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Abstract. The local Hopf bundles at the points and lines of a compact pro-
jective plane with manifold lines are all weakly equivalent. In particular, the
point space and the line space of such a projective plane are homeomorphic.
This is a consequence of the following topological result.

Theorem. Let £, ¢’ be orientable topologicaR”-bundles over am-di-
mensional CW-complex.4fand¢’ are fibre homotopy equivalent and stably
equivalent, theg and¢’ are equivalent.

The point space of a compact projective plane with manifold lines can
be viewed as the Thom space of a certain fibre bungli€imilarly, the line
space is the Thom space of another fibre bungdl&Ve show that the fibre
bundles;, andn, are weakly equivalent. Unfortunately, there is no obvious
geometric reason why such an equivalence should exist. However, one can
rather easily see an equivalence betwggand another bundlen, which
is obtained fromy, by turning the fibres ofy, 'upside down’. Essentially,
this was already observed by Eisele [5] and Schroth [19]. It follows from the
Hirsch-Mazur Theorem thaf, and“r, are stably equivalent, and (by defi-
nition) n, and“, are fibre homotopy equivalent. Thus the result announced
in the title follows from the topological theorem in the abstract.

| would like to thank Theo Grundifer, Katrin Tent and in particular
Rainer Lowen for criticism and helpful comments. Without them, the present
paper would have been much shorter and probably much less readable.
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Some results aboufR™-bundles

We recall some facts about microbundles &fdbundles. Most of the re-
sults in this section are well-known to topologists. The necessary back-
ground about general fibre bundles can be found in the first chapters of
Husemoller [9]. See also Holm [8] for a careful exposition of microbundles
andR"-bundles.

A spaces a topological space. Unless specified otherwise, all maps are
assumed to be continuous.

1 Definition A bundle¢ = (F, B, p) over a space3 is a surjective map

E -2+ B.The spacé® = B(¢) is called thebaseandE = E(¢) is called
thetotal spaceof ¢. Thefibre overb € Bis Ej, = p~1(b), and forA C B
the bundleE4 = p~'(A) —— A is called therestriction ¢| 4. A bundle
map(F, f) : ¢ — ¢’ is a commutative diagram

EB(o) Lv B(#)

B(6) - B(&).
If f andF are homeomorphisms, th¢h, f) is called aveak equivalence
¢ = ¢, and if in additionf = id, then(F,id) is called anequivalence
(also denoted by = ¢'). A sectionB . FEisa right inverse t, i.e.
pos =idg. We putEy = E'\ s(B). For bundless, ¢’ with sections, we
require that bundle maps preserve sections, i.e. that the diagram

B> gp-P.p

A|o,el

p-.g Y. p

commutes. Th&Vhitney suny; @ ¢, of two bundlesp; = (E;, B, p;) over
the same basB, fori = 1, 2, has as total space the pull-back
Ey @ By = {(e1,e2) € E1 x Ea| pi(e1) = pa(e2)}
over the diagram
Es

D2

E1ﬂ>B,

with the obvious projectiofie;, e2) — p1(e1) (and sectiorb — (s1(b),
s2(b)) if ¢1 andgps have sections).
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We are mainly interested IR"-bundles.

2 Definition An R™-bundle¢ = (E, B, p, s) is a bundle with section, sub-
ject to the following additional condition: for evetyc B there exists an
open neighborhool of b and a homeomorphism: V' x R" — FEy =
p~ (V) such that the diagram

V x R"?

s | N
|4 h
N

Eyv

Vv

\%4

commutes. The pa{lV, h) is called acoordinate chartThetrivial (product)

R"-bundleB x R" 21+ B is denoted byR".

A locally trivial S"-bundleis a bundlg £, B, p), subject to the following
condition: for everyb € B there is an open neighborhodd of b and a
homeomorphism : V' x S —— Ey, such that the diagram

V xS"

Wﬁ‘l

h |4

“

Ey

\%4

commutes. Again(V, h) is called acoordinate chart
To each suc"-bundleg one can associate & *!-bundleD(¢) in a

canonical way. The total spacelo?f(qﬁ) is theopen mapping cylindet’,, of
the bundle projectio(¢) —’~ B, i.e.C, is the quotient space

Cp = (E(¢) x [0,00) U B)/ ~,

whereE(¢) x {0} is identified by the map with B. There are canonical

mapsB —» ('}, — B which makeD(¢) into anR"!-bundle (Fig. 1).
If we write (e, t) for the equivalence class 6¢,¢) € E(¢) x [0,00), then
(e, t) can be thought of as 'cylindrical coordinates’ for, t) in the total
space of th&"*+! bundle.
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radius t —

1 angle e {e,1)

Fig. 1

3 Definition Alocally finite covering{V;| ¢ € I} of B by open setsis called
numerableif there exist mapsf; : B — [0, 1] with £, ((0,1]) = V;,
such thaty . f; = 1. An R"-bundle (orS"-bundle, orn-microbundle,

see Definition 7 below) is calledumerableif there exists a numerable
covering of B by coordinate charts. In our setting, most base spaces will be
paracompact, so bundles are automatically numerable.

4 Lemma Let (F,id) : £ — n be a bundle map dR™-bundles. If for
each fibre the restrictiod”|5(¢), : E(£), — E(n)s is a bijection, then
(F,id) is an equivalence.

Proof. By domain invarianceF’ is a homeomorphism on each fibre. We
have to show that'~! is continuous. This is a local property, so we can
assume thag andn are trivialR™-bundles. Thet is of the form(b, ) —

(b, gp(x)), whereb — g, is a continuous map of the bageanto the home-
omorphism grougl'OP(n) of (R™,0). Thus F~! is given by (b, y)

(b, g, ' (v)), and this is continuous, since inversion is continuous in the topo-
logical groupTOP(n). O

As a consequence, we have the following result.

5 Lemma Let¢ be a numerabl&®™-bundle overB x [0, 1]. Then the re-
strictionsé| gy {0y @and{|p 1) are weakly equivalent under a bundle map
(@, (b,0) — (b, 1)).

Proof. The proof givenin Husemoller[9], Chapter 3 Corollary 4.6 for vector
bundles carries over f&"-bundles; Husemoller's Theorem 2.5 is replaced
by Lemma 4 above, see also Holm [8] Lemma 1.5l
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6 Corollary Let¢ = (E, B,p,s) be a numerabl&®™-bundle. Ifs; : B
— E is any section, then th&"-bundlesB —>+ E — B and
B -2+ E —+ Bare equivalent.

Proof. The fibres of¢ are contractible, hence there exists a homotopy
B x [0,1] —— FE with oy = s anda; = sy, such that o oy = idp,
cp. Dold [4] Corollary 2.8. Define a numerati#&-bundlern over B x [0, 1]
with total space? x [0, 1] and sectionx. Thenn| g, (o = &, andn|py 13
is weakly equivalent to the bundle with section The result follows from
Lemmab5. O

We also need the concept of a microbundle.

7 Definition An n-microbundler = (F, B, p, s) is a bundle with section,
subject to the following condition: for everly € B there exists an open
neighborhood/ of b, an open subséf C E, = p~1(V) containings(V)
and a homeomorphism: V' x R" —— U such that the diagram

I e

U

commutes. We callV, h) acoordinate chartof the microbundle. The dif-
ference between am-microbundle and aR™-bundle is that the image of
h neednot be all of Ey,. Obviously, anR™-bundle is anz-microbundle.
The Kister-Mazur Theorem (see Theorem 9 below) says that conversely,
microbundles are essentially the sameR&sbundles, a fact which is not
obvious at all.

If £/ C Eis a neighborhood of(B), then it is not difficult to see that
B ——~ E’ —— Bisagain a microbundle contained inc. Two microbun-
dlesyy, ro over the same bade are callednicro-equivalentif they contain
microbundleg’, ¢/, which are equivalent in the sense of Definition 1 (this
is also sometimes called a micro-isomorphism or an isomorphism germ). In
the case of numerable microbundles one has to be careful: a microbundle
contained in a numerable microbundle neeggtiori not be numerable.

8 Lemma Let¢ = (E, B, p) be a numerable locally trivial sphere bundle,
and suppose that: B —— Fisasection. The(F, B, p, s) isanumerable
microbundle.
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Proof. The only difficulty is to show that one obtains a numerable microbun-
dle. Assume first thap is a product bundle with a single coordinate chart
h: BxS™ —— E.Thens(b) = h(b,s'(b)), forsomemap’ : B — S™.

Fix by € B and letzyg = s'(by) € S™. Consider the two real functions
fe(b) = 3|8'(b) x| and letVy = f71((0,1]). ThenB = VL UV_, and it

is not difficult to construct mapg:. : V. — O(n) such thay (b)(zo) =
s'(b) (rotate with a 1-parameter group along the unique geodesic4t@m

to £1). Identifying (R™, 0) with (S™\ {—x¢}, z0), we obtain microbundle
coordinate chart&, x) — h(b, g+ (b)(x)) overV; andV_.

Now let ¢ be arbitrary. If{V;| « € I} is a locally finite covering of
B, then{V; 1| ¢ € I} is also locally finite. Similarly as above, we can
construct functionsf; + from the f; of the numerable covering such that
Vie = fii((o, 1]). Finally, the resulting set of functions can be normalized
by multiplying it with the continuous function

br— (Z (fi+(b) + fi,_(b))>

iel

O

9 Theorem (Kister-Mazur) Let ¢ be a numerable:-microbundle. Then
there exists a numerable microbundlecontained iny which is anR"-
bundle, and’ is unique up to equivalence.

Proof. See Holm [8] Theorem 3.3, and also Siebenmann-GuillémiR20]
6.4. O

Consider the following construction of a néR¥-bundle from an old one.

10 Definition Let¢ be anR”™-bundle. Compactifying each fibre to a sphere
S™, we obtain a locally triviaS™-bundleé and another sectios,, corre-
sponding to the compactifications of the fibres, s.£(b) = oo is the one
point which is added to the fibt&;, overb. We put“E = Ey U so(B) and
call“*E —— B theupside-down bundl&¢ of £. Clearly, this is again an
R™-bundle with zero-section,,, and(“E)y = Ey (see Fig. 2). If(V, h)

is a coordinate chart faf, then(V, “h) is a coordinate chart fét¢, where
“h:V x R" — “E'is defined by

Uh(b,x) = {h(b, z/|z)?) forz #0

oOp forxz = 0.

In particular,“¢ is numerable if and only if is numerable.
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E(E)

Fig. 2

If £ happens to be a vector bundle with a Riemannian metric, §hen
and ¢ are equivalent under the bundle mapr— “E, v — v/[v|?
(with the obvious extension to the zero-vectors). | do not know if such
an isomorphism exists for arbitra®/*-bundles. For orientabB™-bundles
over CW-complexes of dimension at mastthis is true by the results in
Sect. 2. Afirst step in this direction is the following version of the Hirsch-
Mazur Theorem (which is essentially due to Browder [2] Proposition 2.2,
see also Holm [8] Theorem 4.5 for a proof which avoids microbundles) and
its corollary which shows thatand“¢ arestably equivalent

11 Proposition Let¢ be a locally trivial numerabl&™-bundle with a sec-

tionB —— E. Then(B, E, p, s) isanumerable-microbundle: by Lemma
8. Leté be a numerabl®™-bundle contained in. Then there is an equiva-
lence

I

EDR = D(¢).

Proof. Letn = 109(¢) = (é’, B, po, so) for short. The equivalence class of
(x,t) € C)p is denoted(x, t), cp. Definition 2. Consider the sectien :
b+— (s(b),1). Then bothB —~ C, andB —*~ C, makeC, —— B
into anR"*!-bundle. Lety; = (C,, B, po, s1). By Corollary 6 there is an
equivalence) = 7.

By Lemma 8, = (E, B,p, s) is a numerable:-microbundle. Let¢
be a numerabl®”-bundle contained i, let A\ : R —— (—1,1) be a
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E()

Fig. 3

homeomorphism with\(0) = 0 and put
FiEExR—Cp () — (2,A(1))

(see Fig. 3). TherF(E(¢) x R) —2~ B is a numerabléR™+!-bundle
contained in the numerabR**+!-bundlen, . By the Kister-Mazur Theorem
9, we havef @ R = 1y, andn; = 7. The result follows. O

12 Corollary Let¢ be anumerabl®™-bundle. Thenthere is an equivalence

EOR="(DR.

Proof. Note that by definitioré = “£. The R*-bundle¢ is contained in

the n-microbundle(E (&), B, p, s), and thuslo)(g) =~ ¢ @ R by Propo-
sition 11. Similarly,“¢ is an R"-bundle contained in the-microbundle

(E(Z), B, p, 5), whence’s & R = D(E). O

Our next aim is to show that in certain situations there is an equivalence

& = "¢, Now we need some results about classifying spaces.

The necessary classifying spaces

Recall that dibrationis a bundle which has the homotopy lifting property,
see Spanier [21] Ch. 2.2. L&, -2~ B andE, —2~ B be fibrations. A
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commutative diagram of bundle maps between fibrations

F G
Eq ~ [y - F
b2
b1 p1
B

is called afibre homotopy equivalendéthere are homotopie& o F' ~
idg, andF o G ~ idg, which are constant undes andp; (a homotopy
f : By x [0,1] —— Ej is constant undep; if p; o f; = p1 o fo for all
t € [0, 1]). Ann-spherical fibrationis a fibration whose fibres are homotopy
equivalent to am-sphere. A spherical fibration is calledientableif the
fundamental groupoid oB acts trivially on the homotopy groups of the
fibre; in particular, a spherical fibration over a 1-connected base is always
orientable. Orientability is preserved under fibre homotopy equivalence.
Thespherical fibration of a numerablR™-bundleis the fibrationEy (£)
—— B (thisisindeed afibration, see Spanier [21] Theorem 2.7.12) and two
numerableR”-bundless, ¢ are calledfiibre homotopy equivalenf ~ ¢/,
if their respective spherical fibrations are fibre homotopy equivalent. Note
that an equivalence d"™-bundles induces a fibre homotopy equivalence,
and that{ ~ “¢, sinceEy(§) = Eo(*§). We call a numerabl&”-bundle
orientableif its spherical fibration is orientable.
The aim of this section is to prove the following theorem.

13 Theorem Let¢, £ be orientable numerabl&™-bundles over a spacB
with the homotopy type of a CW-complex of dimension at md$t¢ and
¢ are stably isomorphic, i.e. § & R* = ¢’ ¢ R* for somek > 0, and if
there is a fibre homotopy equivalenge~ ¢, then there is an equivalence

£xg

This implies in particular the following result.

14 Corollary Leté be an orientable numerablg™-bundle over a spacg
which has the homotopy type of a CW-complex of dimension atimblen
there is an equivalence

N3

Proof. By Corollary 12 we havé & R = “¢ & R, and¢ ~ “£. The result
follows from Theorem 13. O
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In order to prove Theorem 13 we need some facts about classifying spaces
and vector bundles. More precisely, we will prove that the kernels of the
maps

m;(BSTOP(n)) — m;(BSTOP(n + k))

7 (BSG(n))

intersect trivially for: < n (see below for definitions). First we prove this
result forvector bundles(An n-vector bundle is afR™-bundle with extra
structure, the vector space structure on the fibres. Husemoller [9] gives
a comprehensive introduction.) LBSO(n) denote the classifying space
for orientedn-vector bundles. For any spacg, the set of free homotopy
classeg X; BSO(n)] is in a natural one-to-one correspondence with the
collection of the equivalence classes of oriented numerabkctor bundles
over X, see eg. Husemoller [9] Ch. 4. SinB&O(n) is 1-connected, this

set coincides also with the sgX’; BSO(n)]o of based homotopy classes
see eg. Whitehead [25] III.1.11.

15 A model for BSO(n) Let V,,,(R¥) denote the Stiefel manifold of or-
thonormakn-frames inR*, and let

Vi (R®) = | Vin(RF),

cp. Husemoller [9] Ch. 8. For < m there is a natural free action of the
matrix groupSO(n) onV,,,(R*°), and the orbit space

BSO(n) = Vi (R®)/SO(n)

is a classifying space f&#O(n). Note thatSO(n) can be identified with a
subset ofl/, (R™) C V,,,(R>).

16 The tangent bundle ofS™ The tangent bundle &" can be described
by the Borel-Hirzebruch method. Thesphere is a homogeneous space

S" =80(n+1)/SO(n),

and the tangent vector bundt& of S” is the vector bundle associated to
the principal bundl&sO(n) —— SO(n + 1) —— S” via the standard
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representation 30 (n) onRR™. Consider the diagram

SO (n) =—==————50(n) © - SO(n + 1)
SO(n+1) Vi1 (R™) Va1 (R™)

| | |

SO(n +1)/S0(n) —> Va1 (R®)/SO(n) —» Vi41(R)/SO(n + 1),
The bottom line is a fibration
SO(n +1)/SO(n) — BSO(n) — BSO(n + 1).

The left column, which is the pull-back fibration of the middle column, i.e.
the principal bundle oveBSO(n), is the principal bundle associated to the
tangent bundle d§". Thusc is a classifying map for the tangent bundle of
S™. Note thatthe mapSO(n) — BSO(n+1) corresponds to the process
of stabilizing vector bundles: if an orientedvector bundlé€ is classified
by f : B(§) — BSO(n), then the composit8({) — BSO(n) —
BSO(n + 1) classifies @ R.

LetT,, denote the kernel of the map (BSO(n)) — 7,(BSO(n+1)). As

before S" —~ BSO(n) is a classifying map for the tangent bundleS6t

As we remarked befor&SO(n) is 1-connected, so the set of free homotopy
classegS*; BSO(n)] coincides with the homotopy group,(BSO(n)) =

[S¥; BSO(n)]o, see Whitehead [25] I11.1.11.

17 Proposition The groupZ,, is generated by the image of, (¢).
If n is even, themr, (c) is an isomorphism ont®,,.
If n=1,3,7, thenT,, = 0 andc is homotopic to a constant map.
If n £ 1,3, 7is odd, therl,, is cyclic of order two.

Proof. The long exact homotopy sequence shows that)(ids») = ¢ €
T,, (this is also clear from the geometric point of view* @ R = R"*!
is a trivial bundle). MoreovefT,, is a cyclic group generated lay because
T (S™) = Z.

If n is even, thenr,1(BSO(n + 1)) is isomorphic to a subgroup of
Z]2 ® 7Z/2, see eg. Mimura and Toda [15] IV.6.14. Sineg(S") = Z, the
long exact homotopy sequence shows that the mdp) is an injection if
n is even.

If n is odd, thenr,(BSO(n)) is isomorphic to a subgroup &/2 &
Z/2 by loc.cit., so the image ofr,,(c) in m,(BSO(n)) is either trivial or
isomorphic toZ/2. It is well-known that the tangent bundle 8f is not
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fibre homotopy equivalent to the trivial bundle, provided thag 1, 3,7,

see James-Whitehead [10] Theorem 1.12, combined with Adams’ result
on elements of Hopf invariant 1 (Husemoller [9] Ch. 15). In particular,
" 2 R", and thus: € 7,(BSO(n)) has order two for. # 1, 3, 7. Finally,

the tangent bundle @&" is known to be trivial fom = 1,3,7. O

Let SG(n + 1) denote the topological semigroup of all m&ggs—— S™

of degree 1, and |I&8F(n) = 2"S™ N SG(n + 1) denote the subset of all
based degree 1 self mapsS¥f, cp. Milnor [14] Sect. 2. There is a fibration
SF(n — 1) — SG(n) — S™! and an associated classifying space
BSG(n) which classifies orienteth, — 1)-spherical fibrations over suffi-
ciently nice spaces (eg. over CW-complexes) up to (oriented) fibre homotopy
equivalence, see Stasheff [22], Madsen-Milgram [12] Ch. 1. Corresponding
to the process of stabilizing bundles and to the forgetful maps framctor
bundle taR"-bundles to spherical fibrations, there is a commutative diagram
of fibrations and bundle maps

SO(n +1)/S0(n) BSO() — % BSOm +1)
188 18
SG(n + 1)/SG(n) BSG(n) — 1 . BSGn + 1).

The spaces on the left are the homotopy fibres of the stabilization maps.
(Up to homotopy, every map can be converted into a fibration by a standard
process, see Spanier [21] Theorem 2.8.9. The resulting fibre is called the
homotopy fibre of the map.)

18 Lemma The forgetful magS< induces isomorphisms
m,(S") = me(SO(n 4+ 1)/SO(n)) = 7, (SG(n + 1)/SG(n))

for k < 2n — 3 and maps the grouf;, isomorphically onto the kernel of
the stabilization map

Tn(BSG(n)) — m,(BSG(n + 1))
forall n > 1.

Proof. Note thatSG(1) = {pt}, andSF (1) = {pt} is the connected com-
ponent of ?S' ~ Z, henceSG(2) ~ S'. Also, 71 (BSO(n)) = 0 =
m1(BSG(n)) = 0 for all n. Easy diagram chasing shows thatSO(2)
/SO(1)) —— m1(SG(2)/SG(1)) is an isomorphism and that the kernels
of both stabilization maps in dimension 1 are trivial, so the claim follows
forn =1.
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Forn = 2 we use the fact that;(SG(3)) = m;(SF(3)) for i <
2, see Milnor [14] Sect. 2. Thus2(BSG(3)) = Z/2. Again, easy dia-
gram chasing shows that(BSO(3)) —— m2(BSG(3)) is an isomor-
phism, and sd% C m(BSO(2)) maps isomorphically onto the kernel of
7 (BSG(2)) —— m2(BSG(3)) (note however thatro(S?) % m2(SG(3)
/SG(2))).

Forn > 3we have isomorphisms (SO(n+1)/SO(n)) — m;(SG(n
+ 1)/SG(n)) for all i < 2n — 3, see Burghelea-Lashof [3] p. 38 no. (5),
Milgram [13] Theorem A.

It remains to show thdl;,, maps isomorphically onto the kernel of the
stabilization map for spherical fibrations./if£ 1, 3,7 is odd, thenr” is
not fibre homotopically trivial, hencgSS o ¢ # 0 in 7,(BSG(n)), cp. the
remarks in the proof of Proposition 17. Assume thais even, and let
g : S —— S™ be a map of degrek. Then the Euler class of the bundle
corresponding t@ o g = kc is k times the Euler class of?; in particular,
itis not zero. The Euler class is invariant under fibre homotopy equivalence
(since it can be defined for spherical fibrations, see eg. Milnor [14], Spanier
[21]Ch.9.5; he denotesthe Euler clasgByhencef, Gcog =k f c#0
in 7,(BSG(n)). Thus f§Q mapsT,, isomorphically onto the kernel of the
stabilization maprn(BSG(n)) — m(BSG(n +1)).

Now we get back t®R™ bundles. LeBTOP(n) denote the topological group
of all orientation preserving based homeomorphismi'afThere is a cor-
responding classifying spa&STOP (n) which classifies oriented numer-
ableR"-bundles up to (oriented) equivalence. B&tOP(n+1)/STOP (n)
denote the homotopy fibre of the stabilization MATOP(n) —
BSTOP(n + 1). The forgetful mapfS< factors as

fSTOP

SO
BSO(n) 2198 BSTOP(n) 55+ BSG(n)
19 Proposition (cp. Varadarajan [24] Sect. IThe map
m:(SO(n 4+ 1)/SO(n)) — m;(STOP(n+ 1)/STOP(n))

is anisomorphism for all < n—1, and also fori = n, provided that, # 3.
In dimension 3, we have;(STOP (4 )/SO(4)) =7 & Z/2 instead.

Forall n > 1, the forgetful map"STOP mapsT,, isomorphically onto the
kernel of the stabilization map,(BSTOP(n)) — m,(BSTOP(n+1)).

Proof. We divide the proof in several steps.

Step (i). The claim holds for < 3.

If n < 3, thenSO(n) —— STOP(n) is a homotopy equivalence by
the results of Kneser [16] and Hatcher [7], see also Kirby-Siebenmann [11]
Essay V Sect. 5, so the same is trueﬁ@?op in these dimensions, and the



96 L. Kramer

claim follows easily fom < 2. Also, m3(BSTOP(3)) = m3(BSO(3)) =0,
so0 = T3 maps isomorphically onto the kernel of the stabilization map in
dimension 3.

Let STOP = |J,;>(, STOP(n) andSO = (J,,~,SO(n). Quinn proved
that

7;(STOP /SO, STOP(4)/SO(4)) = 0 (1)

for i < 5, cp. Freedman-Quinn [6] 8.7A., sq(STOP(4)/SO(4)) is iso-
morphic t00,0,0,%Z/2,0 for i = 0,1,2,3,4, cp. Kirby-Siebenman [11]
Essay V Sect. 5, 5.0(5). The exact sequence
0 — 73(50(4)/50(3))

—— 73(STOP(4)/SO(3)) — m3(STOP(4)/SO(4))

—— 0
shows thatrs(STOP(4)/SO(3)) = m3(STOP(4)/STOP(3)) € {Z,Z &
Z/2}, andZ is excluded by the diagram
0 —» 73(SO(4)/SO(3)) — 73 STOP(4)/STOP(3)) — 73(STOP(4)/SO(4)) — 0

1%

m3(SG(4)/SG(3)).
Thusms(STOP(4)/STOP(3)) = Z & Z/2, and the case = 3 is finished.

Step (ii). Some stability results f8TOP (m)/SO(m).
If m > 5, then

7(STOP/SO, STOP(1m)/SO(m)) = 0 @)

forall i < m + 2, see Kirby-Siebenmann [11] Essay V Sect. 5, 5.0(4) and
Burghelea-Lashof[3] 5.1 (note that this is one dimension better than Quinn’s
result (1) form = 4 mentioned above). There are two long exact sequences

— m;(STOP(m),SO(m)) — m;(STOP,SO) — m;(0) —
and
— m;(SO,S0(m)) — m;(STOP,STOP(m)) — m;(0) —
wherer;(O) is theith homotopy group of the diagram
SO(m) = SO

| ]

STOP(m) —» STOP,
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see Stern [23] (these homotopy groups are defined foB, andnr,(0) is

a pointed set). Note also tha{(G, H) = m;(G/H) for G, H € {SO(m),
STOP(m), SO, STOP} whenever this makes sense (properly speaking, one
has to replace the topological groups by certain semi-simplicial groups to
justify these identifications, see Stern [23], Rourke-Sanderson [17]). Com-
bining the two long exact sequences with the stability results (1), (2) above,
we conclude that

7;(STOP/STOP(m),S0/SO(m)) = 0

form > 5andi < m + 2, and form = 4 andi < 5. In the stable range
i < m — 1 we haver;(SO/SO(m)) = 0, som;(STOP/STOP(m)) =0
as well.

Step (iii). The claim holds fon > 4.

Suppose now that > 4. Thenm;(STOP(n + 1)) = m;(STOP) and
mi(SO) = m;(SO(n + 1)) for i < n. Fori > 3, this follows from Step (ii);
fori = 0, 1,2 one has to modify some arguments slightly. In any case, we
obtain a diagram

mi(SO(n+1)/SO(n)) — m(STOP(n + 1)/STOP(n))

>~

m;(SO/SO(n))

7;(STOP /STOP(n)).

for i < nandn > 4. This implies thatr,(STOP(n + 1)/STOP(n)) is
infinite cyclic forn > 4 and thus/;, maps onto the kernel of the stabilization
map forBSTOP(n) in dimensionn. However, we know already that,
maps isomorphically onto the kernel of thedimensional stabilization map
for BSG(n) by Lemma 18,

- (SO(” - “) T, Ta(BSO(n))

N N\

W?:(fssg()P)Tn T (BSTOP(n))

/ /

Ta(f89) T ———————————— T, (BSG(n)).

STOP(n + 1)
STOP(n) )

(S )

The result follows. O

Repeated application of this stability result yields the following corollary.
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20 Corollary Fori < nandl <n <n + k, the kernels of the maps
m;(BSTOP(n)) m;(BSTOP(n + k))

m;(BSG(n))
intersect trivially. O

Proof of Theorem 13t suffices to prove the theorem fét, a CW-complex
of dimensionm < n. We proceed by induction om. Form = 0, there

is nothing to show. Let, ¢’ be R"-bundles over arim + 1)-dimensional
CW-complexB as in the theorem, fam + 1 < n, with classifying maps
¢, : B—— BSTOP(n). We orient both bundles in such a way that
fSEOFP o ~ f8TOP o/ Thenstaboc ~ staboc’, wherestab : BSTOP(n)
—— BSTOP(n + k) is the stabilization map.

Let I = [0, 1]. By our induction hypothesis, we may assume that the
theorem holds form-dimensional CW-complexes, and in particular for the
m-skeletonB("™) . We want to prove it foi3, an(m + 1)-dimensional CW-
complex. There exists amap: B(™ x IUB x {0,1} — BSTOP(n)
with C| gy 0y = candC|p 1) = ¢, and we are dealing with thextension
problem

B™ x TUB x {0,1} BSTOP(n)

B x 1.
Note that B x I is an (m + 2)-dimensional CW-complex, and that
(Bx 1)) = B0™) x TUB x {0,1}. Lete™! —— Bbean(m +1)-
cell. Thene™ ! x I —— B x Tisan(m+2)-cell, and we have to show that
the mapC can be extended over this cell. Lgt d(e™ ™! x I) — B x I
denote the attaching map. We obtain a diagram

a(e™! x I) —X+ B(™ x TUB x {0,1} BSTOP(n)
e
BSG(n) stab
et x I BxI BSTOP(n + k)
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which commutes up to homotopy. The three spaces on the right are 1-
connected, so we can vie® o x as an element of,,+1(BSTOP(n)).

The diagram shows that bathab o C o and £ °F o C o x are homotopic

to a constant map, since they factor through the contractible sfiacex I.

By Corollary 20, the mag' o x is also homotopic to a constant map, so we
can extend” o y overe™*! x I. Every (m + 2)-cell of B x I is of this
form, so the majd’ can be extended to a m&px I — BSTOP(n) (see
Whitehead [25] V.5.2) and and¢’ are homotopic. O

Hopf bundles of compact projective planes

A projective planeis an incidence geometrg = (P, L, F) consisting
of a point setP, aline set£ and aflag setF C P x L describing the
incidence relation: a point € P and a linel € £ are incident if and only
if (p,¢) € F. Fordistinct point®, ¢ € P we denote the unique line joining
them bypq € L£; dually, the intersection point of two distinct linés? € L
isht € P.The setl, = {h € L| (p,h) € F} is called aine penciland
Pe={q € P|(q,¢) € F}is called gpoint row.

If P and£ are compact Hausdorff spaces, and if the n{@apg) — pq
and(h, ¢) — h{ are continuous on their respective domaths P \ idp
and.l x £\ id., then is called acompact projective plansee Salzmann
et al. [18] for a comprehensive introduction. The continuity condition is
equivalent with 7 C P x L being closed, see [18] 41.5. The classical
Moufang plane*G,(F), forF = R, C, H, O are examples for such planes,
but there exists a continuum of non-classical compact projective planes.

21 Definition Let = (P, L, F) be a compact projective plane with man-
ifold lines. Then every point row is homeomorphic torasphere, for some
n € {1,2,4,8}, cp. Salzmanret al. [18] 52.3, Breitsprecher [1] 2.1 and
2.3.1. Letq € P be a point and define a map (the central projection from
q) P\ {q¢} — L, byp — pq. It is easy to see that this map is a lo-
cally trivial fibre bundle which we denote by, thelocal Hopf bundle ap
[18] 51.23. The one-point compactification of the total spaog, @ clearly
homeomorphic t@. If m is a line which is not incident witp, then we can
define a sectior by s(¢) = m/. Since the lines of3 aren-spheresy, is
anR"-bundle, andP = M (n,) is the Thom space of this bundle. The map
F —— P is alocally trivial S"-bundle, see [18] 51.23. Fo¥ C P we
denote the restriction hffx —— X; similarly for ¥ — L.

Eisele’s homeomorphism criterion [5] is a complicated bundle-free version
of the bundle magG, g) below. See [18] 52.15 for a streamlined version
of his result. A similar construction is used by Schroth in [19] who proved
that for any two points, ¢’ the bundles;, andr, are weakly equivalent.



100 L. Kramer

*q Pq P #(pq)m
pe((pg)m)
t((pg)m)
Fig. 4

(And dually for any two lines. Schroth did not consider the case of projec-
tive planes, but his arguments are valid nevertheless. Conversely, his result
follows directly from Proposition 22 below, sineg = “n,, = 7,.)

22 Proposition Let (¢, m) be a non-incident point-line pair in a compact
projective plane with manifold lines. Then there is a weak equivalence

between the local Hopf bundle @and the upside-down local Hopf bundle
atm.

Proof. Let E = {(p,¢) € F| (p, m) € F} denote the set of all flags whose
points lie on the linen. Then there is an injection

E(hy) — E,  {+— (ml,0)

whose image consists of all flagsifwhose line is different from. Clearly,
E can be identified with the total space of t§&-bundle7, obtained by
compactifying the fibres: the element which is added to the e, ),
is the flag(p, m). The zero-sectiotP; —— E(n,,) of n,, is given by
p — pq; the corresponding subset i consists of the flags whose line
passes througf

Now consider the bundlg,. Its zero-section is given b§— ¢m. We
define an injectiorG : E(n,) — E as follows. Let. : P,,, — P,, be
a fixed-point free homeomorphism (recall thigt, = S™). Put

G(p) = (t((pg)m), pe((pg)m))

(see Fig. 4). The image @f consists of all flags iz whose line does not
pass througly, and the section af,, is mapped onto the set of flags whose
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line is m. Thus, if we putg(¢) = «(mf), then(G,g) : ng — “np IS a
weak equivalence dk™-bundles. O

23 Theorem Let (p, ¢) be a point-line pair in a compact projective plane
with manifold lines. Then th&"-bundlesy, and, are weakly equivalent.

Proof. It clearly suffices to prove the theorem for non-incident point-line
pairs. Ifn = 1, thenn, corresponds to one of the two elements gfBTOP
(1)) = mo(TOP(1)) = Z/2, so eithen,, is the trivial line bundle oves!,
or 7, is the Mobius strip. The Thom space of the trivial bundle is not a
manifold, son, has to be the Nbius strip. The same argument applies to

Te-
Assume now that > 2. Thenn € {2,4, 8}, and there is a weak equiva-
lencen, = “n, by Proposition 22. By Corollary 14, there is an equivalence

ne = “ng. O

24 Corollary The point spac@ and the line spac€ of a compact projec-
tive plane with manifold lines are homeomorphic.

Proof. The point space is the Thom spacenpf and the line space is the
Thom space ofy,. O
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