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Abstract. In this third part, we consider those compact quadrangles which arise from isoparametric
hypersurfaces of Clifford type and their focal manifolds. Sections 9–11 give a comprehensive intro-
duction to these quadrangles from the incidence-geometric point of view. Section 10 contains also a
new (algebraic) proof that these geometries are quadrangles.

We determine which of these quadrangles have ovoids or spreads and also whether the normal
sphere bundles of the focal manifolds admit sections, or whether they are topologically trivial. We
give explicit geometric constructions for spreads, ovoids, and sections.
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9. Clifford Systems and Clifford Algebras

We consider the quadrangles discovered by Ferus–Karcher–Münzner [5] and Thor-
bergsson [20]. First we review the Veronese imbedding of the standard Hermitian
quadranglesHn(F), whereF = R,C,H. Putd = dimR F.

9.1. THE VERONESE REPRESENTATION

Let Hn(F) = (P ,L,F ) be a standard Hermitian quadrangle. We have seen in
Part II [15] 7.4 that the line spaceL is homeomorphic to the Stiefel manifold
V2(Fn−1), and we can push it into the unit sphere by mapping(u, v) ∈ V2(Fn−1)

to the unit vector(1/
√

2)(u, v) ∈ S2d(n−1)−1; let L̃ ⊆ S2(n−1)d−1 denote the image
of this map. The points of the standard Hermitian quadrangles are of the formp =
(c, s, w)F, wherec, s ∈ F are scalars,w ∈ Fn−1, and|c|2 + |s|2 = |w|2. We can
assume thatc ∈ R is real, and that|w|2 = 1. The triple(c, s, w) is not well-defined,
but the unit vector(wc,ws̄) ∈ S2d(n−1)−1 is, and the mapp = (c, s, w)F 7→
(wc,ws̄) is an injection. LetP̃ ⊆ S2d(n−1)−1 denote its image. The incidence
relation becomes very simple in terms of̃P , L̃ ⊆ S2(n−1)d−1. Let (wc,ws̄) ∈ P̃
and(u, v) ∈ L̃. Then

〈(wc,ws̄), (u, v)〉 = 〈wc, u〉 + 〈ws̄, v〉
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= 〈w, uc〉 + 〈w, vs〉
= 〈w, uc + vs〉

6 |w||uc + vs| = 1√
2
,

(the last equality holds because|w| = 1, and because(us | vc) = 0). By Cauchy–
Schwarz, the inequality becomes an equality if and only ifw = √2(uc + vs).
Translating this back into the quadrangleHn(F), we find that this is equivalent
with

(c, s,
√

2(uc + vs))F = ((1,0,
√

2u)c + (0,1,√2v)s)F

⊆ (1,0,
√

2u)F⊕ (0,1,√2v)F.
This shows that the Euclidean inner product〈−,−〉 in R2(n−1)d contains all the
information about the incidence. This is theVeronese representationofHn(F). The
setsP̃ , L̃ are the focal manifolds of an isoparametric hypersurfaceF̃ which can
be identified withF .

The main ingredients in this description are the Euclidean inner product〈−,−〉
and the positive definite Hermitian form(−|−). The idea for the Clifford quadran-
gles is to replace(−|−) by a bilinear map[[−,−]] onV ,

[[−,−]]:V ⊗ V → EndR(V )

with special properties.This is a purely algebraic process; thus, we assume for the
next two sections only thatR is a real closed field, i.e. an ordered field(necessarily
of charcteristic0), where every positive element is a square, and where every poly-
nomial of odd degree has a zero.The algebraic closure of such a real closed fieldR
is the fieldC = R[√−1]. See Jacobson [9] Chapter 5 for properties of these fields.
By a Euclidean vector spaceV over R we mean a vector space endowed with a
positive definite symmetric bilinear form〈−,−〉; put |x| = √〈x, x〉. Note that one
can perform Gram–Schmidt orthonormalization over real closed fields. We call the
set of all unit vectors inRk+1 ak-sphere.

Let V ∼= Rn be a EuclideanR-vector space, with the standard Euclidean inner
product〈−,−〉. Suppose thatE1, . . . , Em−1 are orthogonal matrices which satisfy
the relations

EiEj + EjEi =
{

0 for i 6= j,
−2id for i = j.

In other words, the matrices anti-commute and are skew symmetric. Such a set of
matrices is called aClifford system. PutE0 = id and letA ⊆ EndR(V ) denote the
R-vector space spanned byE0, E1, . . . , Em−1. We identifyR with R ·E0 ⊆ A, and
we define theClifford bracketof x, y ∈ V by

[[x, y]] =
m−1∑
ν=0

〈x,Eνy〉Eν.
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Thus we obtain a bilinear mapV ⊗ V → A, with the property[[x, x]] = |x|2. Two
vectorsx, y areClifford orthogonalif [[x, y]] = 0. TheClifford Stiefel manifoldof
2-frames is defined as

V2([[−,−]]) = {(x, y) ∈ Rn × Rn| [[x, y]] = 0, |x|2 = |y|2 = 1},
cf. Pinkall–Thorbergsson [18]. Here is an example: letH denote the unique quater-
nion division algebra overR, let R4k = Hk, and letE1, E2, E3 denote right multi-
plication by the imaginary unitsi, j , k. ThenA = H andV2([[−,−]]) = V2(Hk),
as is easily checked, cf. Jacobson [9] p. 404, Example 3. The general construction
of such sets of matrices is a matter of Clifford modules. We explain this briefly;
cp. Jacobson [10] Chapter 4.8, Atiyah–Bott–Shapiro [2], Lawson–Michelsohn [16]
Chapter 1 for more details.

9.2. CLIFFORD ALGEBRAS

Let q:W → R be a quadratic form on anR-vector spaceW . TheClifford algebra
Cl(q) is the associative algebra (with unit 1) generated byW , subject to the rela-
tionsv2 − q(v)1 = 0, for all v ∈ W . It has the following universal property: ifA
is an associativeR-algebra with unit 1, and iff :W → A is a linear map such that
f (v)2 = q(v)1, then there exists a unique extensionF :Cl(q) → A which makes
the following diagram commute.

There is an injectionW ↪→ Cl(q); if U ⊆ W is a subspace, then the inclusion
U ↪→ W extends to an inclusion Cl(q|U ) ↪→ Cl(q), cf. Jacobson [10] p. 235.

The map−id:W → W extends uniquely to an involutive automorphismx 7→
x∗ of Cl(q). Consider the anti-isomorphism id:Cl(q)→ Cl(q)opp onto the opposite
algebra. By the universal property of Clifford algebras, its restriction toW extends
to an isomorphism Cl(q) ∼= Cl(q)opp. Therefore, Cl(q) has an anti-automorphism
x 7→ xτ given byv1 . . . vr 7→ vr . . . v1, for v1, . . . , vr ∈ W . The composition
x 7→ x̄ = (x∗)τ is the anti-automorphism which we are really interested in; it is
given byv1 . . . vr 7→ (−1)rvr . . . v1, for v1, . . . , vr ∈ W . The involutionx 7→ x∗
induces aZ/2-grading of the Clifford algebra

Cl(q) = Cl(q)• = Cl(q)0 ⊕ Cl(q)1,

where Cl(q)0 consists of the fixed elements of the involution and Cl(q)1 consists
of the elements which are mapped to their negatives. The elements of Cl(q)0 are
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the elements which can be written as linear combinations of products of an even
number of elements ofW .

9.3. CLIFFORD MODULES

A Clifford moduleis anR-vector spaceV , endowed with a homomorphism Cl(q)→
EndR(V ). We are particularly interested in the Clifford algebra Clk associated to
the quadratic formv 7→ −|v|2 onW = Rk and its modules. Ife1, . . . , ek is an
orthonormal basis ofRk, then we have the relations

eiej + ejei =
{

0 for i 6= j,
−2 for i = j

in Clk. Theei generate a finite groupFk with 2k+1 elements, theClifford group.
If V is a Clk-module, then there exists aFk-invariant positive definite inner prod-
uct 〈−,−〉 on V . With respect to this inner product, alla ∈ Rk, w ∈V satisfy
|aw|2 = |a|2|w|2; in particular, the elementsa of unit length|a|2 = 1 in Rk act as
orthogonal maps, cp. Lawson–Michelsohn I.5.16. We call this anorthogonal rep-
resentationof Clk. The imagesE1, . . . , Ek of theei in Clk form a Clifford system
in EndR(V ). Therefore, the classification of all Clifford systems is equivalent to
the classification of all modules of the algebras Clk.

We will also have to consider the Clifford algebras Clk,0 associated to the quadratic
form v 7→ |v|2. Here, similar remarks apply. There is an isomorphism
Cl0k+1,0

∼= Clk, which can be seen as follows. Letb0, . . . , bk be an orthonormal
basis ofW . Then e1 = b0b1, . . . , ek = b0bk generate a Clifford algebra Clk,
cp. Jacobson [10] 4.14.

The first Clifford algebras are Cl0 = R and Cl1 = C (with e1 = i = √−1). The
next Clifford algebra is the quaternion division algebra Cl2 = H overR, generated
by the imaginary elementse1 = i, e2 = j , i2 = −1 = j2, ij + ji = 0. The next
Clifford algebra is Cl3 = H⊕H (with e1 = i⊕(−i), e2 = j⊕(−j), e3 = ij⊕(−ij )).
The irreducible modules over the first three Clifford algebras areR, C, andH; the
modules over these algebras are the finite-dimensional vector spaces overR, C
andH. We denote these representations byµ1, µ2, µ3 (note that there is a shift
in the subscripts). The Clifford algebra Cl3 is not simple; it has two nonequivalent
irreducible four-dimensional representationsµ+4 andµ−4 . A Cl3-module is therefore
given by a sumaµ+4 +bµ−4 . Given a skew fieldF , putF(n) = EndF (F n). The next
Clifford algebras are Cl4

∼= H(2), Cl5 = C(4), Cl6 = R(8) and Cl7 = R(8)⊕R(8).
Fork > 8, there is a general periodicity isomorphism Clk+8

∼= Clk ⊗R(16). Using
this, one obtains the following classification of the Clifford algebras Clk and their
modules. Putk = 8r + s, with 06 s 6 7.
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9.4. The table gives the Clifford algebras, the real dimensions, and the centraliz-
ers of their irreducible representations.

s 0 1 2 4 5 6

Clk R(16r ) C(16r ) H(16r ) H(2·16r ) C(4·16r ) R(8·16r )

dimR µk+1 16r 2·16r 4·16r 8·16r 8·16r 8·16r

R C H H C R

For these values ofs, an arbitrary Clk module is given by a sumaµk+1, for some
a ∈ N. If s = 3,7, then Clk is not simple, and there are two inequivalent irreducible
representationsµ±k+1.

s 3 7

Clk H(16r )⊕ H(16r ) R(8·16r )⊕ R(8·16r )

dimR µ
±
k+1 4·16r 8·16r

H R

The Clk-modules are therefore of the formaµ+k+1 + bµ−k+1, for a, b ∈ N. The
index of such a module is the numberι = a − b. The automorphismx 7→ x∗
mapsaµ+k + bµ−k to bµ+k + aµ−k ; therefore, the resulting modules (and Clifford
systems) are quasi-equivalent under an automorphism of the Clifford algebra, and
the absolute value|ι| is a more important invariant. These results can be found
e.g., in Lawson–Michelsohn [16], and in Atiyah–Bott–Shapiro [2].

10. The Clifford Quadrangles

First we derive some properties of the Clifford bracket.

PROPOSITION 10.1.LetE1, . . . , Em−1 be a Clifford system given by an orthogo-
nal representation ofClm−1 on the Euclidean vector spaceV = Rn, and let

[[−,−]]:V ⊗ V → A ⊆ EndR(V )

denote the Clifford bracket. The involutionx 7→ x̄ of Clm−1 descends to an involu-
tion onA which is the same as matrix transposition. The Clifford bracket satisfies
the following identities, fora ∈ A andx, y ∈ V .

[[x, y]] = [[y, x]], (1)

[[ax, x]] = a|x|2, (2)
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[[x, y]] + [[x, y]] = 2〈x, y〉, (3)

〈x, ay〉 = 〈[[x, y]], a〉, (4)

〈x, ay〉 = 〈ax, y〉, (5)

[[ax, ay]] = a[[x, y]]a. (6)

Proof. Identity (1) is clear. Puta =∑m−1
ν=0 aνEν . Then

〈x, ay〉 =
∑
ν

aν〈x,Eνy〉 = 〈a, [[x, y]]〉,

and this shows (4). Similarly,

[[ax, y]] =
∑
ν

〈ax,Eνy〉Eν

=
∑
ν

〈x, aEνy〉Eν

=
∑
ν

〈x, (2aν − Eνa)y〉Eν

=
∑
ν

2〈x, y〉aνEν −
∑
ν

〈Eνx, ay〉Eν

= 2a〈x, y〉 − [[ay, x]],
so[[ax, y]] + [[ay, x]] = 2a〈x, y〉, and (2), (3) follow. Equation (5) is easy. Finally,
we prove the ‘Moufang identity’ (6). Fora, b ∈ Awe haveaba = 2a〈a, b̄〉−|a|2b̄,
as is easily checked, hence

[[ax, ay]] =
∑
ν

〈ax,Eν āy〉Eν

=
∑
ν

〈x, āEνāy〉Eν

=
∑
ν

〈x, (2āaν − |a|2Ēν)y〉Eν

= 2
∑
ν

〈x, āy〉aνEν −
∑
ν

〈x, Ēνy〉|a|2Eν

= 2a〈x, āy〉 − |a|2[[y, x]].
On the other hand,

a[[x, y]]a = 2a〈a, [[x, y]]〉 − |a|2[[x, y]]
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= 2a〈a, [[y, x]]〉 − |a|2[[y, x]]
= 2a〈x, āy〉 − |a|2[[y, x]]. 2

10.2. CAUCHY–SCHWARZ PRINCIPLE

Let x, y ∈ V be nonzero vectors. Then|[[x, y]]| 6 |x| · |y|, and equality holds if
and only ify = ax for somea ∈ A. In this case, [[x, y]] = ā|x|2.

Proof.Let x, y ∈ V , x 6= 0. Then there is a unique decompositiony = ax + z,
wherea ∈ A and z ∈ (A · x)⊥. Hence[[x, y]] = [[x, ax]] = |x|2ā. Therefore
|[[x, y]]| 6 |x||y|, and equality holds if and only ify = ax for somea ∈ A; in that
case,[[x, y]] = [[x, ax]] = ā|x|2. 2
Note that in general[[ax, y]] 6= a[[x, y]] (consider for examplex = 1, y = ij and
a = i in Cl2; then [[x, y]] = 0 while [[ax, y]] = a), hence the Clifford bracket
behaves not always like a Hermitian form.

10.3. THE CLIFFORD QUADRANGLES

LetE0, . . . , Em−1 andA be as above and put

P = {(x, y) ∈ Rn × Rn | |x|2 + |y|2 = 1, |[[x, y]]| = |x||y|},
L = {(u, v) ∈ Rn × Rn | |u| = |v| = 1/

√
2, [[u, v]] = 0}.

Put

S = Sm = {(c, s)| c2+ |s|2 = 1} ⊆ R⊕ A.
By Cauchy–Schwarz,

P = {(cw, sw) ∈ Rn × Rn| w ∈ Rn, |w| = 1, (c, s) ∈ S}
= {(sw, cw) ∈ Rn × Rn| w ∈ Rn, |w| = 1, (c, s) ∈ S}.

Let (cw, s̄w) ∈ P and(u, v) ∈ L. Then

〈(cw, s̄w), (u, v)〉 = 〈cw, u〉 + 〈s̄w, v〉
= 〈w, cu〉 + 〈w, sv〉
= 〈w, cu+ sv〉
6 |w||cu+ sv| = 1/

√
2,

because[[u, v]] = 0 implies that〈cu, sv〉 = 0. We define the incidence by the
Euclidean inner product as in 9.1 by requiring that〈(cx, sx), (u, v)〉 = 1/

√
2.

Then(cw, s̄w)I(u, v) if and only ifw = √2(cu+ sv), i.e. if and only if

cw = 1/
√

2
(
(1+ (c2− |s|2))u+ (2sc)v))
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and

s̄w = 1/
√

2
(
(2s̄c)u+ (1− (c2− |s|2))v) .

Note that(c2 − |s|2,2cs) ∈ S. The resulting incidence structure is denoted by
FKM(E1, . . . , Em−1) = (P ,L, I). If m 6≡ 0 (mod 4), thenE1, . . . Em−1 is deter-
mined by the numbersm andn, and we put FKM(E1, . . . , Em−1) = FKM(m, n);
for m ≡ 0 (mod 4) we put FKM(E1, . . . , Em−1) = FKM(m, n, ι), whereι is the
index of the representation, cp. 9.4.

We imbedR⊕ A into EndR(R2n) by the map

Bt,a: (x, y) 7→ (tx + ay, āx − ty).
These are symmetric orthogonal operators, andB2

t,a = (t2+ |a|2)id; thus, we have
a representation of the Clifford algebra Clm+1,0 generated by the Euclidean vector
spaceR⊕A onR2n. LetK ⊆ O(2n) denote the group generated byB(S). To each
pointp = (x, y) = (cw, sw) ∈ P we assign the element

φ(x, y) = (|x|2 − |y|2,2[[y, x]]) = (c2− |s|2,2cs̄) ∈ S.

For (c, s) ∈ S putOc,s = φ−1(c, s). A short calculation shows that

Oc,s = {p ∈ R2n | |p|2 = 1, Bc,s(p) = p}
is the set of all unit vectorsp fixed by Bc,s (note thatBc,s is symmetric with
eigenvalues±1, both of multiplicityn).

LEMMA 10.4. We have a partition ofP into disjoint sets

P =
⊔
{Oc,s | (c, s) ∈ S}

= {p ∈ S2n−1 ⊆ R2n |Q(p) = p for someQ ∈ B(S)}. 2

LEMMA 10.5. The groupK = 〈Q |Q ∈ B(S)〉 acts as a group of automorphisms
onFKM(E1, . . . , Em−1).

Proof. LetQ∈B(S). Forp ∈P andP ∈B(S)with P(p) = p we haveQPQ ∈
B(S) andQ(p) = QPQ(Q(p)), soQ(p) ∈ P by 10.4. Let(u, v) ∈ L be a line
and putQ = Bc,s . ThenQ(u, v) = (cu+ sv, s̄u− cv), and

[[cu+ sv, s̄u− cv]] = cs|u|2 − c[[u, v]]c + s[[u, v]]s − cs|v|2 = 0.

Also, |cu + sv|2 = 1
2 = |s̄u − cv|2, soQ(L) = L. Finally,Q∈O(2n), and the

incidence is defined by the Euclidean inner product, soQ ∈ Aut(FKM(E1, . . . ,

Em−1)). 2
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10.6. AUTOMORPHISMS INDUCED BY THE CLIFFORD ALGEBRA

The groupK acts also onB(R ⊕ A) ⊆ EndR(R2n): let P ∈ B(R ⊕ A) andQ ∈
B(S), and putQ:P 7→ QPQ. Up to the sign, this is a reflection, and thus the
image ofK contains SO(m+ 1); identifying R⊕ A with B(R⊕ A), we obtain an
orthogonal action ofK onR⊕ A. PutBp = Bφ(p). ThenBp(p) = p, and the map
φ:P → S isK-equivariant,QBpQ = BQ(p). Thus, the groupK acts transitively
on the collection{Oc,s | (c, s) ∈ S}. The subgroupK0 = K∩Cl0m+1,0 is isomorphic
to Spin(m + 1) and maps onto SO(m + 1), with kernel±1; it is generated by the
setB1,0 · S. Note thatK0 still acts transitively onS.

10.7. STRUCTURE OF POINT ROWS

Let ` = (u, v) ∈ L andP ∈ B(S). Thenp = (1/√2)(1+ P)` ∈ P is incident
with `, and conversely every point incident with` is obtained in this way. Therefore
the point row corresponding tòis them-sphere{

1√
2
(1+ P)` |P ∈ B(S)

}
∼= Sm.

Now let h, ` be distinct lines. Thenh, ` are confluent if and only if there exists a
P ∈ B(S) such that(1+ P)` = (1+ P)h. This is equivalent with the condition
(−P)(`−h) = `−h, cp. Thorbergsson [20], or withP ∩ (`−h)R 6= ∅, i.e. with
the condition(`− h)/|`−h| ∈ P . (Note however that(`−h)/|`−h| need not be
a point incident with the linesh, `).

10.8. STRUCTURE OF LINE PENCILS

Letp ∈ P . SinceK acts transitively onS, there is no loss of generality in assuming
thatφ(p) = (1,0), i.e. thatp = (w,0) for some unit vectorw ∈ Rn. Then every
line throughp is of the form(u, v), with u = (1/√2)w. Therefore, the line pencil
throughp is the(n−m− 1)-sphere

{(u, v)| |v|2 = 1
2, [[u, v]] = 0} ∼= Sn−m−1.

Thus, every line pencil is anm′-sphere,m′ = n−m− 1.
Now we want a criterion for collinearity of pointsp, q ∈ P , p 6= q. PutP =

Bp, Q = Bq . If p, q are incident with`, thenp = 1/
√

2(1 + P)` and q =
1/
√

2(1+Q)`, whencep− q = (1/√2)(P −Q)`. Note that this relation implies

|p − q| = 1√
2
|P −Q| and

p − q
|p − q| ∈ L.

The first equality follows by taking absolute values; the second one follows from
` = √2R(p − q)/|p − q|, whereR = (P −Q)/|P −Q| ∈B(S). Conversely, if
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p−q = 1/
√

2(P−Q)` for somè ∈ L, then its easy to see thatp = 1/
√

2(1+P)`
andq = 1/

√
2(1+Q)`. The next result was proved first by Thorbergsson [20] by

completely different (topological) methods; cp. also Eschenburg–Schröder [4].

THEOREM 10.9.If m,n−m− 1> 0, then the geometryFKM(E1, . . . , Em−1) is
a generalized quadrangle.

Proof. We have to show the following. Ifp ∈ P and` ∈ L, p 6 I `, then there
exists a unique pointq which is collinear withp and incident with̀ .

SinceK ⊆ Aut(FKM(E1, . . . , Em−1)) acts transitively on the sphereS, there is
no loss of generality in assuming thatp ∈ O1,0, i.e. thatp = (w,0) for some unit
vectorw ∈ Rn. Let ` = (u, v). The non-incidence ofp, ` implies thatw 6= √2u.
A typical pointq incident with` is of the form

q = 1/
√

2((1+ c)u+ sv, s̄u+ (1− c)v).
If p, q are collinear, then(q − p)R ∩L 6= ∅, thus

0 = [[(1+ c)u+ sv −√2w, s̄u+ (1− c)v]]
= (1+ c)s/2+ s(1− c)/2−√2[[w, s̄u+ (1− c)v]]
= s −√2[[w, s̄u+ (1− c)v]].

One solution of this equation is(c, s) = (1,0), but this is not allowed, since
√

2u 6=
w. Consider theR-linear mapR ⊕ A → A, (c, s) 7→ s − √2[[w, s̄u − cv]]. The
kernelL of this map has at least dimension 1. Restrict the map to the hyperplane
0 ⊕ A. By Cauchy–Schwarz,|√2[[w, s̄u]]| 6 |s|, and s = √2[[w, s̄u]] implies
thatw = √2u, for somes ∈ A, |s| = 1. But this possibility was excluded. Thus,
L∩(0⊕A) = 0. This implies that dimL = 1, and that the inhomogeneous equation
has precisely one other solution(c, s) on S besides(1,0). So we have established
the uniqueness ofq, and it remains to show thatq is collinear withp.

There exists an elementg ∈ K such thatg(1,0) = (1,0) andg(c, s) ∈ R⊕R ⊆
R⊕A. Therefore we may assume thatc ands are real numbers. Then the solution of
the equation above takes the simpler forms/

√
2= s[[w, u]]+ (1− c)[[w, v]]; since

the left-hand side is a real number, this yieldss/
√

2 = s〈w, u〉 + (1− c)〈w, v〉;
sinces2 = (1+ c)(1− c), multiplication withs/(1− c) yields

(1+ c)/√2= (1+ c)〈w, u〉 + s〈w, v〉.
To show thatp − q is a scalar multiple of a vector inL, it remains to check that

|1/√2((1+ c)u+ sv)− w|2 = |1/√2(su+ (1− c)v)|2.
The right-hand side is(2− 2c)/4= (1− c)/2, and the left-hand side is

(2+ 2c)/4+ 1−√2〈(1+ c)u+ sv,w〉
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= (3+ c)/2−√2((1+ c)〈w, u〉 + s〈w, v〉)
= (3+ c)/2− (1+ c)
= (1− c)/2,

sop − q is indeed a scalar multiple of an element ofL.
The last equation which we have to check is

√
2|p − q| = |P − Q|, or,

equivalently, 2〈p, q〉 = 1+ 〈P,Q〉. Now

〈p, q〉 = 1/
√

2〈w, (1+ c)u+ sv〉 = (1+ c)/2,
and〈P,Q〉 = c. This shows that the geometry is indeed a quadrangle. 2
COROLLARY 10.10.Two distinct pointsp, q ∈ P are collinear if and only if

p − q
|p − q| ∈ L.

Proof.Let ` be a line incident withq, and not incident withp. In the first part of
the proof of the theorem, we have seen that there is a unique pointr incident with
`, such that(p − r)/|p − r| ∈ L. Thus,q = r. In the second part of the proof we
showed that this point is collinear withp. 2
There is an isomorphism FKM(m, n, ι) ∼= FKM(m, n,−ι). Note also that

Qn(R) ∼= FKM(1, n − 1),

Hn(C) ∼= FKM(2,2(n − 1)),

Hn(H) ∼= FKM(4,4(n − 1), n− 1).

We derive some more properties of these quadrangles.

PROPOSITION 10.11.The setsOc,s, (c, s) ∈ S, are ovoids. Therefore, the point
space of each Clifford quadrangle can be partitioned into ovoids.

Proof. We showed already that every linèmeetsOc,s in the unique point
1/
√

2(1+ Bc,s)`. 2
There is also a generalizations of theJ -spreads, which was pointed out to me

by Stephan Stolz. Suppose thatJ is an orthogonal skew symmetric map which
anti-commutes withE1, . . . , Em−1 (i.e. {E1, . . . , Em−1, J } is a Clifford system).
Then〈EiJx, Jy〉 = −〈Eix, y〉 for i = 1, . . . , m− 1, while 〈E0Jx, Jy〉 = 〈x, y〉.
Therefore[[Jx, Jy]] = [[x, y]] = [[y, x]]. Similarly, one shows that[[Jx, x]] =
[[x, Jx]] = 0 and thataJ = J ā for a ∈ A. Consider the orthogonal invo-
lution (x, y) 7→ (Jy,−Jx) on R2n. By the relations above, it preserves[[-,-]]-
orthogonality and permutes the line spaceL and the point spaceP . If it fixes the
vector(x, y), then(x, y) = (x,−Jx). Note that(x,−Jx) ∈ L for |x|2 = 1

2. Let
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S ⊆ L denote the set of all fixed lines. We claim that this is a spread. Consider the
map

(x, y) 7→ 1/
√

2(x + Jy,−Jx + y)
and letσ denote its restriction toP . A typical point incident with the line(u,−Ju)
is of the form

1/
√

2
(
1+ Bc,s

)
(u,−Ju)

= 1/
√

2((1+ c)u− sJu, s̄u− (1− c)Ju)
= 1/
√

2((1+ c − J s̄)u, (s̄ − J (1− c))u) ;
underσ , it is mapped to

σ (1/
√

2((1+ c − J s̄)u, (s̄ − J (1− c))u))
= 1

2((1+ c − J s̄ + J (s̄ − J (1− c)))u,
(−J (1+ c − J s̄)+ s̄ − J (1− c))u)
= 1

2((1+ c − J s̄ + J s̄ + 1− c)u,
(−J − Jc − s̄ + s̄ − J + Jc)u)
= (u,−Ju).

This shows thatS is indeed a spread.

PROPOSITION 10.12.The setS of fixed lines of the involution(x, y) 7→
(Jy,−Jx) is a spread. 2

Let {E1, . . . , Em−1, Em = J } be a Clifford system onV . Restricting to the
Clifford systemE1, . . . , Em−1, we can viewV as a Clm−1-module. From the clas-
sification of Clifford modules 9.4 one sees the following. Ifm ≡ 1,2 (mod 8),
thenV is given byaµm, wherea is even, and conversely, all such Clifford systems
are obtained as restrictions of larger Clifford systems. Ifm ≡ 3,5,6,7 (mod 8),
then every Clm−1-module is obtained by restriction. Ifm ≡ 0 (mod 4), then the
module structure onV is obtained by restriction if and only if the index ofV is
ι = 0.

COROLLARY 10.13.The Clifford quadrangles do haveJ -spreads in the following
cases:

m ≡ 1 (mod 8) and n = (even) · 2(m−1)/2,

m ≡ 2 (mod 8) and n = (even) · 2m/2,
m ≡ 3,5,6,7 (mod 8),

m ≡ 0 (mod 4) and ι = 0. 2
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11. Topological Properties of the Clifford Quadrangles

From now on we assume again thatR = R it the field of real numbers. It is clear
from the definition that the Clifford quadrangles are compact connected(m, n −
m− 1)-quadrangles, since the flag space is closed inP ×L. The ovoidsOc,s and
theJ -spreads constructed in the last section are obviously closed. The flag space
can be identified with an isoparametric hypersurface in the sphere as follows.

11.1. THE ISOPARAMETRIC FUNCTION

PutH(x, y) = (|x|2 − |y|2)2 + 4|[[x, y]]|2. This is a homogeneous polynomial of
degree 4 onR2n, and

H−1(0) ∩ S2n−1 = L,

H−1(1) ∩ S2n−1 = P .

The homogeneous polynomialF(x, y) = (|x|2+|y|2)2−2H(x, y) is isoparamet-
ric, cf. Ferus–Karcher–Münzner [5] 4.1; the isoparametric hypersurfaceF−1(0) ∩
S2n−1 can be canonically identified with the flag spaceF by mapping the flag

((cx, sx), (u, v)) to 1/
√

2+√2(cx + u, sx + v) ∈ S2n−1. This is essentially the
description due to Ferus–Karcher–Münzner [5] Abschnitt 4. In their notation,

M− = P , M+ = L, and M = F .

The following (anti) isomorphisms were also proved by Ferus–Karcher–Münzner.

FKM(1,4) ∼= Q5(R) ∼= FKM(2,4)dual∼= H3(C),

FKM(1,8) ∼= Q(R,9) ∼= FKM(6,8)dual,

FKM(2,8) ∼= H5(C) ∼= FKM(5,8)dual,

FKM(3,8) ∼= FKM(4,8,0)dual,

FKM(9,16) ∼= Q(E6,R).

The isomorphisms with the Moufang quadrangles can be seen as follows. Ferus–
Karcher–Münzner show that the corresponding isoparametric hypersurfaces are
homogeneous; by Hsiang–Lawson [7] (or by representation theory), this implies
that the geometry arises from the isotropy representation of a noncompact Rie-
mannian symmetric space of rank 2. By general theory, the isoparametric foliation
can be identified with the building of the corresponding noncompact simple Lie
group, cp. Thorbergsson [19], Kramer [12]. In addition, we saw that there are
isomorphisms

Qn(R) ∼= FKM(1, n − 1),

Hn(C) ∼= FKM(2,2(n − 1)),

Hn(H) ∼= FKM(4,4(n − 1), n− 1).
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11.2. The mapφ:P → S is closely related to to the realK-theory of spheres.
First, we claim that this is a locally trivial sphere bundle. For−1< c 6 1, consider
the trivialization

(c, s, w) 7→ 1/
√

2(1+ c)((1+ c)w, s̄w),
and for−16 c < 1 the trivialization

(c, s, w) 7→ 1/
√

2(1− c)(sw, (1− c)w),
cp. Ferus–Karcher–Münzner [5] 4.2.i. The clutching map along the equatorc = 0
is given by byw 7→ sw; the structure group is therefore SpinmR, cf. Husemoller
[8] Chapter 10. The associated vector bundleξ can also be described as a difference
bundle. LetX = {(c, s) ∈ S |0 6 c 6 1} andA = {(c, s) ∈ S | c = 0} denote the
northern hemisphere and the equator ofS, respectively. The sequence of (trivial)
vector bundles overX

0→ Rn s−→ Rn→ 0,

becomes exact when restricted toA and represents a vector bundle overX/A ' S
isomorphic toξ , cf. Section 8,9 in Atiyah–Bott–Shapiro [2]; cp. also Wang [21]
Proposition 1 for a different proof. The upshot is that we obtain a mapµ 7→ ξ(µ)

from the collection of all finite-dimensional representations of the Clifford algebra
Clm−1 to vector bundles overSm which is additive in the sense thatξ(µ + µ′) ∼=
ξ(µ)⊕ ξ(µ′). One main result of [2] is that these vector bundles represent the real
K-theory ofSm; seeloc. cit. for a more precise statement.

We use the bundleφ:P → S to obtain nonexistence result for spreads. This
settles also the case of the Hermitian quadranglesHn(H), wheren ≡ 23 (mod 24).
Consider the(n− 1)-sphere bundle

Suppose that̂σ :P→F is a section of prP . Let σ = prLσ̂ :P→L be the corre-
sponding map, and putf = oσ , whereo:L→ P is the map corresponding to the
ovoid O1,0 = P ∩ Rn ⊕ 0. Thenσ |O(c,s) is an injection, and so is the composite
oσ |O(c,s) :O(c,s)→ O1,0. Therefore, the mapP → S× O1,0, p 7→ (φ(p), f (p)) is
a homeomorphism and a bundle isomorphism,
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We have proved the following.

LEMMA 11.3. If prP :F → P has a section(in particular, if the quadrangle has
a spread), thenφ:P → S is topologically trivial. 2

If σ is a sufficiently ‘nice’ map, e.g., arises from aJ -spread as above, then the
map(φ, f ) above induces in fact a vector bundle isomorphism. A special case of
this lemma is proved in Ferus–Karcher–Münzner [5] 4.2.i.

LetX be a compact connected Hausdorff space. Two vector bundlesξ1, ξ2 over
a spaceX are calledstably equivalentif they become isomorphic after adding a
suitable number of trivial line bundles, i.e. ifξ1 ⊕ r1R ∼= ξ ⊕ r2R, for certain
numbersr1, r2. A bundle which is stably isomorphic to the trivial bundle is called
stably trivial. The reducedK-theoryK̃O(X) can be identified with the set of vector
bundles overX modulo stable equivalence, by the mapξ 7→ [ξ − rk(ξ)R].

A fibre homotopybetween two bundlesE,E′ → X is a homotopyFt :E → E′
which commutes with the projection maps. A bundle mapf :E → E′ is a fibre
homotopy equivalenceif there exists a bundle mapg:E → E′ such thatfg and
gf are fibre homotopic to the identity map onE,E′. Clearly, two (topologically)
isomorphic bundles are fibre homotopy equivalent; the converse need not be true.
Consider the subgroup of KO(X) consisting of all differencesξ − η, whereS(ξ)
andS(η) fibre homotopy equivalent. The resulting quotient of the group KO(X)

is the Abelian group J(X). This subgroup is in fact contained in the reducedK-
theoryK̃O(X); the corresponding quotient is the groupJ̃(X) (this is the notation of
Adams [1]). Its elements may be viewed as vector bundles overX, modulostable
fibre homotopy equivalence. Thus, two vector bundlesξ, η are equivalent iñJ(X)
if and only if the sphere bundlesS(ξ1 ⊕ r1R) andS(ξ2⊕ r2R) are fibre homotopy
equivalent, for some numbersr1, r2 ∈ N. Note that a vector bundle whose sphere
bundle is topologically trivial is certainly trivial iñJ(X).

LEMMA 11.4. Letm ≡ 1,2 (mod 8). The vector bundleξ(aµm) is trivial in J̃(S)
if and only ifa is even.

Proof. By Bott periodicity,K̃O(Sm) ∼= Z/2, andξ = ξ(µm) is a generator for
this group. Therefore,aξ is stably trivial if and only ifa is even (and in that case
ξ is trivial by the construction of the spread above). Form ≡ 1,2 (mod 8), the
mapK̃O(S)→ J̃(S) is a group isomorphism by Adams [1], Part II, Ex. 6.4. Thus,
aξ is stably fibre homotopically trivial if and only ifa is even; in particular,S(aξ)
is not topologically trivial ifa is odd. But the sphere bundle ofaξ is precisely
P → S. 2
Form ≡ 0 (mod 4) we cannot use this method, since there the map̃KO(S) →
J̃(S) is not an isomorphism; eg.̃J(S4) ∼= Z/24 6= K̃O(S4) ∼= Z. Instead, we prove
that the underlying disk bundle ofξ+m is not stably trivial in the group STOP of
orientation preserving based homeomorphisms by showing that the total rational
Pontryagin class ofξ is not trivial. This is due to Wang [21] Corollary 1,2.
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LEMMA 11.5. Suppose thatm ≡ 0 (mod 4). Then the total rational Pontrjagin
class ofξ(µ+m) is not trivial. Thus, the bundleφ:P → S is topologically trivial if
and only ifι = 0.

Proof. The bundleξ± = ξ(µ±m) is (together with the trivial bundle) a generator
of KO(S). Consider the ring homomorphism

KO(S)
cplx−→ K(S)

ch−→ H•(S) ↪→ H•(S;Q),
wherecplx(β) = β ⊗R C and where ch is the Chern character. The complexifica-
tion cplx is a monomorphism, and the Chern character is an isomorphism, given
in this special case by

ch(γ ) = rk γ + (−1)(m/2)(m/2− 1)!cm/2(γ ),
where ck is thekth Chern class. In fact,

ch◦ cplx(KO(S)) = H0(S)⊕ dHm(S),

whered = 1 form ≡ 0 (mod 8) andd = 2 form ≡ 4 (mod 8), cp. Hirzebruch
[6] 1.4–1.6. Now there is the relation

pk(β) = (−1)kc2k(cplx(β))

between the Chern classes and the Pontryagin classes, cf. Milnor and Stasheff [17]
p. 174. This shows that the rational Pontryagin class pm/4(ξ

±) is not trivial. More-
over, ξ+ ⊕ ξ− is trivial, whence pm/4(aξ+ + bξ−) = (a − b)pm/4(ξ+) 6= 0 for
ι = a − b 6= 0. Consider the classifying map

Sm→ BSO→ BSTOP.

The homotopy fibre STOP/SO has finite homotopy groups in every dimension,
cp. Milnor–Stasheff [17] p. 250–251, Kirby–Siebenmann [11] p. 246, hence the
map BSO→ BSTOP induces an isomorphism in rational cohomology, i.e. the
rational Pontryagin classes are topologically invariant. It follows thatξ(aµ+m +
bµ−m) is not stably trivial in STOP forι = a − b 6= 0. On the other hand, if the
bundleφ:P → S is topologically trivial, then its underlying disk bundle also is
trivial, hence the claim follows. 2
THEOREM 11.6.The mapprP :F → P admits a section only for the following
values of(m,m′) and ι.

(i) m ≡ 1 (mod 8), n = (even) · 2(m−1)/2.
(ii) m ≡ 2 (mod 8), n = (even) · 2m/2.

(iii) m ≡ 3,5,6,7 (mod 8).
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(iv) m ≡ 0 (mod 4) andι = 0.

By 10.13, theses are exactly the parameters for which the Clifford quadrangles
have closed spreads; for other values ofm,m′, ι, no closed spreads exist. 2
COROLLARY 11.7.The Moufang quadranglesHn(H), n > 3, andQ(E6,R) do
not have closed spreads. 2
LEMMA 11.8. If the Sn−m−1-bundleV2([[−,−]]) → Sn−1 is topologically trivial,
thenn = 2,4,8.

Proof. If this bundle is trivial, then the tangent sphere bundleV2(Rn) of Sn−1 is
trivial. This holds only forn = 2,4,8, cp. Part II [15] 6.6. 2
PROPOSITION 11.9.If n − 1 6= 3,7, then the bundleF →P is not trivial.
In particular, no Clifford quadrangle is continuously dual to another one, except
possibly ifn− 1= 3,7.

Proof. This follows from the previous lemma. Consider the subbundle

If F → P is topologically trivial, then the same is true for the restrictionFO1,0 →
O1,0. This bundle can be identified with the bundle projection of the Clifford–
Stiefel manifold as in the proof of Part II [15] 6.7. 2

If n− 1 = 3,7, thenm = 1,2,3,4,5,6. The quadrangle FKM(4,8,0) hasJ -
spreads, whereas FKM(4,8,2) has no closed spreads; therefore, FKM(3,8)dual 6∼=
FKM(4,8,2). Thus, there are no (continuous) coincidences between Clifford quad-
rangles besides the ones mentioned in 11.1.

Remarks11.10. We would like to point out some consequences for isopara-
metric hypersurfaces. LetF1,F2 be isoparametric hypersurfaces, and letPi ←
Fi → Li be the canonical maps onto the focal manifoldsPi ,Li , for i = 1,2. Call
(P1,L1,F1) and(P2,L2,F2) topologically equivalentif there exist homeomor-
phismsfP , fL, fF which make the following diagram commute
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Thus, if two isoparametric foliations are congruent by a rigid motion, then they are
topologically equivalent in our sense. By Bödi–Kramer [3] 4.7, the vertical arrows
in the diagram above are in fact automatically smooth.

In the terminology of Ferus–Karcher–Münzner,(P ,L,F ) = (M−,M+,M).
Theorem 11.6 says under which conditions the mapM → M− (or, equivalently, the
normal sphere bundle ofM−) admits a section. Theorem 11.9 says that, except for
some low dimensional cases,M → M− is never (topologically) a product bundle.
In particular, no two distinct Clifford hypersurfaces are topologically equivalent,
except for the low dimensional cases indicated in 11.9. This generalizes differen-
tial geometric results of Ferus–Karcher–Münzner [5]. Corresponding results for
homogeneous isoparametric hypersurfaces with 4 distinct principal curvatures are
contained in Part II [15] Table 1. If the number of principal curvatures is 3 or 6,
then the normal sphere bundles of the focal manifolds admit no sections; this is
proved in Kramer [13].
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