI= H(2), Cls = C(4), Cls = R(8) and C} = R(8)®R(8).
Fork > 8, there is a general periodicity isomorphism GI= Cl, ® R(16). Using
this, one obtains the following classification of the Clifford algebrasa@id their
modules. Puk = 8 + s, with0 < s < 7.
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9.4. The table gives the Clifford algebras, the real dimensions, and the centraliz-
ers of their irreducible representations.

s | 0 1 2 4 5 6
Cly R(16) C(16) H(16) H(216) C(416) R(816)
dimg pipe | 16 216 416 816 816 816

R C H H C R

For these values of, an arbitrary Gl module is given by a sumau, 1, for some
a € N.If s = 3,7, then C} is not simple, and there are two inequivalent irreducible
representationg;’, ;.

s E 7
Cl, H(16)® H(16) R(816)® R(816)
dimg pp, | 416 816

H R

The Ck-modules are therefore of the formu;’,, + bug,,, fora,b € N. The
index of such a module is the number= a — b. The automorphismx +— x*
mapsau; + bu; to bu; + ap; ; therefore, the resulting modules (and Clifford
systems) are quasi-equivalent under an automorphism of the Clifford algebra, and
the absolute valug¢| is a more important invariant. These results can be found
e.g., in Lawson—Michelsohn [16], and in Atiyah—Bott—Shapiro [2].

10. The Clifford Quadrangles

First we derive some properties of the Clifford bracket.

PROPOSITION 10.1LetE4, ..., E,_1 be a Clifford system given by an orthogo-
nal representation ofl,,_; on the Euclidean vector spadé = R", and let

[-.-1:V®V — ACEndk()

denote the Clifford bracket. The involutian— x of Cl,,_; descends to an involu-
tion on A which is the same as matrix transposition. The Clifford bracket satisfies
the following identities, for € A andx,y € V.

[x, yI =Ly, x1. (1)
lax, x] = alx|?, ()
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L, y1 + T, y] = 2(x, y), (3)
(x,ay) = (lx, I, a), 4)
(x,ay) = (ax, y), 5)
lax,ayll = allx, yla. (6)

Proof. Identity (1) is clear. Put = ¥"")' a,E,. Then

(x.ay) =Y ay(x, E,y) = {a. [x, y]),

and this shows (4). Similarly,

lax, yIl = ) (ax, E,y)E,

Vv

= Y (x,aE\))E,

Vv

= Z(x’ (zav _Eva)y>Ev

= Y 2x,y)a,E, — Y (E,x,ay)E,

v

= 23(%)’) - [[ay,x]],

soflax, y]l + [lay, x]l = 2a(x, y), and (2), (3) follow. Equation (5) is easy. Finally,
we prove the ‘Moufang identity’ (6). Far, b € A we haveaba = 2a(a, b) —|a|?b,
as is easily checked, hence

lax,ayll = ) (ax, E,ay)E,

= > (x.(2aa, — |a’E,)y)E,

Y

= 2) (x,ay)aE, — ) _(x, E,y)al’E,

= 2a(x,ay) — lal’[y. xI.
On the other hand,
a[[x, }’]]a = ZLI(CI, [[xa y]]) - |a|2[[xa )’]]
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= 2a(a, [y, x]) — lal?ly, x]
= 2a(x,ay) — |al[y, x]. O

10.2. CAUCHY—SCHWARZ PRINCIPLE

Letx, y € V be nonzero vectors. Thefix, yll| < |x]| - |y|, and equality holds if
and only ify = ax for somez € A. In this case[[x, y]| = a|x|.

Proof.Letx, y € V, x # 0. Then there is a unique decompositipg= ax + z,
wherea € A andz € (A - x)*. Hence[lx, y] = [[x,ax] = |x|%a. Therefore
[[x, y1| < |x|lyl, and equality holds if and only ¥ = ax for somea € A; in that

caseflx, vyl = [x, ax] = alx|?. O
Note that in generdlax, y]| # alx, y] (consider for example = 1, y = ij and
a = iin Cly; then[lx, y] = 0 while [ax, y] = a), hence the Clifford bracket

behaves not always like a Hermitian form.

10.3. THE CLIFFORD QUADRANGLES
LetEy, ..., E,_, andA be as above and put
P ={(x,y) € R" xR x| +[y|* = 1, |[lx, ]Il = |x[Iyl},
L ={u,v) eR" x R"||u|l = |v| = 1/v/2, [[u, v] = 0}.
Put
S=S"={(c,9)P+|s>P=1L CR@A.
By Cauchy-Schwarz,
P = {(cw,sw) e R" xR"w eR", |lw| =1, (c,s) €S}
= {(sw,cw) e R" xR"|w e R*, |lw| =1, (c,s) € S}
Let (cw, sw) € £ and(u, v) € L. Then

((cw, sw), (u,v)) = {(cw,u)+ (Sw, v)

w, cu + sv)

wllcu + sv| = l/«/_

(

= (w, cu) + (w, sv)
(
|

<

becausdlu, v] = 0 implies that{cu, sv) = 0. We define the incidence by the
Euclidean inner product as in 9.1 by requiring thiétx, sx), (1, v)) = 1/v/2.
Then(cw, 5w)I(u, v) if and only if w = v/2(cu + sv), i.e. if and only if

cw = 1/V2((L+ (% — [s/?)u + (2s0)v))
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and
sw = 1/v2((Z5c)u + (L — (% — [sP))v).

Note that(c® — |s|?, 2cs) € S. The resulting incidence structure is denoted by
FKM(Eq, ..., Ep_1) = (P, L, 1). 1fm £0 (mod 4, thenEy, ... E,,_1 is deter-
mined by the numbera andn, and we put FKME4, ..., E,,_1) = FKM(m, n);
form =0 (mod 4 we put FKM(E4, ..., E,,_1) = FKM(m, n, t), wheret is the
index of the representation, cp. 9.4.

We imbedR @ A into Enck(R?") by the map

By s (x,y) = (tx +ay,ax —ty).

These are symmetric orthogonal operators, Bigd= (12 + |a|?)id; thus, we have
a representation of the Clifford algebra,Cl o generated by the Euclidean vector
spaceR @ A onR?". Let K € O(2n) denote the group generated ByS). To each
point p = (x, y) = (cw, sw) € &£ we assign the element

¢ (x,y) = (Ix> = |y% 2y, xI) = (¢ — |s]?, 2¢5) € S.

For(c,s) € Sput@., = ¢~(c, s). A short calculation shows that

Ocs ={p € R*||pl* =1, B.,(p) = p}

is the set of all unit vectorg fixed by B, ; (note thatB.  is symmetric with
eigenvaluest1, both of multiplicityn).

LEMMA 10.4. We have a partition of” into disjoint sets

P = | J0cs1(e.s) €8}
= {p e S 1CR?|Q(p) = p for some Q € B(S)). O

LEMMA 10.5. The groupK = (Q | Q € B(S)) acts as a group of automorphisms
on FKM(E]_, o En_1).

Proof LetQ € B(S).Forp €  andP € B(S) with P(p) = pwe haveQPQ €
B(S) andQ(p) = QP Q(Q(p)),soQ(p) € £ by 10.4. Let(u, v) € L be aline
and putQ = B. . ThenQ(u, v) = (cu + sv, su — cv), and

[cu + sv, su — cv] = cs|u|2 —cflu, vlc + sllu, v]s — cs|v|2 =0.
Also, [cu + sv|> = 3 = |5u — cv|?, s0 Q(£L) = L. Finally, 0 € O(2n), and the

incidence is defined by the Euclidean inner productOse& Aut(FKM(E4,...,
Em—l))- O
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10.6. AUTOMORPHISMS INDUCED BY THE CLIFFORD ALGEBRA

The groupkK acts also om(R @ A) € Enck(R?): letP €« BR® A) andQ €
B(S), and putQ: P — QP Q. Up to the sign, this is a reflection, and thus the
image ofK contains SQn + 1); identifying R @ A with B(R & A), we obtain an
orthogonal action ok onR @ A. PutB, = By(,). ThenB,(p) = p, and the map
¢: P — Sis K-equivariant,0B,Q = By, . Thus, the grougX acts transitively
on the collectior{®.; | (c, s) € S}. The subgrougk® = KﬂCISlH’O is isomorphic

to Spinim + 1) and maps onto S@: + 1), with kernel+1; it is generated by the
setB; o - S. Note thatk© still acts transitively ors.

10.7. STRUCTURE OF POINT ROWS

Let¢ = (u,v) € L andP € B(S). Thenp = (1/v/2)(1 + P)¢ € £ is incident
with £, and conversely every point incident witls obtained in this way. Therefore
the point row corresponding tis them-sphere

1
—@A+P)|PeB©S) =5".
{ﬁ(+)| 6()}

Now let &, £ be distinct lines. Ther, ¢ are confluent if and only if there exists a
P € B(S) such that(1 + P)¢ = (1 + P)h. This is equivalent with the condition
(—=P)(£ —h) = £ — h, cp. Thorbergsson [20], or with® N (£ — h)R # @, i.e. with
the condition(¢ — h)/|¢ — h| € &. (Note however that¢ — h)/|¢ — h| need not be
a point incident with the lines, ¢).

10.8. STRUCTURE OF LINE PENCILS

Let p € . SincekK acts transitively o1$, there is no loss of generality in assuming
thatg(p) = (1, 0), i.e. thatp = (w, 0) for some unit vectoiw € R". Then every
line throughp is of the form(u, v), with u = (1/+/2)w. Therefore, the line pencil
throughp is the(n — m — 1)-sphere
(@, )| =1, [uv]=0 =5

Thus, every line pencil is am’-spherem’ =n —m — 1.

Now we want a criterion for collinearity of pointg, g € #, p # q. PutP =
B,, Q = B,. If p,q are incident with¢, thenp = 1/v/2(1 + P)¢ andg =
1/3/2(1+ Q)¢, whencep — g = (1/+/2)(P — Q)¢. Note that this relation implies

1 P—q
lp —gql =—=IP - Q| and
Ng lp —q|

The first equality follows by taking absolute values; the second one follows from
¢ =2R(p —q)/|p — q|, whereR = (P — Q)/|P — Q| € B(S). Conversely, if

e L.
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p—q = 1//2(P— Q)¢ for somet € £, then its easy to see that= 1/v/2(1+ P)¢
andg = 1/+/2(1 + Q)¢. The next result was proved first by Thorbergsson [20] by
completely different (topological) methods; cp. also Eschenburg—Schréder [4].

THEOREM 10.9Mf m,n — m — 1 > 0, then the geometlyKM(E, ..., E,_1) is
a generalized quadrangle

Proof. We have to show the following. Ip € & and? € £, p 1 ¢, then there
exists a unique poing which is collinear withp and incident withe.

SinceK C Aut(FKM(E4, ..., E,,_1)) acts transitively on the sphegg there is
no loss of generality in assuming thate 9,0, i.e. thatp = (w, 0) for some unit
vectorw € R". Let¢ = (u, v). The non-incidence op, ¢ implies thatw # +/2u.
A typical pointg incident with¢ is of the form

q= 1/\/5((14— Au+ sv, su+ (1 —c)v).
If p,q are collinear, therig — p)RN L # @, thus

0 = [(A+c)u+sv— 2w, 5u+ (1 —c)v]
= (l+c)s/2+s(l—c)/2—«/é[[w,iu—i—(l—c)v]]
= s—«/ﬁﬂw,Eu—i—(l—c)v]].

One solution of this equation {s, s) = (1, 0), but this is not allowed, since¢2u #

w. Consider theR-linear mapR & A — A, (¢, s) > s — V2[w, 5u — cv]. The
kernel L of this map has at least dimension 1. Restrict the map to the hyperplane
0 @ A. By Cauchy-Schwarz/2[w, sull| < |s|, ands = +2[[w, 5u] implies
thatw = ~/2u, for somes € A, |s| = 1. But this possibility was excluded. Thus,
LN(0dA) = 0. Thisimplies that din. = 1, and that the inhomogeneous equation
has precisely one other solutign, s) on S besideq1, 0). So we have established
the uniqueness af, and it remains to show thatis collinear withp.

There exists an elemepte K such thag (1, 0) = (1, 0) andg(c, s) € R®R C
R@A. Therefore we may assume tlrands are real numbers. Then the solution of
the equation above takes the simpler fore/2 = s[[w, u]l + (1 — ¢)[w, v]}; since
the left-hand side is a real number, this yields/2 = s(w, u) + (1 — ¢)(w, v);
sinces? = (1+ ¢)(1 — ¢), multiplication withs /(1 — ¢) yields

A+ ¢)/vV2= 1+ c)(w, u) + s(w, v).

To show thatp — ¢ is a scalar multiple of a vector iff, it remains to check that
11/vV2((1 4 c)u + sv) — w|? = |1/v/2(su + (1 — c)v) .

The right-hand side i€2 — 2c¢)/4 = (1 — ¢)/2, and the left-hand side is

(2+20)/4+1—V2((1+ )u + sv, w)
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= (B+0¢)/2 = V21 + o) (w, u) + s{w, v))
=B+0c)/2—(1+0)
=0-0/2

sop — g isindeed a scalar multiple of an elementof
The last equation which we have to check«i®|p — ¢| = |P — Q|, or,
equivalently, 2p, g) = 1+ (P, Q). Now

(P, q) = 1/V2(w, L+ o) +sv) = (L+¢)/2,
and(P, Q) = c. This shows that the geometry is indeed a quadrangle. O
COROLLARY 10.10.Two distinct pointg, g € & are collinear if and only if

P—q
lp —ql

e L.

Proof.Let ¢ be a line incident witly, and not incident withp. In the first part of
the proof of the theorem, we have seen that there is a unique mpiicident with
¢,suchthaip —r)/|p —r| € £. Thus,q = r. In the second part of the proof we
showed that this point is collinear wigh O

There is an isomorphism FKW¥h, n, 1) = FKM(m, n, —t). Note also that
0,(R)=EFKM(,n — 1),
H,(C) =Z=FKM(2, 2(n — 1)),
H,(H) = FKM4,4(n — 1), n —1).

We derive some more properties of these quadrangles.

PROPOSITION 10.11The sets9..;, (¢, s) € S, are ovoids. Therefore, the point
space of each Clifford quadrangle can be partitioned into ovoids.

Proof. We showed already that every lidemeets@, , in the unique point
1/4/2(1 + B, ,)¢. O

There is also a generalizations of thiespreads, which was pointed out to me
by Stephan Stolz. Suppose thatis an orthogonal skew symmetric map which
anti-commutes withEq, ..., E,,_1 (i.e. {E1, ..., E,_1, J} is a Clifford system).
Then(E;Jx,Jy) = —(E;x,y)fori =1,...,m — 1, while (EqJx, Jy) = (x, y).
Therefore[[Jx, Jyl = [x, yl = [y, x]. Similarly, one shows thafJx, x] =
[x,Jx] = 0 and thataJ = Ja for a € A. Consider the orthogonal invo-
lution (x, y) — (Jy, —Jx) on R%'. By the relations above, it preservgs-]-
orthogonality and permutes the line spa€eand the point spac®. If it fixes the
vector (x, y), then(x, y) = (x, —Jx). Note that(x, —Jx) € £ for |x|?> = % Let
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4 C L denote the set of all fixed lines. We claim that this is a spread. Consider the
map

(x,y) = 1/V2(x + Jy, —Jx + )

and leto denote its restriction t@. A typical point incident with the linéu, —Ju)
is of the form

1/v2(1+ B.) (u, —Ju)
= l/«/é((l—i— Au —sJu,su — (1 —c)Ju)
=1/V2(A+c—JIHu, 5 —JA—c)u);
undero, it is mapped to
o (1/V2(A+c — THu, 5 — J(L—c)u))
=3((A+c—J5+JGE—JA =),
(—JA+c—Js)+5—JA—=0)u)
=3(A+c—Js+Js+1—ou,
(=S —=Jc—=5+s—J+Jou)
= (u, —Ju).
This shows tha# is indeed a spread.

PROPOSITION 10.12The set$ of fixed lines of the involution(x, y) >
(Jy, —Jx) is a spread O

Let {E4,..., E,_1, E,, = J} be a Clifford system orV. Restricting to the
Clifford systemkE,, ..., E,_1, we can viewV as a CJ,_;-module. From the clas-
sification of Clifford modules 9.4 one sees the followingsif= 1,2 (mod 8,
thenV is given byau,,, wherea is even, and conversely, all such Clifford systems
are obtained as restrictions of larger Clifford systems: &£ 3,5,6,7 (mod 8,
then every G]_i-module is obtained by restriction. #f = 0 (mod 4, then the
module structure oV is obtained by restriction if and only if the index &f is
t=0.

COROLLARY 10.13.The Clifford quadrangles do havespreads in the following
cases

m=1 (mod 8 andn = (even) - 2" D/2,

m=2 (mod 8 andn = (even) - 2"/,

m=3,56,7 (mod 8§,

m=0 (mod4 and(=0. o
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11. Topological Properties of the Clifford Quadrangles

From now on we assume again tiiat= R it the field of real numbers. It is clear
from the definition that the Clifford quadrangles are compact conndeted —

m — 1)-quadrangles, since the flag space is close#t ir L. The ovoids®, ; and

the J-spreads constructed in the last section are obviously closed. The flag space
can be identified with an isoparametric hypersurface in the sphere as follows.

11.1. THE ISOPARAMETRIC FUNCTION

PutH (x, y) = (|x|?> — |y|»? + 4|[x, y1I|2. This is a homogeneous polynomial of
degree 4 oR?*, and

H Y0NS 1=,
Hl')Ns?1l=2.

The homogeneous polynomiBl(x, y) = (|x|?>+|y|?)?— 2H (x, y) is isoparamet-
ric, cf. Ferus—Karcher-Miinzner [5] 4.1; the isoparametric hypersufface0) N
S?—1 can be canonically identified with the flag spageby mapping the flag

((ex, sx), (u, v)) 0 1/v/2 4+ V2(cx + u, sx + v) € S¥~1. This is essentially the
description due to Ferus—Karcher—-Minzner [5] Abschnitt 4. In their notation,

M_=%, M.=4L, and M=F.
The following (anti) isomorphisms were also proved by Ferus—Karcher—Muinzner.
FKM(1, 4) = 0s(R) = FKM(2, 498 = H,(C),
FKM(L, 8) = Q(R, 9) = FKM(6, 892!
FKM(2, 8) = Hg(C) = FKM(5, 8)9ua
FKM (3, 8) = FKM(4, 8, 0)%
FKM(9, 16) = Q(Eg, R).

The isomorphisms with the Moufang quadrangles can be seen as follows. Ferus—
Karcher—-Munzner show that the corresponding isoparametric hypersurfaces are
homogeneous; by Hsiang—Lawson [7] (or by representation theory), this implies
that the geometry arises from the isotropy representation of a noncompact Rie-
mannian symmetric space of rank 2. By general theory, the isoparametric foliation
can be identified with the building of the corresponding noncompact simple Lie
group, cp. Thorbergsson [19], Kramer [12]. In addition, we saw that there are
isomorphisms

0,(R) =FKM(@1,n — 1),
H,(C) ZFKM(2, 2(n — 1)),
H,(H) = FKM(4, 4(n — 1), n — 1).
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11.2. The map: P — S is closely related to to the re&-theory of spheres.
First, we claim that this is a locally trivial sphere bundle. Fdr < ¢ < 1, consider
the trivialization

(c,s,w) > 1//2(14+ c)(1+ c)w, sw),

and for—1 < ¢ < 1 the trivialization

(c,s,w) > 1/4/2(1 —c)(sw, (1 — c)w),

cp. Ferus—Karcher—Munzner [5] 4.2.i. The clutching map along the equatdd

is given by byw — sw; the structure group is therefore Spi, cf. Husemoller
[8] Chapter 10. The associated vector buridtan also be described as a difference
bundle. LetX = {(c,s) € S|0 < ¢ < 1} andA = {(c, s) € S|c = 0} denote the
northern hemisphere and the equatoispfespectively. The sequence of (trivial)
vector bundles ovex

0> R - R"— 0,

becomes exact when restrictedAaand represents a vector bundle o¥gA >~ S
isomorphic tog, cf. Section 8,9 in Atiyah—-Bott—Shapiro [2]; cp. also Wang [21]
Proposition 1 for a different proof. The upshot is that we obtain a map £(w)
from the collection of all finite-dimensional representations of the Clifford algebra
Cl,,_1 to vector bundles ove®™ which is additive in the sense thafu + ©') =
&(w) ® £(u'). One main result of [2] is that these vector bundles represent the real
K -theory ofS™; seeloc. cit. for a more precise statement.

We use the bundle: » — S to obtain nonexistence result for spreads. This
settles also the case of the Hermitian quadranglgsl), wheren = 23 (mod 24.
Consider thgn — 1)-sphere bundle

O, P

S.

Suppose that:  — F is a section of py. Leto = pr6: P — L be the corre-
sponding map, and pyt = oo, whereo: L — & is the map corresponding to the
ovoid 010 = # NR" @ 0. Theno e, ,, is an injection, and so is the composite
000, O.s) = O10. Therefore, the map — S x O10, p = (¢(p), f(p))is

a homeomorphism and a bundle isomorphism,

(¢.1) . SxO

P
S.




COMPACT OVOIDS IN QUADRANGLES Il 335

We have proved the following.

LEMMA 11.3. If pro & has a sectiorfin particular, if the quadrangle has
a spread, theng: # — S is topologlcally trivial O

If o is a sufficiently ‘nice’ map, e.g., arises fromJaspread as above, then the
map (¢, f) above induces in fact a vector bundle isomorphism. A special case of
this lemma is proved in Ferus—Karcher-Munzner [5] 4.2.1.

Let X be a compact connected Hausdorff space. Two vector buédlésover
a spaceX are calledstably equivalenif they become isomorphic after adding a
suitable number of trivial line bundles, i.e.§f ® R = & & rpR, for certain
numbersr, r2. A bundle which is stably isomorphic to the trivial bundle is called
stably trivial. The reducedK-theoryKO(X) can be identified with the set of vector
bundles oveX modulo stable equivalence, by the map> [¢ — rk(§)R].

A fibre homotopyetween two bundleg, E’ — X is a homotopyF;: E — E’
which commutes with the projection maps. A bundle magE — E’ is afibre
homotopy equivalencié there exists a bundle magg E — E’ such thatfg and
gf are fibre homotopic to the identity map @h E’. Clearly, two (topologically)
isomorphic bundles are fibre homotopy equivalent; the converse need not be true.
Consider the subgroup of K&) consisting of all differences — n, whereS (&)
and S(n) fibre homotopy equivalent. The resulting quotient of the group( XD
is the Abelian group (X). This subgroup is in fact contained in the reduded
theoryKO(X) the corresponding quotient is the gral(ix) (this is the notation of
Adams [1]). Its elements may be viewed as vector bundles Byenodulostable
fibre homotopy equivalenc&@hus, two vector bundles, n are equivalent idi(X)
if and only if the sphere bundle®&; @ r1R) andS (&, & roR) are fibre homotopy
equivalent, for some numberg, r, € N. Note thgt a vector bundle whose sphere
bundle is topologically trivial is certainly trivial id(X).

LEMMA 11.4. Letm = 1, 2 (mod 8. The vector bundlé(ap,,) is trivial in J(S)
if and only ifa is even

Proof. By Bott periodicity, KO(S’") = 7/2, andé = &(u,,) is a generator for
this group. Therefore¢ is stably trivial if and only ifa is even (and in that case
¢ is trivial by the construction of the spread above). ko= 1,2 (mod 8, the
mapKO(S) — J(S) is a group isomorphism by Adams [1], Part II, Ex. 6.4. Thus,
a& is stably fibre homotopically trivial if and only i@ is even; in particularS (a&)
is not topologically trivial ifa is odd. But the sphere bundle o is precisely
P — S. O

Form = 0 (mod 4 we cannot use this method, since there the iK@gs) —

J(S) is not an isomorphism; ed(S*) = Z,/24 # KO(S?*) = Z. Instead, we prove

that the underlying disk bundle &ft is not stably trivial in the group STOP of
orientation preserving based homeomorphisms by showing that the total rational
Pontryagin class df is not trivial. This is due to Wang [21] Corollary 1,2.
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LEMMA 11.5. Suppose that: = 0 (mod 4. Then the total rational Pontrjagin
class of¢ ()) is not trivial. Thus, the bundle: » — S is topologically trivial if
and only ift = 0.

Proof The bundles* = &(u) is (together with the trivial bundle) a generator
of KO(S). Consider the ring homomorphism

KO(S) 5 K(s) - H*(S) <> H*(S: Q).

wherecplx(B8) = B ®r C and where ch is the Chern character. The complexifica-
tion cplx is a monomorphism, and the Chern character is an isomorphism, given
in this special case by

ch(y) = rky + (=)™ (m/2 — D!c,2(y),
where ¢ is thekth Chern class. In fact,
cho eplx(KO(S)) = H(S) @ dH™ (S),

whered = 1 form = 0 (mod 8§ andd = 2 form = 4 (mod 8, cp. Hirzebruch
[6] 1.4-1.6. Now there is the relation

P(B) = (—=D)fcu(cplx(B))

between the Chern classes and the Pontryagin classes, cf. Milnor and Stasheff [17]
p. 174. This shows that the rational Pontryagin class@™®) is not trivial. More-
over,§T @ & is trivial, whence R a(aé™ + b)) = (a — b)puja(§1) # O for

t =a — b # 0. Consider the classifying map

s" —- BSO— BSTOPR

The homotopy fibre STORSO has finite homotopy groups in every dimension,
cp. Milnor-Stasheff [17] p. 250-251, Kirby—Siebenmann [11] p. 246, hence the
map BSO— BSTOP induces an isomorphism in rational cohomology, i.e. the
rational Pontryagin classes are topologically invariant. It follows thap;, +
bu;,) is not stably trivial in STOP for = a — b # 0. On the other hand, if the
bundle¢:» — S is topologically trivial, then its underlying disk bundle also is
trivial, hence the claim follows. 0

THEOREM 11.6.The mappr,: ¥ — # admits a section only for the following
values of(m, m’) and..

() m=1 (mod 8, n = (even) - 2m~V/?,

(i) m =2 (mod 8, n = (even) - 2"/,
(i) m =3,5,6,7 (mod 8.
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(iv) m =0 (mod 4 and: = 0.

By 10.13 theses are exactly the parameters for which the Clifford quadrangles
have closed spreads; for other valuesigfim’, ¢, no closed spreads exist O

COROLLARY 11.7.The Moufang quadrangleH,, (H), n > 3, and Q(Eg, R) do
not have closed spreads O

LEMMA 11.8. If the S"~"~1-bundle V»>([—, —]) — S" ! is topologically trivial,
thenn = 2, 4, 8.

Proof. If this bundle is trivial, then the tangent sphere bundiéR”) of S"~* is
trivial. This holds only form = 2, 4, 8, cp. Part Il [15] 6.6. O

PROPOSITION 11.91f n — 1 # 3,7, then the bundlef — £ is not trivial.
In particular, no Clifford quadrangle is continuously dual to another one, except
possibly ifn —1=3,7.

Proof. This follows from the previous lemma. Consider the subbundle

?@1‘0 — F

01,0 — 2.

If # — & is topologically trivial, then the same is true for the restrictigy , —
1. This bundle can be identified with the bundle projection of the Clifford—
Stiefel manifold as in the proof of Part Il [15] 6.7. O

Ifn—1=37,thenm = 1,2, 3,4,5,6. The quadrangle FKi4, 8, 0) hasJ-
spreads, whereas FKML 8, 2) has no closed spreads; therefore, Fg\V8)dual 2
FKM(4, 8, 2). Thus, there are no (continuous) coincidences between Clifford quad-
rangles besides the ones mentioned in 11.1.

Remarksl1.10. We would like to point out some consequences for isopara-
metric hypersurfaces. Lek;, > be isoparametric hypersurfaces, andJet <
F: — £L; be the canonical maps onto the focal manifafeis.L;, fori = 1, 2. Call
(P, L1, F1) and (P, L2, F>) topologically equivalentf there exist homeomor-
phismsfs, fr, f& which make the following diagram commute

Py -« Fi L4

fe

5)2 ?2 e£2-
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Thus, if two isoparametric foliations are congruent by a rigid motion, then they are
topologically equivalent in our sense. By Bédi—Kramer [3] 4.7, the vertical arrows
in the diagram above are in fact automatically smooth.

In the terminology of Ferus—Karcher-Minznés?, £, ¥) = (M_, M, M).
Theorem 11.6 says under which conditions the ¥ap> M_ (or, equivalently, the
normal sphere bundle @f_) admits a section. Theorem 11.9 says that, except for
some low dimensional case¥, — M_ is never (topologically) a product bundle.

In particular, no two distinct Clifford hypersurfaces are topologically equivalent,
except for the low dimensional cases indicated in 11.9. This generalizes differen-
tial geometric results of Ferus—Karcher—Munzner [5]. Corresponding results for
homogeneous isoparametric hypersurfaces with 4 distinct principal curvatures are
contained in Part Il [15] Table 1. If the number of principal curvatures is 3 or 6,
then the normal sphere bundles of the focal manifolds admit no sections; this is
proved in Kramer [13].
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The following mistakes in [1] and [2] were pointed out by M. Wolfrom and N.
Rosehr.

In our Definition 1.1 [1] of a generalized quadrangle, we should, in addition to the
axioms (GQ;) and (GQ»), require that no digons exist, i.e. two lines which have two
points in common coincide. The same condition should be added to our definition
of a weak generalized quadrangle.

In Theorem 4.5, the inequalities are stated the wrong way. The correct statement
for Theorem 4.5 is thus as follows.

THEOREM 4.5. Let Q be a compact connected finite-dimensional quadrangle with
parameters (m,m'). If m = n', then Q is line-minimal, and if m < m' then Q is

point-minimal. If m = ', then Q has no full or ideal closed subquadrangles.

This is exactly what we prove.
In [2] p. 336, the correct formula for the Chern character is

(_1)(111/2)

C/’l('))) = I'k)/ + mcmﬂ(y)a
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