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Abstract. All £ag-homogeneous compact connected polygons are classi¢ed explicitly. It turns
out that these polygons are precisely the compact connected Moufang polygons.

Mathematics Subject Classi¢cations (2000): 51H10, 51E12, 51A10.

Key words: Moufang polygon, generalized quadrangle.

We determine explicitly all compact connected (generalized) polygons which admit a
£ag-transitive group of continuous collineations. The result is summarized in the
following theorem:

THEOREMA.A compact connected polygon is £ag-homogeneous if and only if it is a
Moufang polygon.

A similar result was obtained by Burns^Spatzier [6] under a stronger homogeneity
assumption (viz. transitivity on the ordered ordinary n-gons in a generalized n-gon).
In more detail, we prove the following theorem, which completes the results of part I
[10].

MAIN THEOREM. LetP be a compact connected n-gon with nX 3; and denote by p
(respectively q) the dimension of a point row (of a line pencil) of P: Let G be a
£ag-transitive group of automorphisms P which is closed in the full automorphism
group. Then p and q are ¢nite, and we have one of the following cases:

(a) n � 3 and p � q 2 f1; 2; 3; 4g: ThenP is the projective plane over the real numbers,
over the complex numbers, over Hamilton's quaternions H, or over Cayley's
octonions, and the possibilities for the group G are given in [10] 3.3, 3.7.
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�b1� n � 4 and p � q 2 f1; 2g: Then P is isomorphic or dual to the real symplectic
quadrangle or to the complex symplectic quadrangle, and the possibilities for the
group G are given in [10] 3.4, 3.7.

�b2� n � 4 and fp; qg � f1;mÿ 2g with m > 3.Then P is isomorphic or dual to the real
orthogonal quadrangle de¢ned by the standard quadratic form on Rm�2 of Witt
index 2. Moreover, the connected component G1 of G is one of the groups
POm�2R�2�1 or P�SOmR� SO2R�, or G2 � SO2R for m � 7, or Spin7R�
SO2R for m � 8, and we have jG : G1jW 2 if m is odd, and jG : G1j divides 4
if m is even.

�b3� n � 4 and fp; qg � f2; 2mÿ 3g with m > 2. Then P is isomorphic or dual to the
complex Hermitian quadrangle de¢ned by the standard Hermitian form on
Cm�2 of Witt index 2. Moreover, G1 is one of the groups PUm�2C�2�,
P�UmC�U2C�, or P�SUmC� SU2C�, and we have jG : G1jW 2 or G1 �
P�SUmC� SU2C�WGWP�UmC�U2C� � Z2, where Z2 denotes a cyclic group
of order 2.

�b4� n � 4 and fp; qg � f4; 4mÿ 5g with m > 1. Then P is isomorphic or dual to the
quaternion Hermitian quadrangle de¢ned by the standard Hermitian form on
Hm�2 of Witt index 2. Moreover, G1 is one of the groups PUm�2H�2� or
P�UmH�U2H�, and we have jG : G1jW 2 for m � 2, and G � G1 if m > 2.

�b5� n � 4 and fp; qg � f4; 5g:ThenP is isomorphic ordual to the quadrangle de¢ned by
the a-Hermitian form

P
j x

a
j yj onH

5, where the antiautomorphism aofH is given by
xa � ÿi �xi. Moreover, G1 is one of the groups �PUa

5H�1, U5C, SU5C, and we have
jG : G1jW 2 or G1 � SU5CWGWU5C � Z2 .

�b6� n � 4 and fp; qg � f6; 9g. Then P is one of the two mutually dual quadrangles
associated to the exceptional simple Lie group E6�ÿ14�=Z, where Z is the center
of the simply connected Lie group E6�ÿ14�. Moreover, G1 is one of the groups
E6�ÿ14�=Z or Spin10R or Spin10R � SO2R, and we have jG : G1jW 2 or
G1 � Spin10RWGW �Spin10R � SO2R� � Z2.

(c) n � 6 and p � q 2 f1; 2g: Then P is isomorphic or dual to the split Cayley hexagon
over the real numbers or over the complex numbers, and the possibilities for the
group G are given in [10] 3.5, 3.7.

The cases �b1� and �b2� are also covered by Biller in [1]. We remark that the group
isomorphisms

PSO5R�2�1 � PSp4R; PSO5C � PSp4C;

PSO6R�2�1 � PSU4C�2�; PUa
4H � PSO8R�2�1

correspond to dual pairs of quadrangles de¢ned by the pertinent forms. Note that the
cases �b3�; �b5�; �b6� yield examples of £ag-transitive automorphism groups which are
neither open nor closed in the topological automorphism group: let G be a
£ag-transitive subgroup with centralizer SO2R, such that G \ SO2R is ¢nite. Then
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the group G � SO2Q � G � SO2R is £ag-transitive, but not closed or open in the
automorphism group.

Every topological polygon which is a Moufang polygon admits a £ag-transitive
group of automorphisms (because the root collineations are continuous, compare
[2] 3.5). Each building associated to a simple real Lie group is a Moufang building,
see [30] 5.6. The main theorem of Burns^Spatzier [6] says that each compact con-
nected Moufang building comes from a real simple Lie group. The classi¢cation
of the real simple Lie groups shows that the polygons appearing in the theorem
above are precisely the compact connected Moufang polygons, see Table VI Ch.
X in [11]. Thus we obtain Theorem A and the following:

THEOREM B. A compact connected polygon is aMoufang polygon if and only if it is
isomorphic to one of the polygons in the Main Theorem above.

Inspection of the list of groups G in the Main Theorem, together with [10] 3.8, yields
the following:

COROLLARY C. In each case of the Main Theorem, there is a unique conjugacy
class of minimal £ag-transitive closed groups G. In fact, the minimal £ag-transitive
groups G are precisely the maximal compact connected subgroups of the full
automorphism group of P, except in the cases �b2� when fp; qg is f1; 5g or f1; 6g,
�b3�, �b5�, and �b6�.

In the exceptional case �b2� of Corollary C, the conjugacy class is unique by [23] Ex.
9, p. 57 and the remarks before Prop. 8. The compact connected £ag-transitive
groups have also been determined by Eschenburg^Heintze [7].

COROLLARYD. Let n > k > 1 and letP � �P;L;F� be a compact connected n-gon
with a group G of automorphisms which is closed in the full automorphism group and
transitive on the pairs �x; y� 2 P � �P [ L� of (graph-theoretic) distance k. Then
P is one of the Moufang polygons listed in the Main Theorem, and G contains
the connected component of the full automorphism group of P. In particular, G con-
tains all root collineations.

The last corollary follows from the Main Theorem, since such a group G is transitive
on £ags, and not compact, because the set of all these pairs �x; y� is not compact (use
[9] 2.8).

1. Transitive Actions of Compact Lie Groups

Homeomorphism of topological spaces is denoted by�, isomorphism of topological
groups G;H is denoted by G � H, and G �loc H means that G and H are locally
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isomorphic. The rank of a ¢nitely generated Abelian group A is the Q-vector space
dimension of A
Q.

We need some results about compact Lie groups and transformation groups, see,
e.g. [25] Ch. 9. We will make frequent use of the following fact: if G is a compact
connected Lie group, and if H � G is a normal compact connected subgroup, then
there exists a normal compact connected subgroup K � G such that H \ K is ¢nite
and G � KH. In this situation we call G an almost direct product of H and K ,
and we denote this fact byG � H � K . The number of the non-Abelian simple normal
subgroups of G will be called the length len�G� of G. Thus, a compact connected Lie
group is an almost direct product of len�G� almost simple compact Lie groups
and a torus group.

Our notation for groups is the same as in part I [10]. If a Lie group G acts
transitively on a space X � G=H, then there is a long exact homotopy sequence

. . .! pi�H� ! pi�G� ! pi�X � ! piÿ1�H� ! . . .

In particular, if G is connected and X is simply connected, then H is connected, too.

PROPOSITION 1.1 (Compact groups which are transitive on spheres). Let G be a
compact connected transformation group which acts effectively and transitively
on a sphere Smÿ1 with mX 2; and let H � G be the stabilizer of an element of
Smÿ1: Then there are only the following possibilities for the triple �G;H;Smÿ1�:

�SOmR;SOmÿ1R;Smÿ1� with mX 2;

�SUdC � A;SUdÿ1C � A;S2dÿ1� with dX 2;

�UdH � B;Udÿ1H � B;S4dÿ1� with dX 2;

�G2;SU3C;S6�;
�Spin7R;G2;S7�;
�Spin9R;Spin7R;S15�;

where A 2 f1;U1Cg and B 2 f1;U1C;U1Hg act as scalars. In each case, H is deter-
mined uniquely up to conjugation in G, and the action of G on Smÿ1 is linear, i.e.
G � OmR.

Proof. This classi¢cation has been achieved byMontgomery^Samelson [21], Borel
[3], see also Poncet [24]; for the uniqueness ofH (due to Borel and De Siebenthal) see
Wolf [32] 8.10.8, 3 and Poncet [24] ½2. &

PROPOSITION 1.2. Let G be a compact connected Lie group which acts transitively
and almost effectively on an �nÿ 1�-connected compact manifold X, where
dimX X nX 2. Let H � G be the stabilizer of some point x 2 X. We write
G � G0 � G1 � G2 � � �Gr and H � H0 �H1 �H2 � � �Hs, where G0 and H0 are tori (or
trivial), and the other factors Gi, Hi are almost simple and non-Abelian. Thus,
len�G� � r and len�H� � s. Then the following holds:
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(0) If nX 3, then dimG0 � dimH0.
(1) If nX 5, then r � len�G� � s � len�H�.
(2) If nX 7, then we can reorder the almost simple factors of these groups in such a way

that the following holds for 1W iW r � s:
(2.1) If Gi belongs to the UkH-family, kX 1, then so does Hi.
(2.2) If Gi belongs to the SUkC-family, kX 3, then so does Hi.
(2.3) If Gi belongs to the SOkR-family, kX 7, or is exceptional, thenHi also belongs to the

SOkR-family or is exceptional.
(3) If nX 9, then (2.3) can be improved as follows:
(3.1) If Gi belongs to the SOkR-family, kX 7, then Hi also belongs to the SOkR-family.
(3.2) If Gi is exceptional, then so is Hi; and either both groups Gi, Hi are of type G2 , or

none is.

Proof. Since X is �nÿ 1�-connected, the long exact homotopy sequence of the
principal bundle H ! G! G=H � X breaks down into isomorphisms
pk�H� � pk�G�, for 0W kW nÿ 2.

The fundamental group of a compact semisimple Lie group is ¢nite. Hence if
nX 3, then p1�G� � p1�H�, and thus G andH have the same number of torus factors.
This shows (0). By a result of Bott, p3�G� � Zr, cp. Mimura [19] 3.9, and p3�H� � Zs,
hence we have proved (1). In the stable range we have isomorphisms
pk�SOnR� � pk�SO1R� for nX k� 2, pk�SUnC� � pk�SU1C� for nX �k� 1�=2,
pk�UnH� � pk�U1H� for nX �kÿ 1�=4. The low-dimensional unstable homotopy
groups of all compact almost simple Lie groups are known, see Mimura [19] p. 970.
These tables show that the different families of compact almost simple classical
Lie groups can be distinguished by their ¢rst ¢ve homotopy groups. In the range
kW 5, the exceptional groups have the same homotopy groups as the orthogonal
groups, so one needs to consider also the 6th and 7th homotopy groups. They dis-
tinguish between the orthogonal groups and the exceptional groups. &

LEMMA 1.3. Let X be a 1-connected compact homogeneous space of a compact
connected Lie group G. Then the semisimple commutator group G0 acts still
transitively on X.

Proof. Replacing G by a ¢nite covering group, if necessary, we may assume that
G � T �H is a direct product of a 1-torus T and a compact connected group
H. Proceding inductively, it suf¢ces to show that H acts transitively on X . Let
x 2 X and consider the group Hx � Gx \H. Then

dimH ÿ dimHx W dimX � dimGÿ dimGx;

and, since dimG � dimH � 1, it follows that dimHx � 1X dimGx. If we have
equality, then H=Hx � X by invariance of domain. Otherwise we have
dimHx � dimGx, since Hx � Gx, and therefore Hx � Gx, because X is simply con-
nected and hence Gx is connected. But this would imply that
X � G=Gx � �T �H�=Hx � S1 � �H=Hx�, a contradiction to p1�X � � 0. &
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We use this result to prove the following.

LEMMA 1.4. Let X be a 3-connected compact homogeneous space of a compact
connected Lie group G. Assume that G has a normal subgroup of type SO3R or
Spin3R, i.e. that G �loc SO3R�H, for some compact connected subgroup H � G.
Then the subgroup H acts still transitively on X.

Proof. By Lemma 1.3 we may assume that G has no torus factors, and by passing
to a ¢nite covering, that G � Spin3R�H. Fix an element x 2 X . As in the proof
of Lemma 1.3, Hx � Gx is a subgroup of codimension dimGx ÿ dimHx � rW 3.
If r � 3, then dimH=Hx � dimX , and thus H acts transitively on X .

Otherwise r � 2; 1; 0. Since Hx is normal in Gx, there exists an r-dimensional
subgroup K � Gx which is locally isomorphic to the factor group Gx=Hx, and
Gx � �Hx�1 � K . Since the dimension of this group K is r, it has to be an r-torus.
The exact homotopy sequence implies that p1�X � � Zr, a contradiction for
r � 1; 2. If r � 0, then Hx � Gx. This yields X � S3 �H=Hx, a contradiction to
the 3-connectedness of X . &

1.5 DIMENSION OF CERTAIN QUOTIENTS. By a straightforward induction
based on spheres as homogeneous spaces as in 1.1, we have the following identities:

dimSOmRÿ dimSOnR � n� �n� 1� � . . .� �mÿ 1�

dimSUmCÿ dimSUnC � �2n� 1� � �2n� 3� � . . .� �2mÿ 1�

dimUmHÿ dimUnH � �4n� 3� � �4n� 7� � . . .� �4mÿ 1�:

LEMMA 1.6. Let G be a compact connected Lie group which acts effectively on the
n-sphere Sn with n > 1 such that each orbit has codimension at most one in Sn. Then
G is transitive on Sn.

Proof. If some orbit has dimension n, then G is transitive, cp. [25] 96.11(a). Thus
we have to eliminate the possibility that each orbit has dimension nÿ 1. For
n 6� 2; 4 this is done in Bredon [4] Cor. 3, and for n � 4 the assertion is a consequence
of a result of Richardson, see [25] 96.34.

For n � 2 we follow Nils Rosehr and argue as follows. Each orbit is a singleton or
a circle, and each circle decomposes S2 into two connected components, which are
open in S2. The images of the circles are precisely the cut-points of the orbit space
S2=G. By a theorem of Wallace [31] 1.11 each (non-trivial) compact connected
T1-space has (at least two) non-cut-points, hence singletons do arise as orbits. &

PROPOSITION 1.7. Let G be a compact Lie group acting on a compact space X.
Suppose that all stabilizers are conjugate to one ¢xed subgroup H � G. The set
of all conjugates of H can be identi¢ed with G=NorG�H�, and becomes in this
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way a compact space. Then the map which assigns to x 2 X the stabilizer Gx is a
continuous surjection of X onto G=NorG�H�.

Proof. See Bredon [4] II.5.9. &

2. Starting the Proof

For n 6� 4 or p � q, the Main Theorem has been proved in [10] 3.8. In this paper we
consider the situation where n � 4 and p 6� q. We have to show that this leads
to the cases �b2�^�b6� of the Main Theorem.

We ¢x some notation for the rest of this paper, as in [10] Section 3. Let
P � �P;L;F� be a compact connected generalized quadrangle with an
automorphism group G which is transitive on the £ag set F , as in the Main Theorem.
The full automorphism group of P and its closed subgroups are Lie groups, see [10]
1.5, 1.6, 2.2. The connected component G1 of G is still £ag-transitive, compare [10]
2.3. We use the letter D for compact connected subgroups of G1; if possible, we
choose D to be £ag-transitive, compare 2.3, 1.3, and 1.4. Let �x; `� 2 F be a £ag.
We denote by G�x� and G�`� the kernels of the actions of the stabilizers Gx on the
line pencil Lx and of G` on the point row L of `, respectively. Then G=Gx � P,
G=G` � L, G=Gx;` � F , Gx=Gx;` � Lx, and G`=Gx;` � L are topological manifolds
(of ¢nite dimension). Thus we can apply [12] 2.1 to infer that the point rows of
P are homeomorphic to spheres Sp, and the line pencils are spheres Sq.

In [10] we considered those cases where the Euler characteristic of F is positive, or
where the topological parameters are one. Our present assumption p 6� qmeans that
P;L and F have Euler characteristic zero or that the fundamental group of F is
in¢nite, hence [10] 2.4 and [10] 2.3 do not apply. This fact accounts for some of
the dif¢culties of the case p 6� q, compared to the case p � q.

Up to duality, i.e. up to exchanging p and q, we have one of the following cases:
p � 1 < q, p � 2 < q and q is odd, p � 4 and qX 3 is odd, or pX 6 is even and
qX 3 is odd, see [10] 1.7 and [12]. These four cases are considered in Sections 3^6.

LEMMA 2.1. LetD be a compact connected subgroup ofG. Then the stabilizerDx acts
linearly on the pencil Lx; and D` acts linearly on the point row L of `.

Proof. Dx is contained in a maximal compact connected subgroup Fx of �Gx�1, and
Gx and �Gx�1 act transitively on Lx: If Lx is homeomorphic to S1; then we apply
Brouwer's theorem (compare [25] 96.30) to deduce that �Gx�1 acts on Lx as
SO2R or as a ¢nite covering of PSL2R; in particular, Dx acts linearly. If Lx is
a sphere of dimension larger than 1, then Fx is transitive on Lx; compare [10] 2.3,
and the linearity of Fx and Dx is obtained from 1.1. The dual arguments apply
to D`: &

LEMMA 2.2. For every £ag �x; `� 2 F ; we have D�x� \ D�`� � 1:
Proof. By the linearity proved in Lemma 2.1, the group F � D�x� \ D�`� ¢xes a point

distinct from x on each line through x; and a line distinct from ` through each point
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on `: Thus F ¢xes an ordinary quadrangle in P: The subquadrangle Q consisting of
all ¢xed elements of F contains the pencil Lx and the point row of `, hence
Q � P and F � 1. &

LEMMA 2.3. Let D be a maximal compact subgroup of G1. If p > 1 and q > 1; then D
is £ag-transitive. If p � 1 < q; then D is transitive on the line space L; and the
stabilizer Dx of any point x 2 P acts transitively on Lx; if D is not £ag-transitive,
then all point orbits of D have dimension q� 1, and each point orbit intersects each
point row in precisely one point.

Proof. For the ¢rst assertion see [10] 3.6. If p � 1 < q; then L is simply connected,
see [10] Appendix 42, whence D is transitive on L by loc. cit. 2.3. It remains to prove
the transitivity of Dx on Lx and the assertion on the point orbits. We may assume
that D is not £ag-transitive. This means that for every line ` 2 L; the stabilizer
D` is not transitive on the point row L � S1 of l: As D` is compact and connected
(note that D is connected by the Malcev^Iwasawa theorem), we infer that D` acts
trivially on L � S1, i.e. D` � Dx;` for every point x on `:

We have dimP � q� 2 and dimL � 2q� 1; see [10] 1.7, and we obtain

dimDx � dim xD � dimD � dimD` � 2q� 1 � dimDx;` � 2q� 1: ���
In view of dim xD W q� 2 this implies dimDx X dimDx;` � qÿ 1; hence the orbits of
Dx in Lx have dimension at least qÿ 1. By 1.6 the group Dx is transitive on Lx; and ���
shows that dim xD � q� 1. Each point row intersects each point orbit, as D is
transitive on L. It remains to show that the intersection contains precisely one point.
Let x; xd 2 L be points, where d 2 D. By transitivity of Dxd onLxd wemay assume that
Ld � L, whence d ¢xes all points on `, and x � xd in particular. &

LEMMA 2.4. Let pX 5; qX 2 and �p; q� 6� �5; 2�; �7; 4�. Then D�x� does not contain a
subgroup D0 such that the ¢xed points of D0 acting on L � Sp form a �pÿ 3�-sphere
Spÿ3 � L; in particular, D�x� has no subgroup SOpR acting on L in the standard
way (i.e. as the stabilizer of an antipodal pair in Sp).

Proof. As a consequence of 1.1, the stabilizer Dx;` acts linearly on the point row L
of `, hence Dx;` ¢xes a second point x0 on `; by duality, Dx;` ¢xes also a second line
`0 through x. Repeating this argument shows that Dx;` ¢xes the points and lines
of an ordinary quadrangle in P. The elements of P ¢xed by D0 form a thick sub-
quadrangle with topological parameters � pÿ 3; q�. As pÿ 3X 2, we infer from [10]
1.7 that pÿ 3 � q 2 f2; 4g, or both sums p� q and pÿ 3� q have to be odd, a con-
tradiction. If SOpR acts as indicated, then SOpR contains a subgroup
D0 � SO3R ¢xing a �pÿ 3�-sphere in L. &

We need also the following homotopy-theoretic results which are proved in [13].

PROPOSITION 2.5. LetP be a compact quadrangle with parameters �p; q�. Let L be
a point row containing the point x. The inclusions L � x? � P are co¢brations; the
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pairs �x?;L� and �P; x?� are �pÿ 1�- and �p� qÿ 1�-connected, respectively. Con-
sequently, the point space P is �pÿ 1�-connected; if q > 1, then the inclusion
L � P induces an isomorphismZ � pp�L� ! pp�P�. A similar result holds for the line
space. Since the £ag space ¢bers over P and L with homotopy q- and p-spheres as
¢bers, it is minfpÿ 1; qÿ 1g-connected.

Proof. See Kramer [13] Ch.3. &

COROLLARY. Suppose that p; qX 3. Then pp�1�P� and pq�1�L� are ¢nite.
Proof. Let �x; `� be a £ag. The point row L is homotopy equivalent to Sp; therefore

pp�1�Lx� is ¢nite, cp. Spanier [26] 9.7.7, 9.7.9. The pair �x?;L� is
�p� qÿ 1�-connected, and, in particular, �q� 1�-connected. The exact homotopy
sequence of the pair shows that pq�1�L� ! pq�1�x?� is an epimorphism. The pair
�P; x?� is �2p� qÿ 1�-connected, hence pp�1�x?� � pp�1�P�. &

LEMMA 2.7. LetP be a compact generalized quadrangle with parameters �p; q�, with
qX 2, and let G be a compact connected line-transitive group of automorphisms. Then
the action of G on L does not factor in the form G � G1 � G2, G` � �G1�` � �G2�`, with
G1=�G1�` � Sq, G2=�G2�` � Sp�q, except possibly if G1 acts regularly on Sq (in this
case q � 3 and G1 � SU2C acts regularly on S3).

Proof. Assume that the action factors as indicated. Then L � Sq � Sp�q is a prod-
uct of two spheres. Let Lx � L be a line pencil. Then there exists a homotopy equiv-
alence g : Sq! Lx. The composite

Sq !
g Lx!i L � Sq � Sp�q !

p1
Sq

is a also homotopy equivalence, because pq�L� is generated by the image of Sq, see
2.5; in particular, the map p1i : Lx! Sq, induced by projecting onto the ¢rst factor,
is surjective. Hence Lx meets the set fag � Sp�q � L for every a 2 Sq. Note that this
holds for every x 2 P.

If G1 does not act regularly on the ¢rst factor Sq, then the ¢xed-point set of �G1�`
(acting on Sq) is a proper subset of Sq containing S0 � Sq. Thus, every line in
S0 � Sp�q is ¢xed by �G1�`. Every line pencil Ly meets this set twice. Therefore,
y is ¢xed by �G1�x, and, consequently, �G1�x acts trivially on the point set P, a
contradiction. &

Note that it is topologically quite possible that L � Sq � Sp�q; also, such group
factorizations do occur if G1 � SU2C: some of the non-Moufang quadrangles dis-
covered by Ferus^Karcher^Mu« nzner and Thorbergsson have these properties [8],
[29].

Now we describe the structure of the proofs in Sections 3^6. We always consider a
compact connected quadrangle P with a £ag-transitive automorphism group G.
Using 2.3, 2.5, 1.3, 1.4 we ¢nd a compact connected subgroup D which is still
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£ag-transitive (in Sections 4^6) or at least line-transitive (in Section 3). Then we use
the known actions of Dx on the pencil Lx and of D` on the point row L, compare
1.1, to determine the group D at least up to local isomorphism. Here the following
observation is useful: D�`� is a normal subgroup of D`;x=D�x� (note that
D�x� \ D�`� � 1 by 2.2), and dually, D�x� is normal in D`;x=D�`�. Moreover, by 1.1
we know in each case that the embedding of Dx;` into Dx or D` is the standard one.

If D is £ag-transitive, then P is isomorphic to the coset geometry with point set
D=Dx and line set D=D`, where two cosets are incident if they are not disjoint. In
order to determine P, we show that the pair �Dx;D`� is unique up to automorphisms
of D, and then we compare with the corresponding Moufang quadrangle. If D is
only line-transitive, then we use a reconstruction method of Stroppel [27], see
3.2 below.

When we determine the possible groups G, we make use of the fact that the
maximal compact subgroups of an almost simple Lie group are maximal subgroups,
see Helgason [11] Chap. IV, Ex. A3(iv), pp. 276, 567.

3. The Case p � 1 < q

Throughout this section P is a compact quadrangle with parameters �1; q�, qX 2
with a £ag-transitive automorphism group G. By 2.3, G contains a compact con-
nected subgroup D which is transitive on the set L of all lines. In view of 2.5, 1.4,
1.3 we assume that D is semisimple, and that D has no factor of type SO3R, for
qX 4. Note that our assumption implies that D is not transitive on the point space
P: the fundamental group of D is ¢nite, and thus the fundamental group of a point
orbit xD is also ¢nite, whereas p1�P� � Z, see [10] Appendix 42. By 2.3 this implies
that D` � D�`� for every line ` 2 L.

The following idea is due to Biller [1] 4.2 and replaces another, more complicated
argument. For every x 2 P, the orbit xD is a compact ovoid (i.e. a set of pairwise
non-collinear points which meets every line, see, e.g., [16] 1.5) by 2.3. By [16] 3.2,
the set xD is homotopy equivalent to S1�q. Being a homogeneous space of D, the
orbit is in fact a sphere and the action is given by one of the pairs listed in 1.1, see,
e.g., [14] 6.6, [23] Chap. 5 ½18 Table 10.

PROPOSITION 3.1. We have D � SOq�2R, Dx � SOq�1R, D` � Dx;` � SOqR, or
we have the case q � 5 and D � G2, Dx � SU3C, D` � Dx;` � SU2C, or we have
the case q � 6 and D � Spin7R, Dx � G2, D` � Dx;` � SU3C. In each case, the
embeddings Dx � D and D` � Dx are (up to inner automorphisms) the standard
embeddings.

Proof. Since D�x� � Dx;` � D`, we have D�x� � 1 by 2.2. Thus Dx acts effectively and
transitively on the line pencil Lx by 2.3. Since Dx;` � D` is connected, Dx is also
connected.

If q � 2, then �Dx;Dx;`� � �SO3R;SO2R�. Therefore dimD � dimL � dimD`
� 6, and thus D �loc SO4R because D is semisimple. Since D=Dx � S3, we conclude
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that p1�D� � Z2, whence D � SO4R or D � SO3R� SU2C. In the second case,
L � SO3R=SO2R� SU2C is a product of homogeneous spheres, contradicting 2.7.
Thus �D;Dx� � �SO4R;SO3R�.

Now let qX 3 for the rest of this proof. Then D` � Dx;` is semisimple by 1.2, and
therefore Dx is also semisimple, because Dx=Dx;` � Sq by 2.3.

We have dimP � q� 2 and dimL � 2q� 1. Lemma 2.3 implies that
dimD � dimDl � 2q� 1 and that Dx acts (effectively) on the sphere Lx � Sq as
one of the transitive groups listed in 1.1. We consider these groups case by case.

(1) Dx � SOq�1R. Then Dx;` � SOqR � D` and D is a semi-simple compact Lie
group of dimension 2q� 1� dimSOqR � 2q� 1� q�qÿ 1�=2.We want to show
that D � SOq�2R. Note that Dx cannot act trivially on the orbit xD, since this
would imply that q� 1 � 3 by 1.1.

If q 6� 3, then Dx is almost simple.Thus D acts almost e¡ectively on xD � Sq�1.
From 1.1 we see that the action is e¡ective, and that �D;Dx� � �SOq�2R;SOqR�.

If q � 3, then D �loc SO5R, because there is no other 10-dimensional compact
semisimple Lie group. No proper six-dimensional quotient of SO4R appears
as a stabilizer in 1.1, hence the action of D on xD is e¡ective, and �D;Dx� �
�SO5R;SO4R�.

(2) Dx � SU�q�1�=2C. Then Dx;l � SU�qÿ1�=2C � D`. Again, D acts e¡ectively on xD,
since no proper quotient of Dx appears as a stabilizer in 1.1. Thus
�D;Dx� � �SU�q�3�=2C;SU�q�1�=2C�, or q � 5 and �D;Dx� � �G2;SU3C�. By 1.5,
the ¢rst possibility leads to the contradiction dimL � 2q� 1 � q� �q� 2�.

(3) Dx � U�q�1�=4H �U1H, for qX 7. Then Dx;` � U�qÿ3�=4H �U1H � D`. Moreover,
len�D� � len�D`� � len�Dx� � 2. As above we conclude that �D;Dx� �
�U�q�5�=4H �U1H;U�q�1�=4H �U1H�, and this leads to dimL � 2q� 1 �
q� �q� 4�, a contradiction.

(4) Dx � U�q�1�=4H, for qX 7. As in case (3), this leads to 2q� 1 � q� �q� 4�, a
contradiction.

(5) Dx � G2 and q � 6. Then Dx;` � SU3C � D`. Using 1.1 as before, we obtain that
�D;Dx� � �Spin7R;G2�.

(6) Dx � Spin7R and q � 7. Then Dx;` � G2 � D`, and hence D is almost simple of
dimension dimD � 15� 14 � 29. Such a group does not exist.

(7) Dx � Spin9R and q � 15.Then Dx;` � Spin7R � D` and D is simple of dimension
31� 21 � 52. By 1.2 D is an orthogonal group. Such an orthogonal group does
not exist.

In each case, the uniqueness of the embeddings follows from 1.1. &

PROPOSITION 3.2. If p � 1 < q then we have case �b2� of the Main Theorem.
Proof. By 3.1, the triple �D;Dx;D` � Dx;`� is determined uniquely up to conju-

gation in D. Now the method of Stroppel [27] for the reconstruction of geometries
from groups which are not necessarily £ag-transitive shows that P is determined
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uniquely by the triple �D;D`; fDyj y 2 Lg�. We show that fDyj y 2 Lg is already deter-
mined by �D;Dx;D`�.

The set fDyj y 2 Lg is topologized as in 1.7. Note that the map y 7! Dy is injective
on L; therefore fDyj y 2 Lg � S1 is a 1-sphere. On the other hand, the collection
of all conjugates of Dx which contain D` is also homeomorphic to S1: the ¢xed point
set of such a conjugate of SOq�1R, acting on Rq�2, is one-dimensional and has
to be contained in the ¢xed point set of D` � SOqR, which is two-dimensional.
The two exceptional cases D � Spin7R and D � G2 are similar.

By domain invariance we conclude that fDyj y 2 Lg is precisely the set of all
D-conjugates of Dx which are contained in D`. This is a purely group-theoretic
description of the triple �D;D`; fDyj y 2 Lg�. Thus P is isomorphic to the incidence
structure P0 with point set

S
y2L D=Dy and line set D=D`, where cosets of the form

dDy and dD` with d 2 D are incident; an isomorphism of P0 ! P is given by
evaluation, see Stroppel [27].

Let Q be the real orthogonal quadrangle de¢ned by a quadratic form on Rq�4 of
Witt index 2. Then D acts effectively on Q as a collineation group which is transitive
on the lines of Q, and the stabilizer of any point of Q is transitive on the pencil
through that point; the transitivity properties required in the cases D � G2 and
D � Spin7R are expressed by the isomorphisms SO7R=SO5R � G2=SU2C,
SO6R=SO5R � SU3C=SU2C, SO8R=SO6R � Spin7R=SU3C, SO7R=SO6R �
G2=SU3C of homogeneous spaces, see e.g. Onishchik [23] Chap. I, ½5, 3, p. 90f,
Kramer [13]. By the uniqueness obtained above, we conclude that P is isomorphic
to Q.

Finally we determine the possible £ag-transitive groups G. The group
S :� POq�4R�2� is the full automorphism group of Q � P, and the maximal
compact subgroups P�Oq�2R�O2R� of S are maximal subgroups of S. Let G0

be a maximal compact subgroup of G1. By de¢nition of D, we have DWG00, and
G00 WSOq�2R. Now G2 is maximal in SO7R, and Spin7R is maximal in SO8R, see,
e.g., [25] 95.12. Hence we obtain that G00 � SOq�2R or G00 � D for q � 5; 6.

In order to obtain the groups containing G00, we look at the Cartan decomposition
of the corresponding simple Lie algebras. The adjoint action of SOq�2R on the Lie
algebra Lie(S) of S is an action by conjugation; by considering skew-symmetric
matrices we see that Lie(S) decomposes under this action as
Lie(SOq�2R)�Rq�2 �Rq�2 �R, where SOq�2R acts naturally onRq�2. In the case
where G00 � SOq�2R, we conclude that G1 � S1 or G1 � P�SOq�2R� A� with
A 2 f1;SO2Rg or G1 � SOq�3R�1�, a stabilizer inS1. The £ag-transitivity of G1 elim-
inates the last possibility as well as the case A � 1.

For q � 5; 6 and G00 � G2;Spin7R, the adjoint action of G00 decomposes Lie(S) as
Lie(G00)�R7 �Rq�2 �Rq�2 �R. One can check that each Lie subalgebra of Lie(S)
which contains Lie(G00)�R also contains Lie(SOqR)�R � Lie(G00)�R7 �R, where
R �Lie(SO2R). This proves the assertions on G1 in part �b2� of the Main Theorem.
The assertions on G follow by computing the normalizer of G1. &
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4. The Case where p � 2 < q and q is Odd

Throughout this sectionP is a compact connected quadrangle with parameters �2; q�,
qX 3 odd with a £ag-transitive automorphism group G. By 2.3 we ¢nd a compact
connected subgroup D which acts transitively on the £ags. By 2.5 and 1.3 we
may (and will) assume that D is semisimple. As a consequence, D` is semisimple,
see 1.2 and 2.5. Since the point rows are 2-spheres, the group D` is locally isomorphic
to SU2C� D�`� by 1.1.

We consider ¢rst the case that qX 9. Then pi�D� � pi�D`� for iW 7 by 2.5. In par-
ticular,D and D` have the same number of almost simple factors and no torus factors,
and we can compare their respective types as in 1.2.

PROPOSITION 4.1. If qX 9, then D �loc SU2C� SU�q�3�=2C, Dx �loc SU�q�1�=2C�
U1C, D` �loc SU2C� D�`� and Dx;` �loc U1C� D�`�, where D�`� �loc SU�qÿ1�=2C.

Proof.We have D` �loc D�`� � SU2C, and p6�SU2C� � Z12. No other compact group
has Z12 as its 6th homotopy group, see Mimura [19] p. 970, hence D splits off a
normal factor of type SU2C. The possible pairs �Dx=D�x�;Dx;`=D�x�� are listed in 1.1.
Since D�`� is a normal subgroup of Dx;`=D�x�, see 2.2, and has no torus factor, it
has at most two almost simple factors. Since len�D� � len�D`� � len�D�`�� � 1, the
group D has at most three almost simple factors. Moreover, len�Dx� �
len�Dx;`� � len�D`� ÿ 1 � len�D�`��.

(1) If D�`� is discrete, then D is almost simple and hence locally isomorphic to SU2C,
which is absurd.

(2) If len�D�`�� � 2, then D�`� �loc U1H�UmH, where q � 4m� 3. By 1.2, D has three
almost simple factors which belong to the UkH-family. Moreover, the Abelian
group p7�D`� � p7�D� has rank 1, cp. [19], and so two of the three factors are
of type U1H, since p7UkH has rank 1 for kX 2. Thus D �loc SU2C�
SU2C�UnH. We have dimL � 2q� 2 � 8m� 8 � dimUnHÿ dimUmH �
�4m� 3� � �4m� 7� � . . ., a contradiction.

(3) If len�D�`�� � 1 � len�Dx�, then D�`� � Dx is one of the almost simple stabilizers in
table 1.1, and we go through the whole list.

(3.1) D�`� � SOqR. By 1.2 D �loc SU2C� SOmR. Then dimL � dimSOmR
ÿ dimSOqR � 2q� 2 � q� �q� 1� � � � � � �mÿ 1� by 1.5, a contradiction.

(3.2) D�`� � U�qÿ3�=4H. Then by 1.2 D �loc SU2C�UmH. As in (2), the equation
dimL � 2q� 2 � q� �q� 4� � . . . leads to a contradiction.

(3.3) D�`� � Spin7R and q � 15. By 1.2 D �loc SU2C� SOmR. Moreover,
dimL � 2� 30, whence dimD � 56, and thus dimSOmR � 53, which is
impossible.

(3.4) D�`� � SU�qÿ1�=2C. By 1.2 D �loc SU2C� SUmC. Then dimL � 2q� 2 �
q� �q� 2� � . . ., hence m � �q� 3�=2, and D �loc SU2C� SU�q�3�=2C. Thus
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D` �loc SU2C� SU�qÿ1�=2C and Dx;` �loc U1C� SU�qÿ1�=2C; whence Dx �loc U1C�
SU�q�1�=2C. &

We consider the remaining cases q � 3; 5; 7 separately. If q � 7, then we still have
that the ¢rst 5 homotopy groups of D and D` agree. Moreover, len�D� �
len�D`� � len�D�`�� � 1 � len�Dx;`� � 1 � len�Dx� for qX 5.

PROPOSITION 4.2. If q � 7, then D �loc SU2C� SU5C, Dx �loc SU4C�U1C,
D` �loc SU2C� D�`� and Dx;` �loc U1C� D�`�, where D�`� �loc SU3C.

Proof.We have dimL � 16 and dimP � 11. The possible pairs �Dx=D�x�;Dx;`=D�x��
are listed in 1.1. By 2.2, the group D�`� is a normal subgroup of one of the following
stabilizers: SO7R, SU3C, U1H �U1H, G2, hence we have one of the following cases.

(1) D�`� is discrete. Then D is almost simple and of dimension
dimL � dimSU2C � 19; but there is no almost simple group of that dimension.

(2) D�`� � SO7R. Then len�D� � 2 and dimD � 40. Again, such a group does not
exist.

(3) D�`� � U1H. Then len�D� � 2 and dimD � 22. There is only one such group,
namely SU3C�G2. But 0 � p4�D� 6� p4�D`� � Z2 �Z2, a contradiction.

(4) D�`� � U1H �U1H. Then len�D� � 3 and dimD � 25. The only possibility is
SU3C� SU2C�G2. But Z�Z2 � p5�D� 6� p5�D`� � Z2 �Z2 �Z2, a con-
tradiction.

(5) D�`� � G2. Then len�D� � 2 and dimD � 33, which is impossible.
(6) D�`� � SU3C. Then len�D� � 2 and dimD � 27. The only possibility is

D �loc SU5C� SU2C. Then D` �loc SU3C� SU2C, Dx;` �loc SU3C�U1C and
Dx �loc SU4C�U1C. &

The next case is q � 5. Now we know only that the ¢rst three homotopy groups of
D and D` agree.

PROPOSITION 4.3. If q � 5 then D �loc SU2C� SU4C, Dx �loc SU3C�U1C,
D` �loc SU2C� D�`� and Dx;` �loc U1C� D�`�, where D�`� �loc SU2C.

Proof. We have dimL � 12 and dimP � 9. The group D�`� is normal in either
SO5R or SU2C.

(1) D�`� is discrete. Then D` �loc SU2C and dimD � 12� 3 � 15, hence dimDx � 6.
Since p2�P� � Z and p2�D� � 0, cp. [25] 94.36, the center of Dx has to be
one-dimensional. But there is no ¢ve-dimensional semisimple compact group.

(2) D�`� � SO5R. Then D` �loc SU2C� SO5R, and p4�D`� � Z2 �Z2. On the other
hand p5�D� has to be ¢nite, and p5�L� � Z. These homotopy groups do not
¢t together to an exact sequence.

(3) D�`� � SU2C. Then dimD � 12� 6 � 18 and therefore D �loc SO5R� SU3C or
D �loc SU4C� SU2C. In case D �loc SO5R� SU3C we ¢nd that p4�D� � Z2 is
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a ¢nite group. As in the case (2), this is not possible. Hence D �loc SU4C� SU2C,
whence D` �loc SU2C� SU2C, Dx;` �loc SU2C�U1C and Dx �loc SU3C�U2C.&

The last case is q � 3. The fundamental group tells us that D` is semisimple. By 2.5
we have p3�L� � Z, and by Corollary 2.6 the group p4�L� is ¢nite, hence we obtain a
short exact sequence

0! p3�D`� ! p3�D� ! p3�L� ! 0:

This implies len�D� � len�D`� � 1 � len�D�`�� � 2 � len�Dx;`� � 2 � len�Dx� � 1, since
Dx;` �loc U1C� D�`�, and because p4�S3� � p4�Lx� is ¢nite.

PROPOSITION 4.4. If q � 3 then D �loc SU2C� SU3C, Dx �loc SU2C�U1C,
D` �loc SU2C and Dx;` �loc U1C.

Proof. Here, D�`� has to be a normal subgroup of SU2C or U2C.

(1) If D�`� is not discrete, then D�`� is semisimple because D` is semisimple, hence

D�`� �loc SU2C, and D is a 14-dimensional group with 3 almost simple factors.
The only possibility is D �loc SU3C� SU2C� SU2C, and D` �loc SU2C�
SU2C. Replacing D by its universal covering group ~D, we have
~D � SU3C� SU2C� SU2C; furthermore, L is 2-connected, see 2.5, whence
� ~D�` � SU2C� SU2C.

We argue that up to automorphisms there is only one imbedding � ~D�` � ~D
which yields an e¡ective action, namely the one where one factor of
SU2C� SU2C is imbedded into SU3C and the other factor SU2C is imbedded
diagonally into SU2C� SU2C. This is true because neither SU3C nor
SU2C� SU2C contain SU2C� SU2C as a non-normal subgroup.

But now L is ^ as a homogeneous space ^ a product of two spheres

��SU2C� SU2C�=diag�SU2C�� � �SU3C=SU2C� � S3 � S5;

contradicting 2.7.
(2) If D�`� is discrete, then dimD � 11 and hence D �loc SU3C� SU2C. Therefore

D` �loc SU2C, Dx;` �loc U1C, and Dx �loc SU2C�U1C. &

PROPOSITION 4.5. If p � 2 and qX 5 is odd, then we have case �b3� of the Main
Theorem.

Proof. Let m � �q� 3�=2. Thus mX 4. By the results of this section, the universal
covering group ~D � SU2C� SUmC acts almost effectively on P, with connected
stabilizers � ~D�x �loc U1C� SUmÿ1C, � ~D�` �loc SU2C� D�`� and � ~D�x;` �loc U1C� D�`�,
where D�`� �loc SUmÿ2C.

We claim that ~D � SU2C� SUmC contains only one conjugacy class of subgroups
which are locally isomorphic to SUmÿ1C (viz. the stabilizers of non-zero vectors).
Indeed, each inclusion of such a subgroup into SUmC gives an almost effective rep-
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resentation of SUmÿ1C on Cm, and our claim follows from [23] Prop. 5, p. 53 and
Prop. 8, p. 56, compare also [22] p. 42, case I, and [25] 95.12 for nW 8. The
embeddings of � ~D�x;` into � ~D�x or into � ~D�` are the standard ones (as stabilizers
of vectors, compare 1.1). We conclude that the pair �� ~D�0x; � ~D��`� � � ~D�x;`

0� is unique
in ~D up to conjugation, and � ~D�0x; � ~D��`� are contained in the factor 1� SUmC of
~D. We have � ~D�` � S � � ~D��`� with a subgroup S � SU2C, and
S � S0 � Cen ~D�� ~D�0�`�� � �SU2C�U2C�0 � SU2C� SU2C. The projections of S into
the two factors of SU2C� SU2C are both not trivial, because S is distinct from the
normal factor SU2C� 1 of ~D, and � ~D�` is not contained in the normal factor
1� SUmC, since ~D is generated by � ~D�x and � ~D�`, cp. [10] p.104. Hence S is a diagonal
subgroup of SU2C� SU2C, and therefore unique up to conjugation by elements of
SU2C� 1. We conclude that the quadruple �� ~D�x

0
; � ~D��`�;S; � ~D�` � S � � ~D��`�� is

unique up to conjugation in ~D. Since S contains only one conjugacy class of sub-
groups isomorphic to U1C, the triple �� ~D�x � U1C� � ~D�x

0
; � ~D�`; � ~D�x;` �

U1C� D�`�� is determined uniquely up to conjugation in ~D.
LetQ be the complex Hermitian quadrangle de¢ned by a Hermitian form onCm�2

of Witt index 2. Then ~D acts almost effectively on Q as a £ag-transitive
automorphism group. By the uniqueness obtained above, we conclude that P is
isomorphic to Q. As a consequence, the semisimple group D is isomorphic to
P�SUmC� SU2C�.

It remains to determine the possible £ag-transitive groups G. We have shown that
the connected components G1 of these groups contain the subgroup
P�SUmC� SU2C� of PUm�2C�2�. The overgroups of this group (in the full
automorphism group of Q) can be found as in 3.2. Thus G satis¢es the conclusions
in case �b3� of the Main Theorem. &

Finally, we have to consider the case q � 3.

PROPOSITION 4.6. If p � 2 and q � 3, then we have case �b3� of the Main Theorem.
Proof. By 4.4 the universal covering group ~D � SU2C� SU3C acts almost

effectively on P, with connected stabilizers � ~D�x �loc U1C� SU2C, � ~D�` �loc SU2C
and � ~D�x;` �loc U1C. We apply the results of our Appendix to P � D=Dx. From [10]
Appendix 43 we infer that Hi�P� � Z � Hi�P� for i � 0; 2; 5; 7, and that
Hi�P� � 0 � Hi�P� else. From 7.1 we see that the only possibility which is left is
case 7.1 (2), with P �Mk;l , and l � 1.

Next we note that � ~D�` cannot be contained in the normal factor SU3C of ~D,
because Dx and D` generate the whole group D. It is also clear that � ~D�` cannot
be contained in the other normal factor SU2C, since the action on L is effective.
Thus D` is embedded `diagonally', and SU3C acts regularly on L; in particular, there
is a homeomorphism L � SU3C. By 7.3, P �Mk;1 is not a spin manifold, and thus k
is odd by 7.1 (2). From this and the description of � ~D�x in 7.1 we see that the pair of
matrices �ÿ1; 1� 2 SU2C� SU3C is not contained in Dx, and thus the action of
~D on P is effective, i.e. D � ~D � SU2C� SU3C. Thus the embedding of
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D` � SU2C is given by id� i (same terminology as in 7.1, i.e. i�A� � A
1

� �
), since

id� k would yield a non-effective action on L.
Therefore we may assume that

D` � f�A; i�A��j A 2 SU2Cg ���
and

Dx;` � �C; i�C��
� �� C � diag�c; cÿ1�; c 2 U1C

	
: ����

In the natural action of D on C3 (via the second factor), Dx;` ¢xes a one-dimensional
complex subspace elementwise.

We now show that Dx is uniquely determined (up to automorphisms of D) by the
groups given in ��� and ����. By 7.1 (2), the point stabilizer Dx is conjugate to
the subgroup consisting of pairs of matrices of the form

c2

cÿ2

� �
;

Ack

cÿ2k

� �� �
; A 2 SU2C; c 2 U1C;

for some ¢xed odd integer k. A 1-parameter subgroup of Dx which ¢xes a
1-dimensional subspace inC3 elementwise and which is not contained in SU3C (such
as Dx;`) is then clearly conjugate to the subgroup

cÿ2

c2

� �
;

c2k

1
cÿ2k

0@ 1A0@ 1A8<:
������ c 2 U1C

9=;:
Suppose that this group is conjugate to Dx;` (this obviously implies k � �1, but we do
not need this fact here). The group Dx;` given in ���� has (in its action on C3) two
unique eigenspaces on which the group acts non-trivially (viz. the subspaces spanned
by the canonical basis vectors e1; e2 ofC

3). We can interchange these two eigenspaces
by an element of D` which normalizes Dx;`. Thus we can assume that the semisimple
part SU2C of Dx ¢xes e2 and hence coincides with

1;
a11 0 a12
0 1 0
a21 0 a22

0@ 1A0@ 1A8<:
������ A 2 SU2C

9=;:
The group generated by these matrices and Dx;` is

Dx � cÿ2

c2

� �
;

a11c 0 a12c
0 cÿ2 0

a21c 0 a22c

0@ 1A0@ 1A8<:
������ A 2 SU2C; c 2 U1C

9=;:
Thus the triple �Dx;D`;Dx;`� of subgroups of D is determined uniquely up to auto-
morphisms of D, and the proof can be completed as in the last two paragraphs
of 4.5. &
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5. The Case where p � 4 and qX 3 is Odd

Throughout this sectionP is a compact connected quadrangle with parameters �4; q�,
for qX 3 odd, with a £ag-transitive automorphism group G. By 2.3 we ¢nd a
compact connected subgroup D which acts transitively on the £ags. By 2.5, 1.3
we may (and will) assume that D is semisimple. Since p � 4, we have
D` �loc SO5R� D�`�, compare 1.1.

If qX 5, then len�D� � len�D`�. By 1.3, 1.2 and 1.4 we may and will assume that D,
D`, and Dx have no torus factors for qX 3, and that D has no normal subgroups
of type SU2C � U1H for qX 5.

LEMMA 5.1. If qX 9, then D�`� is not of type U1H.
Proof.Assume otherwise. Then D` �loc U2H�U1H, and thus D �loc UnH�UmH by

1.2.Moreover, p7�D`� has rank 1, see [19], and so p7�D� also has rank 1. It follows that
n � 1 or m � 1, contradicting our assumptions. &

The tenth homotopy group of SO5R is Z120, see [19], and (up to local isomorphy)
no other compact almost simple Lie group has this group as its tenth homotopy
group (note that U2H �loc SO5R). Therefore we consider ¢rst the case qX 13.

PROPOSITION 5.2. If qX 13 then D �loc U2H�U�q�5�=4H, Dx �loc U1H�U1H�
U�q�1�=4H, D` �loc SO5R� D�`� and Dx;` �loc SO4R� D�`�, where D�`� �loc U�qÿ3�=4H.

Proof. The group D�`� is a normal semisimple subgroup of Dx;`=D�x�, see 2.2, hence
by 1.1 the group D�`� is a normal subgroup of SOqR, SU�qÿ1�=2C,
U1H �U�q�1�=4H, or Spin7R (for q � 15), and D�`� is not of type U1H by 5.1.

Since p10�D� � p10�D`�, the group D splits off a normal subgroup of type SO5R,
SO6R, SU4C, or SU5C. In the case of SU4C or SO6R we get a factor Z2 in
the 10th homotopy group, hence D` itself has to split off SU4C, SO6R, or SO11R.

(1) If D�`� is discrete, then len�D� � 1 and D` �loc SO5R. But no compact almost simple
Lie group apart from SO5R has Z120 as its tenth homotopy group, cp. [19] p. 970,
hence this case is impossible.

(2) D�`� � SOqR. This case is excluded by the dual of 2.4.
(3) D�`� � SU�qÿ1�=2C. By1.2, D �loc SUmC�UnH, formX 3.Thus dimL � 2q� 4 �

dimUnHÿ 10� q� �q� 2� � �q� 4� � . . .� �mÿ 1�=2. The only possibility is
2q� 14 � dimUnH� q� �q� 2�, hence dimUnH � 12, which is absurd.

(4) D�`� � Spin7R and q � 15. By 1.2 D �loc UmH� SOnR. Moreover, p9�D`� �
Z2 �Z2 � p9�D�, whence n � 7 or n � 9. If n � 7, then D �loc UmH� SO7R
and dimL � 34 � dimUmHÿ dimSO5R � dimUmHÿ 10, which is
impossible. If n � 9, then D �loc UmH� SO9R and dimL � 34 �
15� dimUmHÿ 10, again a contradiction.
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(5) D�`� � U1H �U�qÿ3�=4H. By 1.2 D �loc UrH�UmH�UnH. Since p10�D`� �
Z120 �Z15, the group D splits o¡ a factor U1H, contrary to our assumptions
on D.

(6) D�`� � U�qÿ3�=4H. By 1.2 D �loc UmH�UnH. Since p10�D`� � Z120 we may assume
that m � 2, and thus n � �q� 1�=4� 1. Hence D` �loc SO5R�U�qÿ3�=4H,
Dx;` �loc SO4R�U�qÿ3�=4H, and Dx �loc SO4R�U�q�1�=4H. &

The remaining cases are q � 11; 9; 7; 5; 3, and we consider them separately.

PROPOSITION 5.3. If q � 11, then D �loc U2H�U4H, Dx �loc U1H�U1H�U3H,
D` �loc SO5R�U2H and Dx;` �loc SO4R�U2H.

Proof.Here dimL � 26 and dimP � 19. The almost simple group D�`� is normal in
one of the following stabilizers SO11R, SU5C, or U1H �U2H, and not locally
isomorphic to U1H by 5.1.

(1) D�`� is discrete. Then D is almost simple and of dimension 26� 10 � 36, hence
dimDx � 36ÿ 19 � 17. But no 17-dimensional compact Lie group can act
transitively on S11 by 1.1, a contradiction.

(2) D�`� � SO11R. This case is excluded by the dual of 2.4.
(3) D�`� � SU5C. By 1.2 D �loc SUmC�UnH, and m � 5, n � 4 since

dimD � 26� 10� 24 � 60. The projection of SU5C � D` into the factor
U4H � D has to be trivial (since SU5C has to ¢x many vectors of H4, cp. [25]
95.10, p. 626), thus SU5C is normal in D and acts trivially on L, a contradiction.

(4) D�`� � U1H �U2H. Then dimD � 26� 23 � 49 and D has three almost simple
factors. By 1.2 we see that they are all quaternion unitary; whence
D �loc U1H�U2H�U4H. But we assumed that D has no normal factor of type
U1H.

(5) D�`� � U2H.Then dimD � 26� 23 � 46 and D has two almost simple factors. By
1.2 they are quaternion unitary, whence D �loc U2H�U4H, and
Dx;` �loc SO4R�U2H. Thus Dx is a semisimple 27-dimensional group with three
almost simple factors. Using 1.1 we ¢nd that Dx �loc SO4R�U3H and
D` �loc SO5R�U2H. &

PROPOSITION 5.4. The case q � 9 is not possible.
Proof. Here dimL � 22, and D�`� is normal in SO9R or SU4C. If D�`� is discrete,

then D is almost simple of dimension 22� 10 � 32, which is absurd. The case
D�`� � SO9R is excluded by the dual of 2.4. Thus D�`� � SU4C, and
dimD � 22� 25 � 37. By 1.2 we have D �loc SUmC�UnH, but such a group does
not exist. &

PROPOSITION 5.5. If q � 7 then D �loc U2H�U3H, Dx �loc U1H�U1H�U2H,
D` �loc SO5R�U1H and Dx;` �loc SO4R�U1H.

Proof. Here dimL � 18 and D�`� is normal in SO7R, SU3C, U1H �U1H, or G2.
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(1) D�`� is discrete. Then dimD � 18� 10 � 28 and D is almost simple. Therefore

D �loc SO8R; but 0 � p5�D� 6� p5�D`� � Z2, a contradiction.
(2) D�`� � SO7R. Then dimD � 18� 31 � 49, and by 1.2 D �loc UmH� E, where E is

orthogonal or exceptional. The only possibility is D �loc U3H� SO8R. The point
stabilizer has dimension dimDx � 49ÿ 15 � 34 and three almost simple factors.
The only possibility is Dx �loc SO8R� SO4R. The projection SO8R � Dx into
U3H � D has to be trivial (otherwise SO8R would ¢x a non-zero vector in
H3, by [25] 95.10, p. 626), hence SO8R � Dx is normal in D, a contradiction.

(3) D�`� � SU3C. Then dimD � 18� 18 � 36 and p5�D� � Z�Z2. The only possi-
bility is D �loc SU4C�U3H. The point stabilizer Dx has dimension
36ÿ 15 � 21 and three almost simple factors, hence Dx �loc SU4C� SO4R.
The projection of SU4C � Dx into U3H � D has to be trivial (otherwise
SU4C would ¢x vectors in H3, by [25] 95.10, p. 624), hence this case is excluded.

(4) D�`� � G2. Then dimD � 18� 24 � 42 and p5�D`� � Z2. Thus D �loc U3H�
SO7R. On the other hand, dimDx � 42ÿ 15 � 27, and Dx has three almost
simple factors. Hence Dx �loc SO7R� SO4R. Again, the projection of
SO7R � Dx into U3H � D has to be trivial (otherwise SO7R would ¢x vectors
in H3, by [25] 95.10, p. 625), a contradiction.

(5) D�`� � U1H �U1H. Then dimD � 18� 16 � 34 and p5�D� � Z2 �Z2 �Z2.
Hence D �loc U1H�U2H�U3H. This contradicts our assumption that D has
no factor of type SU2C.

(6) D�`� � U1H. Then dimD � 18� 13 � 31 and p5�D� � Z2 �Z2. Hence
D �loc U2H�U3H and D` �loc SO5R�U1H and Dx;` �loc SO4 �U1H. Then Dx

is a semisimple 16-dimensional group with three almost simple factors, hence
Dx �loc SO4R�U2H. &

PROPOSITION 5.6. If q � 5 then D �loc SU5C, Dx �loc D�x� � SU3C, D` �loc U2H and
Dx;` �loc D�x� � SU2C, where D�x� �loc SU2C.

Proof. Here dimL � 14 and D�`� is normal in one of the groups SO5R or SU2C.
The case where D�`� � SO5R is excluded by the dual of 2.4.

Assume that D�`� � SU2C. Then D is a 27-dimensional group with two almost
simple factors. The only possibility is ~D � SU5C� SU2C, and � ~D�` � U2H�
SU2C. The image of U2H under the projection p2 : SU5C� SU2C! SU2C onto
the second factor has to be trivial, hence we have U2H � SU5C, and the represen-
tation has to be the obvious inclusion U2H � SU4C � SU5C. The centralizer of
U2H in SU5C is a torus; therefore the image of the factor SU2C in � ~D�` under
the projection p1 has to be trivial. But then SU2C is contained in the second factor,
SU2C, of ~D, a contradiction to the fact that the action of ~D on L is almost effective.

Therefore D�`� is discrete, whence D` �loc U2H. By 2.5 and 1.2 (1) we have
len�D� � len�D`� � 1, and furthermore, dimD � 2 � 5� 4� dimD` � 24, hence
D �loc SU5C. The group Dx has length 2 and dimension dimDÿ dimP �
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24ÿ �5� 2 � 4� � 11, thus Dx �loc SU3C� SU2C. The transitive action of Dx on the
pencil S5 shows that Dx;` �loc SU2C� D�x�, where D�x� �loc SU2C. &

PROPOSITION 5.7. If q � 3 then D �loc U2H�U2H, D` �loc U2H, Dx �loc �U1H�3, and
Dx;` �loc U1H�U1H.

Proof. Here dimL � 10. The fundamental group tells us that D` is semisimple. By
Corollary 2.6 the group p4�L� is ¢nite and p3�L� � Z by 2.5, hence we obtain a short
exact sequence

0! p3�D`� ! p3�D� ! p3�L� ! 0;

that is, len�D� � len�D`� � 1. The group D�`� is discrete, or locally isomorphic toU1H.
Assume that D�`� �loc U1H. Then D is 23-dimensional with three almost simple

factors. The only possibility is ~D � U2H�U2H�U1H, and � ~D�` �
U2H�U1H. The factor U2H of � ~D�` is embedded diagonally into the subgroup
U2H�U2H of ~D and has centralizer f1g � f1g �U1H in ~D. This centralizer is nor-
mal in ~D and coincides with the factor U1H of � ~D�`, a contradiction to the effective
action of D` on L.

Thus D�`� is discrete. Then D is 20-dimensional with two almost simple factors. The
only possibility is ~D � U2H�U2H and � ~D�` � U2H. Then � ~D�x;` � U1H�U1H.
The stabilizer Dx has three almost simple factors and dimension 9, hence
� ~D�x � �U1H�3. &

PROPOSITION 5.8. If p � 4 and 3W q 6� 5 is odd, then we have case �b4� of theMain
Theorem.

Proof. Let m � �q� 5�=4. By the results of this section, the universal covering
group ~D � U2H�UmH acts almost effectively on P, with stabilizers
� ~D�x �loc U1H�U1H�Umÿ1H, � ~D�` �loc SO5R� D�`� and � ~D�x;` �loc SO4R� D�`�,
where D�`� �loc Umÿ2H.

First we determine the embedding � ~D�x � ~D, considering separately the cases
mX 3 and m � 2.

If mX 3, then UmH contains only one conjugacy class of subgroups which are
locally isomorphic to Umÿ1H. Indeed, each inclusion of this type gives an almost
effective representation of Umÿ1H on Hm (and the centralizer of this representation
contains H); this representation is unique up to equivalence, which yields the
uniqueness claimed above, compare [22] p. 43, case IV, [23] Prop. 5, p. 53 and Prop.
8, p. 56 (or [25] 95.12 for m � 3; 4; 5).

As a consequence, Umÿ1H is embedded into ~D in the standard way (as a stabilizer
of a vector); for m � 3 we observe that the subgroup U2H of � ~D�x cannot be
embedded diagonally into ~D � U2H�U3H, because the centralizers of these diag-
onal subgroups are too small to accommodate the remaining factors of Dx.

Now we consider the case m � 2. We have

� ~D�` � f�A;f�A��jA 2 U2Hg;
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where f : U2H! U2H is a homomorphism, which is not trivial since � ~D�` is not
normal in ~D. As U2H is simple and f is bijective, we may assume that
� ~D�` � f�A;A�jA 2 U2Hg. The embedding of � ~D�x;` into � ~D�` is the standard one,
as a stabilizer of a 1-dimensional subspace in H2, compare 1.1. Thus

� ~D�x;` � a
b

� �
;

a
b

� �� ����� a; b 2 U1H
� �

� U1H�U1H:

We may assume that one of the two factors U1H, say

a
1

� �
;

a
1

� �� ����� a 2 U1H
� �

of � ~D�x;` is normal in � ~D�x. The normalizer N of that factor in ~D has the connected
component

N1 � a
b

� �
;

a
d

� �� ����� a; b; d 2 U1H
� �

�loc �U1H�3

This shows that � ~D�x � N1 is unique up to automorphisms of eD, since � ~D�x is con-
nected.

Now we know the embedding of � ~D�x. Let mX 2.
The embeddings of � ~D�x;` into � ~D�x or into � ~D�` are the standard ones (as stabilizers

of vectors, compare 1.1). In particular, � ~D��`� � Umÿ2H is embedded into ~D in the
standard way, and � ~D�x � R�Umÿ1, where R � U1H�U1H �loc SO4R and
Umÿ1 � Umÿ1H is a subgroup of the factor 1�UmH of ~D, and Umÿ1 is unique
up to automorphisms of ~D (even for m � 2). We have Cs ~D�D�`�� � UmH�U2H,

and � ~D�` � V2 � � ~D��`� with a subgroup V2 � U2H. Since � ~D�x is not contained in
the normal factor 1�UmH of ~D, one of the two factors of R � � ~D�x;` projects
nontrivially into the factor U2H� 1 of ~D, and this factor lies in V2 (as it centralizes
� ~D��`�). We conclude that the projection of V2 into the factor U2H� 1 of ~D is
not trivial, hence surjective. Thus V2 is a diagonal subgroup of Cs ~D�D�`�� �
U2H�U2H. The group Aut�U2H� 1� permutes these diagonal subgroups
transitively, and leaves Umÿ1 and D�`� unchanged. Therefore the triple
�Umÿ1; � ~D��`�;V2� is determined uniquely up to automorphisms of ~D, and the same
is true for the triple �Umÿ1; � ~D��`�; � ~D�` � V2 � � ~D��`��. The group V2 contains only
one conjugacy class of subgroups which are candidates for R, see 1.1. In view of
� ~D�x � R�Umÿ1; � ~D�x;` � R� � ~D��`�, the triple �� ~D�x; � ~D�`; � ~D�x;`� is determined
uniquely up to automorphisms of ~D.

LetQ be the quaternion Hermitian quadrangle de¢ned by the standard Hermitian
form onHm�2 of Witt index 2. Then ~D acts almost effectively onQ as a £ag-transitive
automorphism group. By the uniqueness obtained above, we conclude that P is
isomorphic to Q. As a consequence, D is isomorphic to P�U2H�UmH�.
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Finally we determine the possible £ag-transitive groups G. We have shown that the
connected components G1 of these groups contain the maximal (compact) subgroup
P�U2H�UmH� of PUm�2H�2�, which is the full automorphism group of Q � P

unless q � 3, where it has index 2 in the full automorphism group, cp. Tits [30]
8.6 or Takeuchi [28]. Thus G satis¢es the conclusions in case �b4� of the Main
Theorem. &

PROPOSITION 5.9. If p � 4 and q � 5, then we have case �b5� of the Main Theorem.
Proof. By 5.5 the universal covering group ~D � SU5C acts almost effectively onP,

with stabilizers � ~D�` � U2H, � ~D�x � � ~D��x� � SU3C, � ~D�x;` � � ~D��x� � SU2C, where
� ~D��x� � SU2C. In fact, D` is globally isomorphic to U2H and D is globally
isomorphic to SU5C, as we infer from the exact homotopy sequence

p2�L� � 0! p1�D`� ! p1�D� ! p1�L� � 0;

which shows that p1�D`� � p1�D� is a subgroup of the cyclic groups Z2 and Z5, hence
trivial. Thus the effective representation of � ~D�` � SU5C on C5 � R10 corresponds
to a decomposition R10 �H2 �R�R, see [25] 95.10, p. 624. Using [23] Prop.
8, p. 56, we conclude that � ~D�` � U2H is unique up to conjugation in ~D. The
embeddings of � ~D�x;` into � ~D�x or into � ~D�` are the standard ones (as stabilizers
of vectors, compare 1.1). Furthermore � ~D��x� � SU2C is unique in
� ~D�x;l � SU2C� SU2C up to automorphisms which are induced by inner auto-
morphisms of � ~D�`. Since � ~D�x � � ~D��x� � Cs ~D�� ~D��x��, we conclude that the triple
�� ~D�x; � ~D�`; � ~D�x;`� is determined uniquely up to conjugation in ~D.

LetQ be the quadrangle de¢ned by the a-Hermitian form
P

j xjx
a
j onH5, as in case

�b5� of the Main Theorem. Then ~D acts almost effectively on Q as a £ag-transitive
automorphism group, because U5C is a (maximal compact) subgroup of
�PUa

5H�1, compare Helgason [11] Ch. 10 Table V, and this subgroup is £ag-transitive
by 2.3 and 1.3. By the uniqueness obtained above, we conclude that P is isomorphic
to Q.

Finally we determine the possible £ag-transitive groups G. We have shown that the
connected components G1 of these groups contain the subgroup SU5C. The over-
groups of this group can be determined by using the Cartan decomposition of
the Lie algebra Lie�PUa

5H�. Under the adjoint action of SU5C, this Lie algebra
decomposes as Lie�SU5C� �R�R20. This gives the assertions as in case �b5�. &

6. The Case where pX 6 is Even and qX 3 is Odd

Throughout this sectionP is a compact connected quadrangle with parameters �p; q�,
pX 6 even, qX 3 odd, with a £ag-transitive automorphism group G. By 2.3 we ¢nd a
compact connected subgroup D which acts transitively on the £ags. By 2.5, 1.3 we
may (and will) assume that D is semisimple.
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PROPOSITION 6.1. The case pX 8 even, qX 3 odd is impossible.
Proof. Since pX 8 is even, we have D` �loc SOp�1R� D�`� by 1.1. The group D�x� is

normal in SOpR, and the possibility D�x� � SOpR is excluded by 2.4. Thus D�x�
is discrete. Then Dx acts almost effectively on the sphere Sq. Since
D` �loc SOp�1R� D�`�, we have Dx;` �loc SOpR� D�`�. But by 1.1 no group which acts
transitively on an odd-dimensional sphere Sq has a stabilizer of this form. &

It remains to consider the case p � 6. In this case, we have either (a)
D` �loc G2 � D�`�, or (b) D` �loc SO7R� D�`�. The sixth homotopy group of a compact
Lie group is always ¢nite, cp. [19] p. 970, and since p6�P� � Z, the exact sequence

! p6�D� ! p6�P� ! p5�Dx� !

implies that the rank of p5�Dx� is at least 1. Therefore Dx has an almost simple factor
of type SUnC, for some nX 3.

PROPOSITION 6.2. If p � 6, then D�x� is discrete.
Proof. The group D�x� is normal in the stabilizer of the action of D` on the point

row, hence (a) D�x� is normal in SU3C, or (b) D�x� is normal in SO6R. The case
D�x� � SO6R is excluded by 2.4. We assume now that D�x� � SU3C, and we aim
for a contradiction (which proves the proposition). We have D` �loc G2 � D�`�, and
we consider several cases.

(1) D�`� is discrete. For qX 5 the group D is almost simple. If qX 9, then
p6�D� � p6�D`� � Z3 yields D �loc D`, which is absurd. If q � 7 then D is almost
simple and of dimension dimD � 20� 14 � 34, which is impossible. If q � 5
then D is almost simple of dimension dimD � 16� 14 � 30, which again is
impossible. If q � 3 then dimD � 12� 14 � 26 and len�D� � len�D`� � 1 � 2,
which is again impossible.

(2) D�`� is nondiscrete and qX 9. By 2.2, D�`� is a normal semisimple subgroup of a
stabilizer of a transitive group on Sq as in 1.1. By 1.2, len�D� � len�D`�, and
D �loc G2 � E for some semisimple group E, and again by 1.2, �E;D�`�� is (locally)
one of the following pairs.

�SOmR;SOqR� dimL � q� �q� 1� � �q� 2� � � � �
�SUmC;SU�q�1�=2C� dimL � q� �q� 2� � �q� 4� � � � �
�UmH;U�q�1�=4H� dimL � q� �q� 4� � �q� 8� � � � �
�U1H �UmH;U1H �U�q�1�=4H� dimL � q� �q� 4� � �q� 8� � � � �
�SpinmR;Spin7R� dimL � 36

Moreover, dimDÿ dimD` � dimE ÿ dimD�`� � dimL � 2q� 6. This is
impossible in the ¢rst four cases. In the last case we obtain dimSpinmR �
36� 14� 21 � 71, which is also impossible.
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(3) D�`� is nondiscrete and q � 7. Then D�`� is one of the groups SO7R, G2, SU3C,
U1H �U1H, or U1H. We exclude each case.

The case D�`� � SO7R is excluded by the dual of 2.4. If D�`� � G2, then
dimD � 20� 28 � 48, and by1.2 D is a product of two orthogonal or exceptional
groups, which is impossible. If D�`� � SU3C, then dimD � 20� 22 � 42, and by
1.2 D is a 42-dimensional product of SUnC with an orthogonal or exceptional
group, which is impossible. If D�`� � U1H �U1H, then dimD � 20� 20 � 40,
and by 1.2 D �loc UmH�UnH� E , where E is orthogonal or exceptional, but
such a 40-dimensional group does not exist. Finally, if D�`� � U1H �U1H, then
dimD � 20� 17 � 37, and by 1.2 D �loc UmH� E, where E is orthogonal or
exceptional, but such a 37-dimensional group does not exist.

(4) D�`� is nondiscrete and q � 5. Then D�`� is one of the groups SO5R or SU2C, and
len�D� � 2. If D�`� � SO5R, then dimD � 16� 24 � 40, which is impossible.
If D�`� � SU2C, then dimD � 16� 17 � 33, again impossible.

(5) D�`� is nondiscrete and q � 3. Then D�`� � SO3R and dimD � 12� 17 � 29,
hence dimDx � 14. But len�Dx� � 2; such a group does not exist. &

PROPOSITION 6.3. If p � 6, then q � 9 andD �loc SO10R,Dx �loc SU5C,D` �loc SO7R,
and Dx;` �loc SU4C.

Proof. By the previous proposition, D�x� is discrete. Since Dx has an almost simple
factor of type SUnC, nX 3, and acts transitively and almost effectively on Sq,
we have Dx �loc SUnC, and q � 2nÿ 1X 5. Thus D and D` are almost simple; in par-
ticular, D�`� is discrete as well, and thus (a) D` �loc G2 or (b) D` �loc SO7R. Since
Dx �loc SUnC, the £ag stabilizer is Dx;` �loc SUnÿ1C. In case (a) the £ag stabilizer is
locally isomorphic to SU3C, and in case (b) it is locally isomorphic to
SO6R �loc SU4C; thus n � 4 in case (a) and n � 5 in case (b). If n � 4, then
q � 7, and D is an almost simple compact group of dimension
dimD � dimP � dimDx � 19� 15 � 34, which does not exist. Thus n � 5 and
q � 9, and D is an almost simple compact group of dimension
dimD � dimP � dimDx � 21� 24 � 45. The only possibility is D �loc SO10R. &

PROPOSITION 6.4. If p � 6 and q � 9, then we have case �b6� of the Main Theorem.
Proof. By 6.3, the universal covering group ~D � Spin10R acts almost effectively on

P, with stabilizers � ~D�x �loc SU5C, � ~D�` �loc Spin7R and � ~D�x;` �loc SU4C �loc SO6R. Up
to equivalence, the group SU5C admits only one non-trivial representation on
R10, which is in fact irreducible, see [25] 95.10, p. 626. The embeddings of � ~D�x;`
into � ~D�x or into � ~D�` are the standard ones (as stabilizers of vectors, compare 1.1).
In particular, � ~D�x;` decomposes the natural representation space R10 of ~D into
irreducible subspaces of dimensions 8,1,1. In view of [25] 95.10, p. 625 we conclude
that � ~D�` �loc Spin7R acts with the same irreducible subspaces; thus the representation
of � ~D�` on R10 is uniquely determined. By [23] Prop. 8, p. 56, the image of the rep-
resentation of � ~D�` on R10 is uniquely determined within SO10R up to auto-
morphisms of SO10R, and these automorphisms are induced by elements of
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O10R, cp. [23] Ex. 6, p. 49. Since ~D is simply connected, we conclude that � ~D�` is
unique in ~D up to automorphisms of ~D. In view of the standard embedding of
� ~D�x;` into � ~D�` we conclude that the pair �� ~D�`; � ~D�x;`� of subgroups of ~D is uniquely
determined up to automorphisms of ~D. The image in SO10R of the centralizer
Cs ~D�� ~D�x;`� is SO2R� SO2R � U1C�U1C. This centralizer contains precisely
two cyclic subgroups of order 4 which are generated by elements without real
eigenvalues onR10; these two complex structures onR10 are the two groups of order
4 which are generated by the two diagonal matrices diag�i; i; i; i;�i�. The image
SU5C of � ~D�x in SO10R is the commutator group of the centralizer of such a
subgroup (complex structure). The two diagonal matrices mentioned above are con-
jugate in 1�O2R, hence conjugate under automorphisms of SO10R which act
trivially on the image of � ~D�` (and its subgroups). Therefore the triple
�� ~D�x; � ~D�`; � ~D�x;`� is determined uniquely up to automorphisms of ~D.

Now ~D acts on the two (mutually dual) Moufang quadrangles associated to the
simple Lie group S :� E6�ÿ14�=Z as the commutator group of the maximal compact
subgroup Spin10R � SO2R of S, cp. Helgason [11] Ch. 10 Table V, and this action
is £ag-transitive (e.g. by 2.3 and 1.3). The uniqueness statement of the previous para-
graph implies that P is isomorphic to one of these two Moufang quadrangles. As a
consequence, D is isomorphic to Spin10R.

Finally we determine the possible £ag-transitive groups G. We have shown that the
connected component G1 of such a group satis¢es Spin10RWG1 WS. Now we argue
as in the last paragraph of the proof of 5.9, replacing R20 by the Spin10R-module
R32, which is irreducible. Therefore either G1 � Spin10R and G is as speci¢ed in
�b6�, or G1 contains the maximal compact subgroup Spin10R � SO2R of S, which
is maximal in S. Since S has index 2 in the full automorphism group of the
quadrangle, cp. Takeuchi [28], we infer in the second case that
G1 2 fS;Spin10R � SO2Rg has index at most 2 in G, hence G satis¢es the conclusions
in case �b6� of the Main Theorem. &

7. Appendix

Here we collect some topological results about 7-manifolds which are needed for the
case of quadrangles with parameters �2; 3� in 4.6. Lemma 7.2 was kindly pointed out
to us by Stephan Stolz.

7.1. CERTAIN HOMOGENEOUS 7-MANIFOLDS. Let G � SU2C� SU3C, and
let M � G=H be a 1-connected 7-dimensional homogeneous space of G. We assume
that the kernel of the action is ¢nite. The stabilizerH is a four-dimensional compact
connected subgroup of G, and thusH �loc U1C� SU2C. Let K � H 0 �loc SU2C denote
the semisimple part ofH. Note that the centralizer of K in G has positive dimension.
According to the embedding K � G, we distinguish several cases.

There is a standard embedding i : SU2C � SU3C as matrices of the form A
1

� �
,

for A 2 SU2C. Let k denote the composition of the standard maps
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SU2C! SO3R � SU3C. Up to conjugation by automorphisms of SU3C, the maps
i and k are the only non-trivial homomorphisms from SU2C to SU3C. From this
fact, one easily deduces that the following ¢ve cases exhaust all conjugacy classes
of subgroups K of G which are locally isomorphic to SU2C.

(1) K � SU3C is isomorphic to SO3R in the standard embedding. The connected
centralizer of this subgroup is the normal factor SU2C of G, and thus

M � SU2C=U1C� SU3C=SO3R:

In particular, H2�G=H� � p2�G=H� � Z�Z=2.
(2) K � SU3C is the standard embedding i. The connected centralizer of K con-

sists of pairs of matrices of the form �A; diag�z; z; zÿ2��, for A 2 SU2C and
z 2 U1C. Thus H consists of pairs of matrices of the form z2l

zÿ2l

� �
;

Azk

zÿ2k

� �� �
;

for a ¢xed pair of integers k; l. We may assume that k; l are relatively prime.
The resulting homogeneous space is denoted by Mk;l . These spaces are certain
Einstein manifolds which have been studied by Kreck and Stolz in [17]. From [17]
Sec. 4 we infer that

H2�Mk;l� � Z; H3�Mk;l� � 0; H4�Mk;l� � Z=l2:

Also,Mk;l is a spin manifold if and only if k is even. Note thatH3�Mk;l;Z=2� � Z=2 if
l is even (this is incorrectly stated in [17], see [18] 2.6).

(3) K consists of matrices of the form
ÿ
A; A

1

� ��
; for A 2 SU2C. The connected

centralizer of this subgroup consists of matrices of the form
ÿ
1;

z
z

zÿ2

0@ 1A�, for

z 2 U1C. Thus SU3C � G acts transitively on M, and M is in fact a Wallach space.
In the terminology of Kreck-Stolz [18], M �M1;1 and thus

H2�M� � Z; H3�M� � 0; H4�M� � Z=3

by [18] p. 474.
(4)K is normal inG. Then the action ofG is not almost effective, contradicting our

assumptions.
(5) K is the image of id� k. The connected centralizer of this group is trivial,

contrary to our assumption that K is the semisimple part of a 4-dimensional
subgroup H.

LEMMA 7.2. A closed connected orientable n-manifold M is a spin manifold if and
only if Sq2 : Hnÿ2�M;Z=2� ! Hn�M;Z=2� is trivial.

Proof. (cf. Bredon [5] p. 423.) A manifold is spin if and only if its 2nd
Stiefel^Whitney class w2 vanishes (note that w1 � 0, since we assume that M is
orientable). From the Wu formula wi �

P
n Sqiÿnun we see that w1 � u1 and

w2 � u2 � u21, whence u2 � w2. Now the relation hSqix; �M�i � huix; �M�i holds for
all x 2 Hnÿi�M;Z=2� by the de¢nition of the Wu classes ui. Thus w2 � u2 � 0 if
and only if Sq2 is trival on the nÿ 2-dimensional cohomology. &
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LEMMA 7.3. Let P be a compact connected quadrangle. If the line space L is home-
omorphic to SU3C, then Sq2 is non-trivial on H5�P;Z=2�. In particular, if the point
space P is a manifold, then P is not a spin manifold by 7.2.

Proof. From the cohomology of L we see that the quadrangle has parameters
�2; 3�. We choose additive generators 1; x2; x5; x7 � x2x5 of the Z=2-cohomology
of P, and 1; y3; y5; y8 � y3y5 for L (the subscripts indicate the degrees, see [10]
Appendix 43). In the cohomology ring of L � SU�3� the relation Sq2y3 � y5 holds,
see eg. [20] p. 424. In the Z2-cohomology of F we have the relations
x5 � y5 � x2y3 and x7 � x2y5, see [10] Appendix 43. Thus

Sq2x5 � Sq2�y5 � x2y3� � Sq2�x2y3� � x2Sq2y3 � x2y5 � x7:

This implies that P is not spin by 7.2. &
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