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Abstract. The local Hopf bundles at the points and lines of a compact pro-
jective plane with manifold lines are all weakly equivalent. In particular, the
point space and the line space of such a projective plane are homeomorphic.
This is a consequence of the following topological result.

Theorem. Let ξ, ξ′ be orientable topologicalRn-bundles over ann-di-
mensional CW-complex. Ifξ andξ′ are fibre homotopy equivalent and stably
equivalent, thenξ andξ′ are equivalent.

The point space of a compact projective plane with manifold lines can
be viewed as the Thom space of a certain fibre bundleηp. Similarly, the line
space is the Thom space of another fibre bundleη`. We show that the fibre
bundlesηp andη` are weakly equivalent. Unfortunately, there is no obvious
geometric reason why such an equivalence should exist. However, one can
rather easily see an equivalence betweenηp and another bundleuη` which
is obtained fromη` by turning the fibres ofη` ’upside down’. Essentially,
this was already observed by Eisele [5] and Schroth [19]. It follows from the
Hirsch-Mazur Theorem thatη` anduη` are stably equivalent, and (by defi-
nition) η` anduη` are fibre homotopy equivalent. Thus the result announced
in the title follows from the topological theorem in the abstract.

I would like to thank Theo Grundḧofer, Katrin Tent and in particular
Rainer L̈owen for criticism and helpful comments. Without them, the present
paper would have been much shorter and probably much less readable.
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Some results aboutRn-bundles

We recall some facts about microbundles andR
n-bundles. Most of the re-

sults in this section are well-known to topologists. The necessary back-
ground about general fibre bundles can be found in the first chapters of
Husemoller [9]. See also Holm [8] for a careful exposition of microbundles
andR

n-bundles.
A spaceis a topological space. Unless specified otherwise, all maps are

assumed to be continuous.

1 Definition A bundleφ = (E, B, p) over a spaceB is a surjective map

E
p- B. The spaceB = B(φ) is called thebaseandE = E(φ) is called

the total spaceof φ. Thefibre overb ∈ B is Eb = p−1(b), and forA ⊆ B
the bundleEA = p−1(A) - A is called therestrictionφ|A. A bundle
map(F, f) : φ - φ′ is a commutative diagram

E(φ)
F- E(φ′)

B(φ)
? f- B(φ′).

?

If f andF are homeomorphisms, then(F, f) is called aweak equivalence,
φ ∼= φ′, and if in additionf = id, then(F, id) is called anequivalence

(also denoted byφ ∼= φ′). A sectionB
s- E is a right inverse top, i.e.

p ◦ s = idB. We putE0 = E \ s(B). For bundlesφ, φ′ with sections, we
require that bundle maps preserve sections, i.e. that the diagram

B
s- E

p- B

B′

f
? s′

- E′

F
? p′

- B′

f
?

commutes. TheWhitney sumφ1 ⊕ φ2 of two bundlesφi = (Ei, B, pi) over
the same baseB, for i = 1, 2, has as total space the pull-back

E1 ⊕ E2 = {(e1, e2) ∈ E1 × E2| p1(e1) = p2(e2)}
over the diagram

E2

E1
p1- B,

p2
?

with the obvious projection(e1, e2) 7−→ p1(e1) (and sectionb 7−→ (s1(b),
s2(b)) if φ1 andφ2 have sections).
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We are mainly interested inRn-bundles.

2 Definition An R
n-bundleξ = (E, B, p, s) is a bundle with section, sub-

ject to the following additional condition: for everyb ∈ B there exists an
open neighborhoodV of b and a homeomorphismh : V × R

n - EV =
p−1(V ) such that the diagram

V × R
n

�
�
�(idV , 0) � @

@
@
pr1
R

V V

@
@
@s|V R �

�
�
p|EV

�

EV

h

?

commutes. The pair(V, h) is called acoordinate chart. Thetrivial (product)

R
n-bundleB × R

n pr1- B is denoted byRn.
A locally trivial S

n-bundleis a bundle(E, B, p), subject to the following
condition: for everyb ∈ B there is an open neighborhoodV of b and a
homeomorphismh : V × S

n - EV such that the diagram

V × S
n

@
@
@
pr1
R

V

�
�
�
p|EV

�

EV

h

?

commutes. Again,(V, h) is called acoordinate chart.

To each suchSn-bundleφ one can associate anRn+1-bundle
◦
D(φ) in a

canonical way. The total space of
◦
D(φ) is theopen mapping cylinder

◦
Cp of

the bundle projectionE(φ)
p- B, i.e.

◦
Cp is the quotient space

◦
Cp = (E(φ) × [0,∞) t B)/ ∼,

whereE(φ) × {0} is identified by the mapp with B. There are canonical

mapsB ⊂ s0-
◦
Cp

- B which make
◦
D(φ) into anR

n+1-bundle (Fig. 1).
If we write 〈e, t〉 for the equivalence class of(e, t) ∈ E(φ) × [0,∞), then
(e, t) can be thought of as ’cylindrical coordinates’ for〈e, t〉 in the total
space of theRn+1 bundle.
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radius t →

l angle e

r

〈e, t〉

Fig. 1

3 Definition A locally finite covering{Vi| i ∈ I} of B by open sets is called
numerableif there exist mapsfi : B - [0, 1] with f−1

i ((0, 1]) = Vi,
such that

∑
i∈I fi = 1. An R

n-bundle (orSn-bundle, orn-microbundle,
see Definition 7 below) is callednumerableif there exists a numerable
covering ofB by coordinate charts. In our setting, most base spaces will be
paracompact, so bundles are automatically numerable.

4 Lemma Let (F, id) : ξ - η be a bundle map ofRn-bundles. If for
each fibre the restrictionF |E(ξ)b

: E(ξ)b
- E(η)b is a bijection, then

(F, id) is an equivalence.

Proof. By domain invariance,F is a homeomorphism on each fibre. We
have to show thatF−1 is continuous. This is a local property, so we can
assume thatξ andη are trivialRn-bundles. ThenF is of the form(b, x) 7−→
(b, gb(x)), whereb 7−→ gb is a continuous map of the baseB into the home-
omorphism groupTOP(n) of (Rn, 0). ThusF−1 is given by(b, y) 7−→
(b, g−1

b (y)), and this is continuous, since inversion is continuous in the topo-
logical groupTOP(n). ut
As a consequence, we have the following result.

5 Lemma Let ξ be a numerableRn-bundle overB × [0, 1]. Then the re-
strictionsξ|B×{0} andξ|B×{1} are weakly equivalent under a bundle map
(Φ, (b, 0) 7−→ (b, 1)).

Proof. The proof given in Husemoller [9], Chapter 3 Corollary 4.6 for vector
bundles carries over toRn-bundles; Husemoller’s Theorem 2.5 is replaced
by Lemma 4 above, see also Holm [8] Lemma 1.5.ut
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6 Corollary Let ξ = (E, B, p, s) be a numerableRn-bundle. Ifs1 : B

- E is any section, then theRn-bundlesB
s- E - B and

B
s1- E - B are equivalent.

Proof. The fibres ofξ are contractible, hence there exists a homotopyα :
B × [0, 1] - E with α0 = s andα1 = s1, such thatp ◦ αt = idB,
cp. Dold [4] Corollary 2.8. Define a numerableR

n-bundleη overB × [0, 1]
with total spaceE × [0, 1] and sectionα. Thenη|B×{0} ∼= ξ, andη|B×{1}
is weakly equivalent to the bundle with sections1. The result follows from
Lemma 5. ut
We also need the concept of a microbundle.

7 Definition An n-microbundlex = (E, B, p, s) is a bundle with section,
subject to the following condition: for everyb ∈ B there exists an open
neighborhoodV of b, an open subsetU ⊆ EV = p−1(V ) containings(V )
and a homeomorphismh : V × R

n - U such that the diagram

V × R
n

�
�
�(id, 0) � @

@
@
pr1
R

V V

@
@
@s|V R �

�
�
p|U
�

U

h

?

commutes. We call(V, h) a coordinate chartof the microbundle. The dif-
ference between ann-microbundle and anRn-bundle is that the image of
h neednot be all of EV . Obviously, anR

n-bundle is ann-microbundle.
The Kister-Mazur Theorem (see Theorem 9 below) says that conversely,
microbundles are essentially the same asR

n-bundles, a fact which is not
obvious at all.

If E′ ⊆ E is a neighborhood ofs(B), then it is not difficult to see that
B - E′ - B is again a microbundlex′ contained inx. Two microbun-
dlesx1, x2 over the same baseB are calledmicro-equivalentif they contain
microbundlesx′

1, x
′
2 which are equivalent in the sense of Definition 1 (this

is also sometimes called a micro-isomorphism or an isomorphism germ). In
the case of numerable microbundles one has to be careful: a microbundle
contained in a numerable microbundle needa priori not be numerable.

8 Lemma Letφ = (E, B, p) be a numerable locally trivial sphere bundle,
and suppose thats : B - E is a section. Then(E, B, p, s) is a numerable
microbundle.
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Proof. The only difficulty is to show that one obtains a numerable microbun-
dle. Assume first thatφ is a product bundle with a single coordinate chart
h : B×S

n - E. Thens(b) = h(b, s′(b)), for some maps′ : B - S
n.

Fix b0 ∈ B and letx0 = s′(b0) ∈ S
n. Consider the two real functions

f±(b) = 1
2 |s′(b)±x0| and letV± = f−1

± ((0, 1]). ThenB = V+ ∪V−, and it
is not difficult to construct mapsg± : V± - O(n) such thatg±(b)(x0) =
s′(b) (rotate with a 1-parameter group along the unique geodesic froms′(b)
to ±x0). Identifying(Rn, 0) with (Sn \{−x0}, x0), we obtain microbundle
coordinate charts(b, x) 7−→ h(b, g±(b)(x)) overV+ andV−.

Now let φ be arbitrary. If{Vi| i ∈ I} is a locally finite covering of
B, then{Vi,±| i ∈ I} is also locally finite. Similarly as above, we can
construct functionsfi,± from thefi of the numerable covering such that
Vi,± = f−1

i,±((0, 1]). Finally, the resulting set of functions can be normalized
by multiplying it with the continuous function

b 7−→
(∑

i∈I

(fi,+(b) + fi,−(b))

)−1

. ut

9 Theorem (Kister-Mazur) Let x be a numerablen-microbundle. Then
there exists a numerable microbundlex′ contained inx which is anR

n-
bundle, andx′ is unique up to equivalence.

Proof. See Holm [8] Theorem 3.3, and also Siebenmann-Guillou-Hähl [20]
6.4. ut

Consider the following construction of a newRn-bundle from an old one.

10 Definition Let ξ be anRn-bundle. Compactifying each fibre to a sphere
S

n, we obtain a locally trivialSn-bundleξ and another sections∞ corre-
sponding to the compactifications of the fibres, i.e.s∞(b) = ∞b is the one
point which is added to the fibreEb overb. We putuE = E0 ∪ s∞(B) and
call uE - B the upside-down bundleuξ of ξ. Clearly, this is again an
R

n-bundle with zero-sections∞, and(uE)0 = E0 (see Fig. 2). If(V, h)
is a coordinate chart forξ, then(V, uh) is a coordinate chart foruξ, where
uh : V × R

n - uE is defined by

uh(b, x) =

{
h(b, x/|x|2) for x 6= 0
∞b for x = 0.

In particular,uξ is numerable if and only ifξ is numerable.
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E

s

uE

s∞

E(ξ̄)
Fig. 2

If ξ happens to be a vector bundle with a Riemannian metric, thenξ
and uξ are equivalent under the bundle mapE 7−→ uE, v 7−→ v/|v|2
(with the obvious extension to the zero-vectors). I do not know if such
an isomorphism exists for arbitraryRn-bundles. For orientableRn-bundles
over CW-complexes of dimension at mostn, this is true by the results in
Sect. 2. A first step in this direction is the following version of the Hirsch-
Mazur Theorem (which is essentially due to Browder [2] Proposition 2.2,
see also Holm [8] Theorem 4.5 for a proof which avoids microbundles) and
its corollary which shows thatξ anduξ arestably equivalent.

11 Proposition Letφ be a locally trivial numerableSn-bundle with a sec-

tionB
s- E. Then(B, E, p, s) is a numerablen-microbundlex by Lemma

8. Letξ be a numerableRn-bundle contained inx. Then there is an equiva-
lence

ξ ⊕ R ∼=
◦
D(φ).

Proof. Let η =
◦
D(φ) = (

◦
C, B, p0, s0) for short. The equivalence class of

(x, t) ∈
◦
Cp is denoted〈x, t〉, cp. Definition 2. Consider the sections1 :

b 7−→ 〈s(b), 1〉. Then bothB
s1-

◦
Cp andB ⊂ s0-

◦
Cp make

◦
Cp

p0- B

into anR
n+1-bundle. Letη1 = (

◦
Cp, B, p0, s1). By Corollary 6 there is an

equivalenceη ∼= η1.
By Lemma 8,x = (E, B, p, s) is a numerablen-microbundle. Letξ

be a numerableRn-bundle contained inx, let λ : R - (−1, 1) be a
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E(ξ′)

R

F-

s1

Fig. 3

homeomorphism withλ(0) = 0 and put

F : E(ξ) × R -
◦
Cp, (x, t) 7−→ 〈x, λ(t)〉

(see Fig. 3). ThenF (E(ξ) × R)
p0- B is a numerableRn+1-bundle

contained in the numerableRn+1-bundleη1. By the Kister-Mazur Theorem
9, we haveξ ⊕ R ∼= η1, andη1 ∼= η. The result follows. ut

12 Corollary Letξ be a numerableRn-bundle. Then there is an equivalence

ξ ⊕ R ∼= uξ ⊕ R.

Proof. Note that by definitionξ = uξ. The R
n-bundleξ is contained in

the n-microbundle(E(ξ), B, p, s), and thus
◦
D(ξ) ∼= ξ ⊕ R by Propo-

sition 11. Similarly,uξ is an R
n-bundle contained in then-microbundle

(E(ξ), B, p, s∞), whenceuξ ⊕ R ∼=
◦
D(ξ). ut

Our next aim is to show that in certain situations there is an equivalence
ξ ∼= uξ. Now we need some results about classifying spaces.

The necessary classifying spaces

Recall that afibration is a bundle which has the homotopy lifting property,

see Spanier [21] Ch. 2.2. LetE1
p1- B andE2

p2- B be fibrations. A
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commutative diagram of bundle maps between fibrations

E1
F - E2

G - E1

@
@

@
@

@
p1

R 	�
�

�
�

�

p1

B

p2

?

is called afibre homotopy equivalenceif there are homotopiesG ◦ F '
idE1 andF ◦ G ' idE2 which are constant underp1 andp2 (a homotopy
f : E1 × [0, 1] - E1 is constant underp1 if p1 ◦ ft = p1 ◦ f0 for all
t ∈ [0, 1]). An n-spherical fibrationis a fibration whose fibres are homotopy
equivalent to ann-sphere. A spherical fibration is calledorientableif the
fundamental groupoid ofB acts trivially on the homotopy groups of the
fibre; in particular, a spherical fibration over a 1-connected base is always
orientable. Orientability is preserved under fibre homotopy equivalence.

Thespherical fibration of a numerableRn-bundleis the fibrationE0(ξ)
- B (this is indeed a fibration, see Spanier [21] Theorem 2.7.12) and two

numerableRn-bundlesξ, ξ′ are calledfibre homotopy equivalent, ξ ' ξ′,
if their respective spherical fibrations are fibre homotopy equivalent. Note
that an equivalence ofRn-bundles induces a fibre homotopy equivalence,
and thatξ ' uξ, sinceE0(ξ) = E0(uξ). We call a numerableRn-bundle
orientableif its spherical fibration is orientable.

The aim of this section is to prove the following theorem.

13 Theorem Letξ, ξ′ be orientable numerableRn-bundles over a spaceB
with the homotopy type of a CW-complex of dimension at mostn. If ξ and
ξ′ are stably isomorphic, i.e. ifξ ⊕ R

k ∼= ξ′ ⊕ R
k for somek ≥ 0, and if

there is a fibre homotopy equivalenceξ ' ξ′, then there is an equivalence
ξ ∼= ξ′.

This implies in particular the following result.

14 Corollary Letξ be an orientable numerableRn-bundle over a spaceB
which has the homotopy type of a CW-complex of dimension at mostn. Then
there is an equivalence

ξ ∼= uξ.

Proof. By Corollary 12 we haveξ ⊕ R ∼= uξ ⊕ R, andξ ' uξ. The result
follows from Theorem 13. ut
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In order to prove Theorem 13 we need some facts about classifying spaces
and vector bundles. More precisely, we will prove that the kernels of the
maps

πi(BSTOP(n)) - πi(BSTOP(n + k))

πi(BSG(n))
?

intersect trivially fori ≤ n (see below for definitions). First we prove this
result forvector bundles. (An n-vector bundle is anRn-bundle with extra
structure, the vector space structure on the fibres. Husemoller [9] gives
a comprehensive introduction.) LetBSO(n) denote the classifying space
for orientedn-vector bundles. For any spaceX, the set of free homotopy
classes[X; BSO(n)] is in a natural one-to-one correspondence with the
collection of the equivalence classes of oriented numerablen-vector bundles
overX, see eg. Husemoller [9] Ch. 4. SinceBSO(n) is 1-connected, this
set coincides also with the set[X; BSO(n)]0 of based homotopy classes,
see eg. Whitehead [25] III.1.11.

15 A model for BSO(n) Let Vm(Rk) denote the Stiefel manifold of or-
thonormalm-frames inR

k, and let

Vm(R∞) =
⋃
k≥0

Vm(Rk),

cp. Husemoller [9] Ch. 8. Forn ≤ m there is a natural free action of the
matrix groupSO(n) onVm(R∞), and the orbit space

BSO(n) = Vm(R∞)/SO(n)

is a classifying space forSO(n). Note thatSO(n) can be identified with a
subset ofVn(Rn) ⊆ Vm(R∞).

16 The tangent bundle ofSn The tangent bundle ofSn can be described
by the Borel-Hirzebruch method. Then-sphere is a homogeneous space

S
n = SO(n + 1)/SO(n),

and the tangent vector bundleτn of S
n is the vector bundle associated to

the principal bundleSO(n) ⊂ - SO(n + 1) - S
n via the standard



Point and line space of a compact projective plane 93

representation ofSO(n) on R
n. Consider the diagram

SO(n) ============ SO(n) ⊂ - SO(n + 1)

SO(n + 1)
?

∩

- Vn+1(R∞)
?

============= Vn+1(R∞)
?

SO(n + 1)/SO(n)
? c- Vn+1(R∞)/SO(n)

?
- Vn+1(R∞)/SO(n + 1).

?

The bottom line is a fibration

SO(n + 1)/SO(n)
c- BSO(n) - BSO(n + 1).

The left column, which is the pull-back fibration of the middle column, i.e.
the principal bundle overBSO(n), is the principal bundle associated to the
tangent bundle ofSn. Thusc is a classifying map for the tangent bundle of
S

n. Note that the mapBSO(n) - BSO(n+1) corresponds to the process
of stabilizing vector bundles: if an orientedn-vector bundleξ is classified
by f : B(ξ) - BSO(n), then the compositeB(ξ) - BSO(n) -

BSO(n + 1) classifiesξ ⊕ R.

LetTn denote the kernel of the mapπn(BSO(n)) - πn(BSO(n+1)). As

before,Sn c- BSO(n) is a classifying map for the tangent bundle ofS
n.

As we remarked before,BSO(n) is 1-connected, so the set of free homotopy
classes[Sk; BSO(n)] coincides with the homotopy groupπk(BSO(n)) =
[Sk; BSO(n)]0, see Whitehead [25] III.1.11.

17 Proposition The groupTn is generated by the image ofπn(c).
If n is even, thenπn(c) is an isomorphism ontoTn.
If n = 1, 3, 7, thenTn = 0 andc is homotopic to a constant map.
If n 6= 1, 3, 7 is odd, thenTn is cyclic of order two.

Proof. The long exact homotopy sequence shows thatπn(c)(idSn) = c ∈
Tn (this is also clear from the geometric point of view:τn ⊕ R ∼= R

n+1

is a trivial bundle). Moreover,Tn is a cyclic group generated byc, because
πn(Sn) ∼= Z.

If n is even, thenπn+1(BSO(n + 1)) is isomorphic to a subgroup of
Z/2 ⊕ Z/2, see eg. Mimura and Toda [15] IV.6.14. Sinceπn(Sn) ∼= Z, the
long exact homotopy sequence shows that the mapπn(c) is an injection if
n is even.

If n is odd, thenπn(BSO(n)) is isomorphic to a subgroup ofZ/2 ⊕
Z/2 by loc.cit., so the image ofπn(c) in πn(BSO(n)) is either trivial or
isomorphic toZ/2. It is well-known that the tangent bundle ofS

n is not
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fibre homotopy equivalent to the trivial bundle, provided thatn 6= 1, 3, 7,
see James-Whitehead [10] Theorem 1.12, combined with Adams’ result
on elements of Hopf invariant 1 (Husemoller [9] Ch. 15). In particular,
τn 6∼= R

n, and thusc ∈ πn(BSO(n)) has order two forn 6= 1, 3, 7. Finally,
the tangent bundle ofSn is known to be trivial forn = 1, 3, 7. ut
Let SG(n + 1) denote the topological semigroup of all mapsS

n - S
n

of degree 1, and letSF(n) = Ωn
S

n ∩ SG(n + 1) denote the subset of all
based degree 1 self maps ofS

n, cp. Milnor [14] Sect. 2. There is a fibration
SF(n − 1) - SG(n) - S

n−1 and an associated classifying space
BSG(n) which classifies oriented(n − 1)-spherical fibrations over suffi-
ciently nice spaces (eg. over CW-complexes) up to (oriented) fibre homotopy
equivalence, see Stasheff [22], Madsen-Milgram [12] Ch. 1. Corresponding
to the process of stabilizing bundles and to the forgetful maps fromn-vector
bundle toRn-bundles to spherical fibrations, there is a commutative diagram
of fibrations and bundle maps

SO(n + 1)/SO(n) - BSO(n)
stab - BSO(n + 1)

SG(n + 1)/SG(n)
?

- BSG(n)

fSO
SG

? stab- BSG(n + 1).

fSO
SG

?

The spaces on the left are the homotopy fibres of the stabilization maps.
(Up to homotopy, every map can be converted into a fibration by a standard
process, see Spanier [21] Theorem 2.8.9. The resulting fibre is called the
homotopy fibre of the map.)

18 Lemma The forgetful mapfSO
SG induces isomorphisms

πk(Sn) = πk(SO(n + 1)/SO(n)) ∼= πk(SG(n + 1)/SG(n))

for k ≤ 2n − 3 and maps the groupTn isomorphically onto the kernel of
the stabilization map

πn(BSG(n)) - πn(BSG(n + 1))

for all n ≥ 1.

Proof. Note thatSG(1) ∼= {pt}, andSF(1) ∼= {pt} is the connected com-
ponent ofΩS

1 ' Z, henceSG(2) ' S
1. Also, π1(BSO(n)) = 0 =

π1(BSG(n)) = 0 for all n. Easy diagram chasing shows thatπ1(SO(2)
/SO(1)) - π1(SG(2)/SG(1)) is an isomorphism and that the kernels
of both stabilization maps in dimension 1 are trivial, so the claim follows
for n = 1.
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For n = 2 we use the fact thatπi(SG(3)) = πi(SF(3)) for i ≤
2, see Milnor [14] Sect. 2. Thusπ2(BSG(3)) ∼= Z/2. Again, easy dia-
gram chasing shows thatπ2(BSO(3)) - π2(BSG(3)) is an isomor-
phism, and soT2 ⊆ π2(BSO(2)) maps isomorphically onto the kernel of
π2(BSG(2)) - π2(BSG(3)) (note however thatπ2(S2) 6∼= π2(SG(3)
/SG(2))).

Forn ≥ 3 we have isomorphismsπi(SO(n+1)/SO(n)) - πi(SG(n
+ 1)/SG(n)) for all i ≤ 2n − 3, see Burghelea-Lashof [3] p. 38 no. (5),
Milgram [13] Theorem A.

It remains to show thatTn maps isomorphically onto the kernel of the
stabilization map for spherical fibrations. Ifn 6= 1, 3, 7 is odd, thenτn is
not fibre homotopically trivial, hencefSO

SG ◦ c 6= 0 in πn(BSG(n)), cp. the
remarks in the proof of Proposition 17. Assume thatn is even, and let
g : S

n - S
n be a map of degreek. Then the Euler class of the bundle

corresponding toc ◦ g = kc is k times the Euler class ofτn; in particular,
it is not zero. The Euler class is invariant under fibre homotopy equivalence
(since it can be defined for spherical fibrations, see eg. Milnor [14], Spanier
[21] Ch. 9.5; he denotes the Euler class byΩ), hencefSO

SG c◦g = k·fSO
SG c 6= 0

in πn(BSG(n)). ThusfSO
SG mapsTn isomorphically onto the kernel of the

stabilization mapπn(BSG(n)) - πn(BSG(n + 1)).

Now we get back toRn bundles. LetSTOP(n) denote the topological group
of all orientation preserving based homeomorphisms ofR

n. There is a cor-
responding classifying spaceBSTOP(n) which classifies oriented numer-
ableR

n-bundles up to (oriented) equivalence. LetSTOP(n+1)/STOP(n)
denote the homotopy fibre of the stabilization mapBSTOP(n) -

BSTOP(n + 1). The forgetful mapfSO
SG factors as

BSO(n)
fSO
STOP- BSTOP(n)

fSTOP
SG - BSG(n)

19 Proposition (cp. Varadarajan [24] Sect. 1.)The map

πi(SO(n + 1)/SO(n)) - πi(STOP(n + 1)/STOP(n))

is an isomorphism for alli ≤ n−1, and also fori = n, provided thatn 6= 3.
In dimension 3, we haveπ3(STOP(4)/SO(4)) ∼= Z ⊕ Z/2 instead.

For all n ≥ 1, the forgetful mapfSO
STOP mapsTn isomorphically onto the

kernel of the stabilization mapπn(BSTOP(n)) - πn(BSTOP(n+1)).

Proof. We divide the proof in several steps.

Step (i). The claim holds forn ≤ 3.
If n ≤ 3, thenSO(n) ⊂ - STOP(n) is a homotopy equivalence by

the results of Kneser [16] and Hatcher [7], see also Kirby-Siebenmann [11]
Essay V Sect. 5, so the same is true forfSO

STOP in these dimensions, and the
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claim follows easily forn ≤ 2. Also,π3(BSTOP(3)) ∼= π3(BSO(3)) = 0,
so0 = T3 maps isomorphically onto the kernel of the stabilization map in
dimension 3.

Let STOP =
⋃

n≥0 STOP(n) andSO =
⋃

n≥0 SO(n). Quinn proved
that

πi(STOP/SO,STOP(4)/SO(4)) = 0 (1)

for i ≤ 5, cp. Freedman-Quinn [6] 8.7A., soπi(STOP(4)/SO(4)) is iso-
morphic to0, 0, 0, Z/2, 0 for i = 0, 1, 2, 3, 4, cp. Kirby-Siebenman [11]
Essay V Sect. 5, 5.0(5). The exact sequence

0 - π3(SO(4)/SO(3))
- π3(STOP(4)/SO(3)) → π3(STOP(4)/SO(4))
- 0

shows thatπ3(STOP(4)/SO(3)) ∼= π3(STOP(4)/STOP(3)) ∈ {Z, Z ⊕
Z/2}, andZ is excluded by the diagram

Thusπ3(STOP(4)/STOP(3)) ∼= Z ⊕ Z/2, and the casen = 3 is finished.

Step (ii). Some stability results forSTOP(m)/SO(m).
If m ≥ 5, then

πi(STOP/SO,STOP(m)/SO(m)) = 0 (2)

for all i ≤ m + 2, see Kirby-Siebenmann [11] Essay V Sect. 5, 5.0(4) and
Burghelea-Lashof [3] 5.1 (note that this is one dimension better than Quinn’s
result (1) form = 4 mentioned above). There are two long exact sequences

- πi(STOP(m),SO(m)) - πi(STOP,SO) - πi(2) -

and

- πi(SO,SO(m)) - πi(STOP,STOP(m)) - πi(2) -

whereπi(2) is theith homotopy group of the diagram

SO(m) ⊂ - SO

STOP(m)
?

∩

⊂- STOP,
?

∩
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see Stern [23] (these homotopy groups are defined fori ≥ 3, andπ2(2) is
a pointed set). Note also thatπi(G, H) = πi(G/H) for G, H ∈ {SO(m),
STOP(m),SO,STOP} whenever this makes sense (properly speaking, one
has to replace the topological groups by certain semi-simplicial groups to
justify these identifications, see Stern [23], Rourke-Sanderson [17]). Com-
bining the two long exact sequences with the stability results (1), (2) above,
we conclude that

πi(STOP/STOP(m),SO/SO(m)) = 0

for m ≥ 5 andi ≤ m + 2, and form = 4 andi ≤ 5. In the stable range
i ≤ m − 1 we haveπi(SO/SO(m)) = 0, soπi(STOP/STOP(m)) = 0
as well.

Step (iii). The claim holds forn ≥ 4.
Suppose now thatn ≥ 4. Thenπi(STOP(n + 1)) = πi(STOP) and

πi(SO) = πi(SO(n + 1)) for i ≤ n. For i ≥ 3, this follows from Step (ii);
for i = 0, 1, 2 one has to modify some arguments slightly. In any case, we
obtain a diagram

πi(SO(n + 1)/SO(n)) - πi(STOP(n + 1)/STOP(n))

πi(SO/SO(n))

∼=
? ∼= - πi(STOP/STOP(n)).

∼=
?

for i ≤ n andn ≥ 4. This implies thatπn(STOP(n + 1)/STOP(n)) is
infinite cyclic forn ≥ 4 and thusTn maps onto the kernel of the stabilization
map forBSTOP(n) in dimensionn. However, we know already thatTn

maps isomorphically onto the kernel of then-dimensional stabilization map
for BSG(n) by Lemma 18,

πn

(
SO(n + 1)

SO(n)

)
- Tn

- πn(BSO(n))

@
@

@
@

@R

@
@

@
@

@R

@
@

@
@

@R
πn

(
STOP(n + 1)

STOP(n)

)
- πn(fSO

STOP)Tn
- πn(BSTOP(n))

	�
�

�
�

�

	�
�

�
�

�

	�
�

�
�

�

πn

(
SG(n + 1)

SG(n)

)?

- πn(fSO
SG )Tn

?
- πn(BSG(n)).

?

The result follows. ut
Repeated application of this stability result yields the following corollary.
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20 Corollary For i ≤ n and1 ≤ n ≤ n + k, the kernels of the maps

πi(BSTOP(n)) - πi(BSTOP(n + k))

πi(BSG(n))
?

intersect trivially. ut

Proof of Theorem 13.It suffices to prove the theorem forB, a CW-complex
of dimensionm ≤ n. We proceed by induction onm. For m = 0, there
is nothing to show. Letξ, ξ′ be R

n-bundles over an(m + 1)-dimensional
CW-complexB as in the theorem, form + 1 ≤ n, with classifying maps
c, c′ : B - BSTOP(n). We orient both bundles in such a way that
fSTOP
SG ◦c ' fSTOP

SG ◦c′. Thenstab◦c ' stab◦c′, wherestab : BSTOP(n)
- BSTOP(n + k) is the stabilization map.
Let I = [0, 1]. By our induction hypothesis, we may assume that the

theorem holds form-dimensional CW-complexes, and in particular for the
m-skeletonB(m). We want to prove it forB, an(m + 1)-dimensional CW-
complex. There exists a mapC : B(m) × I ∪ B × {0, 1} - BSTOP(n)
with C|B×{0} = c andC|B×{1} = c′, and we are dealing with theextension
problem

B(m) × I ∪ B × {0, 1} C - BSTOP(n)

....
....

....
....

....
....

....
....

..*

B × I.
?

∩

Note that B × I is an (m + 2)-dimensional CW-complex, and that
(B × I)(m+1) = B(m) × I ∪B ×{0, 1}. Letem+1 - B be an(m+1)-
cell. Thenem+1×I - B×I is an(m+2)-cell, and we have to show that
the mapC can be extended over this cell. Letχ̇ : ∂(em+1 × I) - B × I
denote the attaching map. We obtain a diagram
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which commutes up to homotopy. The three spaces on the right are 1-
connected, so we can viewC ◦ χ̇ as an element ofπm+1(BSTOP(n)).
The diagram shows that bothstab◦C ◦ χ̇ andfSTOP

SG ◦C ◦ χ̇ are homotopic
to a constant map, since they factor through the contractible spaceem+1×I.
By Corollary 20, the mapC ◦ χ̇ is also homotopic to a constant map, so we
can extendC ◦ χ̇ overem+1 × I. Every(m + 2)-cell of B × I is of this
form, so the mapC can be extended to a mapB × I - BSTOP(n) (see
Whitehead [25] V.5.2) andc andc′ are homotopic. ut

Hopf bundles of compact projective planes

A projective planeis an incidence geometryP = (P,L,F) consisting
of a point setP, a line setL and aflag setF ⊆ P × L describing the
incidence relation: a pointp ∈ P and a linè ∈ L are incident if and only
if (p, `) ∈ F . For distinct pointsp, q ∈ P we denote the unique line joining
them bypq ∈ L; dually, the intersection point of two distinct linesh, ` ∈ L
is h` ∈ P. The setLp = {h ∈ L| (p, h) ∈ F} is called aline penciland
P` = {q ∈ P| (q, `) ∈ F} is called apoint row.

If P andL are compact Hausdorff spaces, and if the maps(p, q) 7−→ pq
and(h, `) 7−→ h` are continuous on their respective domainsP × P \ idP
andL×L\ idL, thenP is called acompact projective plane; see Salzmann
et al. [18] for a comprehensive introduction. The continuity condition is
equivalent withF ⊆ P × L being closed, see [18] 41.5. The classical
Moufang planesPG2(F), for F = R, C, H, O are examples for such planes,
but there exists a continuum of non-classical compact projective planes.

21 Definition Let P = (P,L,F) be a compact projective plane with man-
ifold lines. Then every point row is homeomorphic to ann-sphere, for some
n ∈ {1, 2, 4, 8}, cp. Salzmannet al. [18] 52.3, Breitsprecher [1] 2.1 and
2.3.1. Letq ∈ P be a point and define a map (the central projection from
q) P \ {q} - Lq by p 7−→ pq. It is easy to see that this map is a lo-
cally trivial fibre bundle which we denote byηq, thelocal Hopf bundle atp
[18] 51.23. The one-point compactification of the total space ofηq is clearly
homeomorphic toP. If m is a line which is not incident withp, then we can
define a sections by s(`) = m`. Since the lines ofP aren-spheres,ηq is
anR

n-bundle, andP ∼= M(ηq) is the Thom space of this bundle. The map
F - P is a locally trivial Sn-bundle, see [18] 51.23. ForX ⊆ P we
denote the restriction byFX

- X; similarly for F - L.

Eisele’s homeomorphism criterion [5] is a complicated bundle-free version
of the bundle map(G, g) below. See [18] 52.15 for a streamlined version
of his result. A similar construction is used by Schroth in [19] who proved
that for any two pointsq, q′ the bundlesηq andηq′ are weakly equivalent.
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(And dually for any two lines. Schroth did not consider the case of projec-
tive planes, but his arguments are valid nevertheless. Conversely, his result
follows directly from Proposition 22 below, sinceηq

∼= uηm
∼= ηq′ .)

22 Proposition Let (q, m) be a non-incident point-line pair in a compact
projective plane with manifold lines. Then there is a weak equivalence

ηq
∼= uηm

between the local Hopf bundle atq and the upside-down local Hopf bundle
at m.

Proof. Let Ē = {(p, `) ∈ F| (p, m) ∈ F} denote the set of all flags whose
points lie on the linem. Then there is an injection

E(ηm) ⊂ - Ē, ` 7−→ (m`, `)

whose image consists of all flags in̄E whose line is different fromm. Clearly,
Ē can be identified with the total space of theS

n-bundleη` obtained by
compactifying the fibres: the element which is added to the fibreE(ηm)p

is the flag(p, m). The zero-sectionP`
- E(ηm) of ηm is given by

p 7−→ pq; the corresponding subset in̄E consists of the flags whose line
passes throughq.

Now consider the bundleηq. Its zero-section is given bỳ 7−→ `m. We
define an injectionG : E(ηq) - Ē as follows. Letι : Pm

- Pm be
a fixed-point free homeomorphism (recall thatPm

∼= S
n). Put

G(p) = (ι((pq)m), pι((pq)m))

(see Fig. 4). The image ofG consists of all flags in̄E whose line does not
pass throughq, and the section ofηq is mapped onto the set of flags whose
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line is m. Thus, if we putg(`) = ι(m`), then(G, g) : ηq
- uηm is a

weak equivalence ofRn-bundles. ut

23 Theorem Let (p, `) be a point-line pair in a compact projective plane
with manifold lines. Then theRn-bundlesηp andη` are weakly equivalent.

Proof. It clearly suffices to prove the theorem for non-incident point-line
pairs. Ifn = 1, thenηp corresponds to one of the two elements ofπ1(BTOP
(1)) ∼= π0(TOP(1)) ∼= Z/2, so eitherηp is the trivial line bundle overS1,
or ηp is the Möbius strip. The Thom space of the trivial bundle is not a
manifold, soηp has to be the M̈obius strip. The same argument applies to
η`.

Assume now thatn ≥ 2. Thenn ∈ {2, 4, 8}, and there is a weak equiva-
lenceηp

∼= uη` by Proposition 22. By Corollary 14, there is an equivalence
η`

∼= uη`. ut

24 Corollary The point spaceP and the line spaceL of a compact projec-
tive plane with manifold lines are homeomorphic.

Proof. The point space is the Thom space ofηp, and the line space is the
Thom space ofη`. ut
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20. L. Siebenmann, L. Guillou and H. Hähl, Les voisinages ouverts réguliers, Annales
Ecole Normale Sup.6 (1973) 253–293.

21. E.H. Spanier, Algebraic topology, Springer Verlag, New York Berlin (1966).
22. J. Stasheff, A classification theorem for fibre spaces. Topology2 (1963) 239–246.
23. R.J. Stern, On topological and piecewise linear vector fields, Topology14 (1975) 257–

269.
24. K. Varadarajan, Span and stably trivial bundles, Pacific J. Math.60 (1975) 277–287.
25. G.W. Whitehead, Elements of homotopy theory, Springer Verlag, New York Berlin

(1978).


