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Abstract. In these notes we describe some buildings related to complex Kac–Moody groups.
First we describe the spherical building of SLnðCÞ (i.e. the projective geometry PGðCnÞ) and its
Veronese representation. Next we recall the construction of the affine building associated to a

discrete valuation on the rational function field CðzÞ. Then we describe the same building in
terms of complex Laurent polynomials, and introduce the Veronese representation, which is
an equivariant embedding of the building into an affine Kac–Moody algebra. Next, we intro-

duce topological twin buildings. These buildings can be used for a proof which is a variant of
the proof by Quillen and Mitchell, of Bott periodicity which uses only topological geometry.
At the end we indicate very briefly that the whole process works also for affine real almost split
Kac–Moody groups.

Mathematics Subject Classifications (2000). 51E24, 51H15, 22E67, 53C42.

Key words. Bott periodicity, isoparametric submanifolds, loop groups, polar representations,

topological buildings, twin buildings.

1. Introduction

We briefly recall the definition of Coxeter complexes and buildings; for more details,

we refer to the books by Brown [8], Ronan [35], Scharlau [41], and Tits [48]. For our

purposes, a simplicial complex is poset ðD;4Þ whose elements are called simplices,

with the following two properties: any two simplices X;Y 2 D have a unique infimum

X u Y, and for any X 2 D, the poset D4X ¼ fY 2 DjY4Xg is order-isomorphic to

the power set ð2F;	Þ of some finite set F; the cardinality of this set F is called the

rank of the simplex X. Note that the rank of a simplex differs by one from the dimen-

sion of its geometric realization; a k-simplex has rank kþ 1. The rank of a simplicial

complex is the maximum of the ranks of its simplices.

COXETER COMPLEXES

Let I be a finite set with r elements, and let (mij) be a symmetric matrix indexed by

I� I, with entries in N [ f1g, subject to the following two conditions: mij5 2 for all

i 6¼ j, and mii ¼ 1 for all i. Such a Coxeter matrix is determined by its Coxeter graph;

$
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the vertices of this graph are the elements of I, and two vertices i; j are joined by

mij � 2 edges, or by one edge labeled mij. The corresponding Coxeter system

ðW;SÞ is the group W with generating set S ¼ fsij i 2 Ig and relators ðsisjÞ
mij . Asso-

ciated to such a Coxeter system is a simplicial complex, the Coxeter complex

S ¼ SðW;SÞ which is defined as follows. For J 	 I letWJ denote the subgroup gen-

erated by the elements sj, for j 2 J. The simplices of S are the cosets wWJ 2W=WJ,

where J runs over all subsets of I; the partial ordering is the reversed inclusion, i.e.

gWJ4 hWJ0 if and only if gWJ � hWJ0 :

The group W acts regularly on the maximal simplices of this simplicial complex (by

left translations). The type of a coset wWJ is typeðwWJÞ ¼ I n J; a subset J 	 I is

called spherical if WJ is finite; if I itself is spherical, then S is called spherical. The

geometric realization of a spherical Coxeter complex of rank k is a triangulated

k� 1-sphere. We define a W-invariant double-coset valued distance function d on

S as follows:

d: S� S�!
[
fWJnW=WKj J;K 	 Ig;

dðuWJ; vWKÞ ¼WJu
�1vWK:

Coxeter groups have nice geometric properties; in particular, the word problem can

be solved. Let A be an Abelian group, and let a : S�!A be a function. We require

that aðsiÞ ¼ aðsjÞ holds whenever mij is finite and odd. Then there is a well-defined

extension a :W�!A, which is defined as aðsi1 . . . sirÞ ¼ aðsi1Þ þ � � � þ aðsir Þ, for a

reduced (minimal) expression w ¼ si1 . . . sir , the a-length. In the special case A ¼ Z,

with aðsiÞ ¼ 1 for all i, we obtain the usual length function ‘ :W�!Z. In general,

the set of generators S is not uniquely determined by the abstract group W, so it

is important to consider the pair ðW;SÞ; the question to which extent S is determined

by the group W is treated in [6] and [30] see also [10] for related results.

BUILDINGS

Let D 6¼ ; be a simplicial complex, and let S ¼ SðW;SÞ be a Coxeter complex. A

simplicial injection f : S�!D is called a chart, and its image A ¼ fðSÞ is called

an apartment. The complex D is called a building (of type ðmijÞ and rank r) if there

exists a collection A of apartments with the following properties.

Bld1 For any two simplices X;Y 2 D, there exists an apartment A 2 A with

X;Y 2 A.

Bld2 Given two charts fi : S ,!D, for i ¼ 1; 2, there exists an element w 2W such

that f1 � wðXÞ ¼ f2ðXÞ holds for all X 2 f�12 ðf1ðSÞ \ f2ðSÞÞ.

A simplex of maximal rank r is also called a chamber; the set of all chambers is

ChamðDÞ. For any subset X 	 D, we let ChamðXÞ denote the set of all chambers
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contained in X. The building is thick if every simplex of rank r� 1 is contained in at

least three chambers. All buildings in this paper will be thick. A spherical building is a

building with finite apartments.

It follows from the axioms that there is a well-defined double-coset valued distance

function

d : D� D�!
[
fWJnW=WKj J;K 	 Ig

whose restriction to any apartment is given by the function d defined above in 1.1.

The restriction of d to ChamðDÞ � ChamðDÞ is Tits’ more familiarW-valued distance

function; buildings can also be characterized by properties of the distance function d,
see Ronan’s book [35].

Let ~r�1 denote the standard r� 1-simplex ð2I;	Þ. The two axioms yield a sim-

plicial surjection, the type function (the ‘accordion map’) type : D�!~
r�1; whose

restriction to any apartment agrees with the type function defined above. The type

function is characterized (up to automorphisms of ~
r�1) by the fact that its

restriction to every simplex of D is injective. A simplex X 2 D is called spherical if

IntypeðXÞ is spherical.

For nonspherical buildings the apartment system A is in general not unique (there

is always a unique maximal apartment system), but the isomorphism type of the

apartments and the Coxeter system ðW;SÞ is uniquely determined by the simplicial

complex D.

AUTOMORPHISMS

The automorphism group AutðDÞ consists of all simplicial automorphisms of D; it
has a normal subgroup SpeðDÞ consisting of all type-preserving automorphisms.

An action of a group G on D is a homomorphism G�!AutðDÞ. We say that G acts

transitively on D if it acts transitively on the set ChamðDÞ of chambers.

Strongly transitive actions and BN-pairs. A group G is said to act strongly transi-

tively on D (with respect to A) if G acts as a group of special automorphisms

on D such that

STA1 G acts transitively on the set A of apartments.

STA2 If A 2 A is an apartment, then the set-wise stabilizer N of A acts transitively

on the chambers in A.

Let C 2 A be a chamber in an apartment A, let B ¼ GC denote the stabilizer of

C, and N the set-wise stabilizer of A. Then ðB;NÞ is a so-called BN-pair for the

group G; the Weyl group W ¼ N=ðN \ BÞ acts regularly on A and is isomorphic

to the Coxeter group of D. The stabilizers of the simplices contained in C are

called standard parabolic subgroups of G.
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PANELS AND RESIDUES

Let X 2 D be a simplex of type J. The residue of X is the poset ResðXÞ ¼

D5X ¼ fY 2 Dj Y5Xg. The residue is order-isomorphic to the link of X, and thus

can be identified with a subcomplex of D (although strictly speaking, ResðXÞ is not

a subcomplex). It is a basic but important fact that residues are again buildings;

the corresponding Coxeter complex is obtained from the restricted Coxeter matrix

ðmi:jÞJ�J. The type of the residue ResðXÞ is I nJ, and its rank is card ðI nJÞ. A residue

Si ¼ ResðXÞ of rank 1 and type fig is called an i-panel.

The following observation is very simple, but useful.

LEMMA 1.5. Suppose that G acts as a group of special automorphisms on a building

D of rank r5 2; let C 2 D be a chamber. Then G acts transitively on D if and only if the
following holds for all r simplices X1; . . . ;Xr4C of rank r� 1:

. the stabilizer GXi acts transitively on the panel ResðXiÞ.

Tits pointed out that transitive groups acting on buildings of higher rank can be

represented as amalgams.

THEOREM1.6 ([49] 2.3). Let G be a group acting transitively and type-preservingly on

an irreducible building D of rank r5 3 ði.e. we assume that the Coxeter diagram is con-

nected and has at least 3 verticesÞ. Let X be a chamber, let X1; . . . ;Xr, denote its sub-

simplices of rank r� 1, and Xfijg, i; j 2 I, i 6¼ j its
�
r

2

�
subsimplices of rank r� 2. Then

the
�
rþ1

2

�
þ 1 different G-stabilizers of these simplices with their natural inclusions form

a diagram ða simple 2-complex of groups ð½7�; II:12 and III:CÞ— the corresponding

poset is the set of all subsets of I with at most two elementsÞ whose limit is G. &

For example, a building of rank 4 with I ¼ f1; 2; 3; 4g yields a complex of groups

as follows, if we put GXJ ¼ GJ for short.
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In general, the geometric realization of this 2-complex of groups is the cone over

the first barycentric subdivision of the 1-skeleton of an r� 1-simplex.

For group amalgamations related to twin buildings (cf. Section 4), see [2].

2. The Spherical Case: Projective Space and SLnðCÞ

In this section we describe the spherical building obtained from n� 1-dimensional

complex projective space, some related groups, and the Veronese representation.

Given a ring R, we let RðkÞ denote the matrix algebra of all k� k-matrices with

entries in R.

THE SPHERICAL BUILDING DðCn
Þ

The Grassmannian of k-spaces in C
n is the complex projective variety

GrkðC
n
Þ ¼ fU4C

n
j dimðUÞ ¼ kg:

A partial flag in C
n is a nested sequence of subspaces 0 < Uj1 < Uj2 < � � � < Ujr < C

n,

with dimðUjn Þ ¼ jn. Such a partial flag can be viewed as a map

f1; . . . ; n� 1g � J�!
U

Gr1ðC
n
Þ [ � � � [Grn�1ðC

n
Þ;

with dimðUjÞ ¼ j and Uj4Uk for j4 k. There is a natural order ‘4 ’ on the collec-

tion DðCn
Þ of all partial flags: if U and U0 are partial flags with

J 	 J0 	 f1; . . . ; n� 1g, then U4U0 if and and only if U0jJ ¼ U. The resulting poset

is a simplicial complex of rank n� 1, the spherical building

DðCn
Þ ¼ ðDðCn

Þ; 4 Þ:

Of course, DðCn
Þ is precisely the same as the n� 1-dimensional projective geometry

PGðCn
Þ in a different guise.

Given an ordered basis ðv1; . . . ; vnÞ of C
n, we may consider the maximal flag

U ¼ UCðv1; . . . ; vnÞ, where Ui ¼ spanCfv1; . . . ; vig, and the apartment

ACfv1; . . . ; vng consisting of all flags obtained as partial flags from the n! distinct

maximal flags (chambers) UCðvpð1Þ; . . . ; vpðnÞÞ, where p 2 SymðnÞ. It is not difficult

to check that DðCn
Þ together with this collection of apartments is a spherical build-

ing. As a simplicial complex, ACfv1; . . . ; vng is a triangulation of the sphere S
n�2. In

fact, let ~n�1 denote the standard n� 1-simplex, and Bdð~n�1Þ its boundary; then

ACfv1; . . . ; vng is simplicially isomorphic to the first barycentric subdivision

S ¼ SdðBd ð~n�1ÞÞ. The corresponding Coxeter group is the symmetric group

W ¼ SymðnÞ, given by the presentation

W ¼ hs1; . . . ; sn�1j ðsisjÞ
mij ¼ 1; 14 i; j4 n� 1i;

where mij ¼
1; if i ¼ j;
3; if ji� jj ¼ 1;
2; else.

8<
:
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The involution si is the transposition ði; iþ 1Þ; the Coxeter diagram is

(n� 1 nodes). The type of a flag

U : J�!Gr1ðC
n
Þ [ � � � [Grn�1ðC

n
Þ

is type ðUÞ ¼ J, the set of the dimensions of the subspaces occurring in U. In DðCn
Þ,

a panel Si is determined by a flag of the form

U1 < U2 < � � � < Ui�1 < Uiþ1 < � � �Un�1;

and there is a natural bijection Si�!Gr1ðUiþ1=Ui�1Þ ffi CP1 ¼ C [ f1g onto a pro-

jective line.

PARABOLICS IN SLnðCÞ

There are natural actions of the groups GLnðCÞ and SLnðCÞ on the building DðCn
Þ

(by type preserving automorphisms), and it is not difficult to see that these actions

are strongly transitive. The SLnðCÞ-stabilizer of a partial flag is thus a parabolic sub-

group. The maximal parabolics are the stabilizers of the flags of rank 1, i.e. of sub-

spaces 0 < V < C
n. Such a maximal parabolic is conjugate to one of the standard

maximal parabolics

Pi ¼
A B
0 C

� �����A 2 CðiÞ; C 2 Cðn� iÞ; B 2 C
i�ðn�iÞ; detðAÞdetðCÞ ¼ 1

� 	
;

and

GriðC
n
Þ ffi SLnðCÞ=P

i:

The minimal parabolics or Borel subgroups are the stabilizers of maximal flags, i.e.

chambers in DðCn
Þ. The Borel subgroups are conjugate to the standard Borel sub-

group

B ¼ P1 \ � � � \ Pn�1 ¼ S�j

j

nðCÞ ¼

a1 �

. .
.

0 an

0
B@

1
CA

8><
>:

�������a1a2 � � � an ¼ 1

9>=
>;

consisting of all unimodular upper triangular matrices. The corresponding homoge-

neous space is the complex flag variety

FlðCn
Þ ¼ ChamðDðCn

ÞÞ ¼ fðU1; . . . ;Un�1Þ

j 0 < U1 < � � � < Un�1 < C
n
g ffi SLnðCÞ=B:
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THE ANISOTROPIC REAL STRUCTURE OF SLnðCÞ

We define a semi-linear involution � on CðnÞ by putting X� ¼ �XXT (conjugate trans-

pose). Recall that the Lie algebra slnC consists of all traceless n� n-matrices. Let

suðnÞ ¼ fX 2 slnCjXþ X
� ¼ 0g and pn ¼ fX 2 slnCjX ¼ X

�g:

The decomposition slnðCÞ ¼ suðnÞ � pn is called the Cartan decomposition of the Lie

algebra slnðCÞ. On the group level, let

SUðnÞ ¼ fg 2 SLnðCÞj g
� ¼ g�1g

denote the group of fixed elements of the involution ðg 7! g��Þ 2 AutRðSLnðCÞÞ.

Both the involution X 7! �X� in the Lie algebra and the involution g 7! g�� in

the group are called Cartan involutions. (In terms of algebraic groups, we have

defined an almost simple R-group scheme G such that GðRÞ ¼ SUðnÞ and

GðCÞ ¼ SLnðCÞ. The Galois group of C=R acts on the group SLnðCÞ of C-points

of G, and SUðnÞ is the group of fixed elements. The group scheme G is R-anisotropic:

no parabolic of G is defined over R. For semi-simple R-algebraic groups, ‘anisotro-

pic’ is the same as ‘compact’.)

More geometrically, the group SUðnÞ can be described as follows. Let hx; yi ¼

�xx1y1 þ � � � þ �xxnyn denote the standard hermitian form on C
n. This form induces a

map GrkðC
n
Þ �!Grn�kðC

n
Þ, V 7!V?, for all k, which extends in a natural way to

an involution ? on DðCn
Þ. Then SUðnÞ is the centralizer of this involution,

SUðnÞ ¼ CenSLnðCÞð?Þ:

Classically, the involution ? is called the standard elliptic polarity on the

complex projective geometry PGðCn
Þ; the associated Riemannian symmetric space

X ¼ SLnðCÞ=SUðnÞ is—as a subset of AutðDÞ—precisely the space of all elliptic

polarities (i.e. the space of all positive definite hermitian forms on C
n).

Using Gram–Schmidt orthonormalization, one shows that SUðnÞ acts transi-

tively on the flag variety FlðCn
Þ. Bernhard Mühlherr pointed out that there is

a different proof which uses Lemma 1.5, and which carries over to the Kac–

Moody case described later.

LEMMA 2.1. The group SUðnÞ acts transitively on FlðCn
Þ.

Proof. Let U ¼ UCðe1; . . . ; enÞ ¼ ðU1; . . . ;Un�1Þ denote the maximal flag arising

from the standard basis of C
n. The SUðnÞ-stabilizer of a panel Si ¼

ResðU1; . . . ;Ui�1;Uiþ1; . . . ;Un�1Þ containing U is isomorphic to SUð2Þ � T n�2; it

induces the transitive group SOð3Þ ¼ SUð2Þ � T n�2=T n�2 on the panel (we let

T k ¼ Uð1Þ � � � � �Uð1Þ denote the compact torus of rank k; in terms of algebraic

groups, Tk is the group TðRÞ of R-points of an anisotropic R-torus T of rank k). The

assertion follows with Lemma 1.5. &

For n ¼ 4, we have by Theorem 1.6 the following complex of groups which repre-

sents SUð4Þ as an amalgam (we indicate the nonzero entries of a matrix by !, and all

matrices are assumed to be unimodular and unitary).
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Here

! !

! !

!

!

0
BBB@

1
CCCA ffi

!

! !

! !

!

0
BBB@

1
CCCA ffi

!

!

! !

! !

0
BBB@

1
CCCA ffi SUð2Þ � T2;

! ! !

! ! !

! ! !

!

0
BBB@

1
CCCA ffi

!

! ! !

! ! !

! ! !

0
BBB@

1
CCCA ffi SUð3Þ � T1;

! !

! !

! !

! !

0
BBB@

1
CCCA ffi SUð2Þ � SUð2Þ � T1:

In group theoretic terms, we thus have

SLnðCÞ ¼ SUðnÞB; SUðnÞ \ B ¼ Tn�1;

SLnðCÞ ¼ SUðnÞPi; SUðnÞ \ Pi ffi SðUðiÞ �Uðn� iÞ:

In particular,

FlðCn
Þ ffi SUðnÞ=Tn�1 and GrkðC

n
Þ ffi SUðnÞ=SðUðkÞ �Uðn� kÞÞ:

KNARR’S CONSTRUCTION

Let jDðCn
Þj denote the geometric realization of the simplicial complex DðCn

Þ. There

are various ways to topologize this set. One possibility is the weak topology deter-

mined by the simplices: by definition, a subset A 	 jDðCn
Þj is closed in the weak

topology if and only if its intersection with every simplex is closed. We denote

the resulting topological space by jDðCn
Þjweak; there are other nice topologies, all

of which yield the same weak homotopy type for the space jDðCn
Þj ([7], I.7).
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The Solomon–Tits Theorem asserts in our situation that there is a homotopy

equivalence

jDðCn
Þjweak ’ S

n�2
^ Xþ;

where X is a discrete set of cardinality 2@0 and Xþ its one-point compactification. (In

general, the Solomon–Tits Theorem says that for a spherical building D of rank r,

jDjweak ’ S
r�1
^ Xþ ’

_
cardðXÞ

S
r�1

where X is a discrete space whose cardinality is cardðXÞ ¼ cardfA 2 Aj C 2 Ag for
some fixed chamber C. The action of the automorphism group SLnðCÞ on the top-

dimensional homology group Hr�1ðjDjweakÞ of this complex is called the Steinberg

representation. See [35], App. 4, for more details and further references.)

However, this construction neglects the natural topology of DðCn
Þ. Consider the

following construction. Fix an ðn� 2Þ-simplex ~
n�2 and label its vertices as

1; 2; . . . ; n� 1. There is a natural surjection

FlðCn
Þ � j~n�2j �! jDðCn

Þj

which maps fUg � j~n�2j to the geometric realization of the simplex of DðCn
Þ span-

ned by the vertices U1; . . . ;Un�1 of the given flag U, in such a way that the ith vertex

of fUg �~
n�2 is identified with Ui. There is a natural compact topology on

FlðCn
Þ � j~n�2j, and we endow jDðCn

Þj with the quotient topology. We denote

the resulting space by jDðCn
ÞjKnarr (because Knarr—inspired by Mitchell [27]—intro-

duced it first in [21] for compact buildings of rank 2). It can be shown that there is a

homeomorphism jDðCn
ÞjKnarr ffi S

n2�2; see [21]. We will prove this in the next section,

using the Veronese representation of DðCn
Þ; a more general result is stated in

Section 7.

The Knarr construction works for general topological buildings. If the topology

on the chamber set of a spherical building D of rank r satisfies certain natural con-

ditions (e.g. the inclusions between its Schubert varieties should be cofibrations),

then jDjKnarr ’ S
r�1
^Oþ, where O is the set of all chambers opposite to a fixed

chamber, and Oþ its one-point compactification. For the special case of a discrete

topology on the chamber set, this is precisely the Solomon–Tits Theorem. There is

a well-developed theory of compact spherical buildings (the case of rank 2 is worked

out in [23], and the results proved there extend immediately to the case of higher

rank); the result for the homotopy type of jDjKnarr can be proved in much greater

generality, see [23], Section 3.3. If the building is spherical, irreducible, compact, con-

nected, and of rank at least 3 (see x 7 for definitions), then by the results in [9, 14–16],

the space jDjKnarr can be identified with the visual boundary Xð1Þ, ([7] II.8), of a Rie-

mannian symmetric space X; for DðCn
Þ, the symmetric space in question is

X ¼ SLnðCÞ=SUðnÞ; the same conclusion holds for buildings of rank 2, provided that

the automorphism group acts transitively on the flags ([14–16]).
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THE VERONESE REPRESENTATION OF DðCn
Þ

We endow CðnÞ with the positive definite Hermitian form hX;Y i ¼ trðX�Y Þ:

Consider the subspace HðnÞ4CðnÞ consisting of all Hermitian matrices in

CðnÞ. Every matrix X 2 HðnÞ has a unique decomposition X ¼ Xtls þ ðtrðXÞ=nÞ1

into a traceless Hermitian matrix Xtls and a real multiple of the identity matrix.

The adjoint action of SUðnÞ on HðnÞ is the action by conjugation, X 7! gXg�:

We have an orthogonal SUðnÞ-invariant splitting HðnÞ ¼ pn � 1R (recall that

pn ¼ fX 2 HðnÞjtr ðXÞ ¼ 0g). Suppose that X 2 HðnÞ is a projector, i.e. that

X2 ¼ X: If X 6¼ 0; 1, then the minimal polynomial of X is mXðtÞ ¼ tðt� 1Þ, and

trðXÞ ¼ k, for some k 2 f1; . . . ; n� 1g. The kernel V of X is then an n� k-

dimensional subspace of C
n. In this way, we obtain an SUðnÞ-equivariant one-

to-one correspondence between elements of Grn�kðC
n
Þ and self-adjoint projectors

with trace k which is given by the map X 7! kerðXÞ. The map

X 7!Xtls ¼ X� ðtrðXÞ=nÞ1 is SUðnÞ-equivariant; in this way, we obtain an embed-

ding F : GrkðC
n
Þ ,! pn as follows. For V 2 GrkðC

n
Þ let XV denote the unique

self-adjoint projector with kerðXVÞ ¼ V, and put FðVÞ ¼ ðXVÞ
tls. The elliptic

polarity ? is built-in: the other eigenspace of XV is the image V? of V under

the elliptic polarity. Even better, the incidence can be seen in pn: two self-adjoint

operators FðVÞ;FðWÞ 2 pn representing subspaces V 2 GriðC
n
Þ and W 2 GrjðC

n
Þ

are incident if and only if the Euclidean distance jFðVÞ � FðWÞj attains the

minimum possible value dij ¼ distðFðGriðC
n
Þ; FðGrjðC

n
ÞÞ. If U is a flag in

DðCn
Þ, and if p 2~

n�2 has barycentric coordinates ðp1; . . . ; pn�1Þ, then we

map ðU; pÞ 2 FlðCn
Þ �~

n�2 to the Hermitian operator

FðU; pÞ ¼
Xn�1
i¼1

piFðUiÞ 2 pn:

In this way we obtain an SUðnÞ-equivariant injection F : jDðCn
Þj ,!pn: We call this

the Veronese representation of the building DðCn
Þ. The image of the flag space FlðCn

Þ

in pn is an isoparametric submanifold (we identify a chamber with the barycenter of

its geometric realization); the images of the partial flag varieties are parallel focal

submanifolds in this isoparametric foliation ([22, 32, 46, 47]). (The corresponding

construction for the real projective geometry PGðR3
Þ leads to the classical Veronese

embedding of RP2 ,!S
4, whence the name.)

The following variation of the map F is also useful. For a nonzero matrix

X 2 CðnÞ, put X̂X ¼ jXj�1X, where j:j denotes the Euclidean norm, and consider the

map F̂F : ðU; pÞ 7!

*

FðU; pÞ. Then is is not difficult to see that

F̂FðjDðCn
ÞjÞ ¼ S

n2�2
& pn ffi Rn2�1;

the map is injective, since we can recover a flag ðUi1 ; . . . ;UirÞ from its image X 2 pn as
follows: the Hermitian matrix X has eigenvalues l1 < l2 < � � � < lr, and

Uik ¼ kerðX� l11Þ � � � � � kerðX� lk1Þ. The surjectivity follows from the fact that

every Hermitian matrix can be diagonalized under the SUðnÞ-action, because the
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image of the Veronese representation contains certainly all diagonal traceless

matrices of norm 1; these are precisely the images of the simplices in the apartment

ACfe1; . . . ; eng. Since F is continuous on jDðCn
ÞjKnarr, we obtain in particular the

claimed homeomorphism jDðCn
ÞjKnarr ffi S

n2�2:

3. The Affine Building of CðzÞ

In this section we describe the affine building associated to the discrete valuation on

the rational function field CðzÞ. This building is discussed in considerably more detail

in the books by Brown [8] and Ronan [35].

LATTICES IN CðzÞn

We let L ¼ CðzÞ denote the field of fractions of the polynomial ring C½z�. Thus, L is

the field of rational functions on the complex projective line CP1 ¼ C [ f1g. For

c 2 CP1 we let Oc4L denote the subring of all rational functions which don’t have

a pole in c, and mc ¼ f f 2 Ocj fðcÞ ¼ 0g the maximal ideal of Oc. Evaluation at c

yields a map evc : Oc�!C, f 7! fðcÞ with kernel mc, and we obtain exact sequences

0�!mc�!Oc

evc
�!C�! 0

and

1�!SLnðmcÞ �! SLnðOcÞ
evc
�!SLnðCÞ �! 1

(the group SLnðmcÞ is defined to be the kernel of the evaluation map evc). We may

view the elements of SLnðLÞ as rational maps from CP1 into SLnðCÞ. Note also that

every element q 6¼ 0 of L can be expressed in the form q ¼ ðz� cÞk fg, with k 2 Z,

f; g 2 C½z�, and fðcÞ 6¼ 0 6¼ gðcÞ. We put ncðqÞ ¼ k, and ncð0Þ ¼ 1. The map

nc : L�!Z [ f1g is a discrete valuation on L (with some modifications for

c ¼ 1). Note that O�c ¼ fq 2 Ocj ncðqÞ ¼ 0g. There is nothing special about the

choice of c 2 CP1, and we put c ¼ 0 for the remainder of this section.

The group SLnðLÞ acts on the projective geometry PGðLn
Þ in very much the same

way as SLnðCÞ on PGðCn
Þ, and we could consider the spherical building DðLn

Þ. But

now we introduce a different geometry for this group, the affine building DðLn;O0Þ.

Given an L-basis v1; . . . ; vn of Ln, we have the free O0-module

M ¼ spanO0
fv1; . . . ; vng ¼ v1O0 þ � � � þ vnO0

of rank n generated by these basis vectors. We call M an O0-lattice, and we let

LatnðL;O0Þ denote the collection of all such lattices. (The following simple observa-

tion is useful. If M 	 Ln is a free O0-module of rank k, with O0-basis fv1; . . . ; vkg,

then fv1; . . . ; vkg is linearly independent over L, because L is the field of fractions

of O0. Thus, the O0-lattices are precisely the free O0-modules of rank n in Ln.) Evi-

dently, the group GLnðLÞ acts transitively on LatnðL;O0Þ; the GLnðLÞ-stabilizer of
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the O0-module M0 spanned by the canonical basis e1; . . . ; en of Ln is the group

GLnðO0Þ, and therefore

LatnðL;O0Þ ffi GLnðLÞ=GLnðO0Þ:

We call two latticesM;M0 2 LatnðL;O0Þ projectively equivalent ifM ¼ qM
0 for some

q 2 L�. In view of the factorization of q given above, this is clearly equivalent with

the condition thatM ¼ zkM0 holds for some k 2 Z. The projective equivalence class

of M 2 LatnðL;O0Þ is denoted by

½M� ¼ fzkMj k 2 Zg

Thus we have obtained an action of the projective groups PGLnðLÞ and PSLnðLÞ on

the set

f½M�j M 2 LatnðL;O0Þg

of projective equivalence classes of O0-lattices.

THE ACTION OF SLnðLÞ AND THE TYPE FUNCTION

The group SLnðLÞ is not transitive on set of projective equivalence classes of O0-lat-

tices. Let M0 ¼ spanO0
fe1; . . . ; eng denote the O0-module spanned by the canonical

basis e1; . . . ; en of Ln. Suppose that gðM0Þ ¼M
0, for some g 2 GLnðLÞ. Since

n0ðdetðhÞÞ ¼ 0 for all h 2 GLnðO0Þ (because n0ðqÞ ¼ 0 if q 2 O0 is a unit), the number

n0ðdetðgÞÞ depends only on the module M0. The determinant of the map lzk : v 7! zkv

is detðlzkÞ ¼ zkn. Thus we have a well-defined map

typeð½M0�Þ ¼ nðdetðgÞÞ þ nZ 2 Z=n

which is SLnðLÞ-invariant. Note also that the stabilizers agree, SLnðLÞM ¼ SLnðLÞ½M�;

since detðlzkÞ 6¼ 1 for k 6¼ 0. We put

V i ¼ f½M�j M 2 LatnðL;O0Þ; typeð½M�Þ ¼ ig:

Let

Mi ¼ spanO0
fze1; . . . ; zei; eiþ1; . . . ; eng

denote the O0-module spanned by the vectors ze1; . . . ; zei; eiþ1; . . . ; en. Then

½Mi� 2 V i.

LEMMA 3.1. The action of SLnðLÞ on V i is transitive.
Proof. If ½M � ¼ ½ gðMiÞ� 2 V i for some g 2 GLnðLÞ, then n0ðdetðgÞÞ ' 0 ðmod nÞ,

whence n0ðdetðzkgÞÞ ¼ 0 for a suitable k 2 Z. Put g0 ¼ zkg, then ½M� ¼ ½g0ðMiÞ�, and

n0ðdetðg0ÞÞ ¼ 0, whence detðg0Þ 2 O0. Finally, put h ¼ diagðdetðg0Þ�1; 1; . . . ; 1Þ. Then h

fixes Mi, and thus g0h 2 SLnðLÞ maps ½Mi� to ½M�. &

These n different O0-modulesM0; . . . ;Mn�1 thus form a cross-section for the action

of SLnðLÞ on the set of projective equivalence classes of O0-lattices, and we put
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P0
rat ¼ SLnðLÞM0

¼ SLnðO0Þ;

Pirat ¼ SLnðLÞMi
¼

A z�1B

zC D

� �
A 2 O0ðiÞ;

A B

C D

� �
2 SLnðO0Þ

����
	�

for i ¼ 1; . . . ; n� 1. The sets V0; . . . ;Vn�1 play the same rôole as the Grassmannians

GrjðC
n
Þ in Section 1.1, and the stabilizers P 0

rat; . . . ;P
n�1
rat play the same rôole as

the standard maximal parabolics P1; . . . ;Pn�1 in SLnðCÞ. However, there is one fun-

damental difference: the stabilizers Pirat, i ¼ 0; . . . ; n� 1, are conjugate to P 0
rat in

GLnðLÞ,

Pirat ¼ giSLnðO0Þg
�1
i ;

where

gi ¼ diagðz; . . . ; z|fflfflfflffl{zfflfflfflffl}
i

; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
n�i

Þ 2 GLnðLÞ:

INCIDENCE, PERIODIC FLAGS, AND APARTMENTS

We define an incidence relation I on the set f½M�j M 2 LatnðL;O0Þg as follows:

½M�I½M0� ()
def

zM4 zkM04M for some k 2 Z:

This relation is symmetric, since zM4 zkM04M implies that zM04 z1�kM4M0.

Clearly, SLnðLÞ acts by incidence preserving automorphisms on this incidence geo-

metry. Similarly as before, we can use the incidence relation to construct a poset

DðLn;O0Þ, the affine building of ðLn;O0Þ; the elements of DðLn;O0Þ are the sets of

pairwise incident elements of V0 [ � � � [ Vn�1.
Note also that ½Mi�I½Mj� holds for all i; j. The chambers are of the following form.

Let B ¼ ðv1; . . . ; vnÞ be an ordered basis of Ln, and put MB
i ¼ spanO0

fzv1; . . . ; zvi;

viþ1; . . . ; vng. Then MðBÞ ¼ f½MB
0 �; . . . ; ½M

B
n�1�g is a maximal flag, which can be

viewed as an infinite sequence of free O0-modules

� � � > z�1MB
n�1 >MB

0 >MB
1 > � � � >MB

n�1 > zMB
0 > zMB

1 > � � �

of rank n. The quotient of two consecutive modules in this chain is a one-dimen-

sional complex vector space. Note that DðLn;O0Þ has rank n.

The collection of all chambers is called the periodic flag variety FlðLn;O0Þ. The sta-

bilizer of the chamber f½M0�; . . . ; ½Mn�1�g is the Borel group

Brat ¼ P
0
rat \ P

1
rat \ � � � \ P

n�1
rat

¼

O0 O0

. .
.

zO0 O0

0
BB@

1
CCA 2 SLnðO0Þ

8>><
>>:

9>>=
>>; ¼ ev

�1
0 ðS
�j

j

nðCÞÞ
:

Given a basis v1; . . . ; vn of Ln, we define the standard apartment AL
0 fv1; . . . ; vng as the

collection of all partial flags obtained from the maximal flags MðBÞ, where B runs
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through thecollectionofall basesof the formB ¼ ðzk1vpð1Þ; . . . ; zknvpðnÞÞ, forp 2 SymðnÞ

and k1; . . . ; kn 2 Z. The set-wise SLnðLÞ-stabilizer Nrat of A
L
0 ¼ A

L
0 fe1; . . . ; eng is the

collection of all unimodular permutation matrices with entries in L�, and the ele-

ment-wise stabilizerTrat ofA
L
0 is the collectionof all diagonalunimodularmatriceswith

entries inO�0 .Thequotient is theaffineWeyl groupW ¼ Nrat=Trat ffi ~AAn�1 ofSLnðLÞ.As

a simplicial complex, AL
0 is a triangulation of R

n�1.

THEOREM 3.2. The simplicial complex DðLn;O0Þ is a building of rank n and type
~AAn�1; as an apartment system, we may choose the set AL

0 ¼ fA
L
0 fv1; . . . ; vngj

v1; . . . ; vn a basis for Ln
g. The Coxeter diagram is ~AAn�1;

ðn nodesÞ.

Proof. Probably the easiest way to see that this is a building is to verify that

ðBrat;NratÞ is a BN-pair for the group SLnðLÞ; cf ½8�, Ch. V.8, and ½35�, Ch. 9:2. &

It is not difficult to see that the residue of ½Mi� is isomorphic to DðCn
Þ, for

i ¼ 0; . . . ; n� 1. Thus the panels in DðLn;O0Þ are again isomorphic to the complex

projective line CP1.

One final remark. We have constructed the affine building DðLn;O0Þ related to the

discrete valuation v0. There is nothing special about the point 0 2 CP1; if we choose

a different point c 2 CP1, then we obtain a different affine building DðLn;OcÞ. These

buildings are pairwise isomorphic; in fact they are permuted by the group PSL2ðCÞ.

Each of these building has a distinct collection of parabolics, so SLnðLÞ contains an

uncountable set of BN-pairs.

4. The Twinning over C½z; 1=z�

Now we describe the buildings DðLn;O0Þ and DðLn;O1Þ in a slightly different way,

replacing the field CðzÞ by the ring C½z; 1=z�. This section owes much to the paper [4]

by Abramenko and Van Maldeghem. So let

A ¼ C½z; 1=z� ¼
\
fOxj x 2 C

�
g

denote the ring of all rational functions which are holomorphic on C
�
	 CP1. This

is a subring of L, the ring of Laurent polynomials. Note that A \O0 ¼ C½z� and

A \O1 ¼ C½1=z�. Similarly as before, we let LatnðA;C½z�Þ denote the collection

of all free C½z�-modules in A
n which are spanned by an A-basis, and

LatnðA;C½1=z�Þ the collection of all free C½1=z�-modules spanned by A-bases. Thus

LatnðA;C½z�Þ ¼ fgðEþ0 Þj g 2 GLnðAÞg

158 LINUS KRAMER



and

LatnðA;C½1=z�Þ ¼ fgðE�0 Þj g 2 GLnðAÞg;

where

Eþ0 ¼ spanC½z�fe1; . . . ; eng and E�0 ¼ spanC½1=z�fe1; . . . ; eng:

For

E 2 LatnðA;C½z�Þ [ LatnðA;C½1=z�Þ

we put, as before, ½E� ¼ fzkEj k 2 Zg;

and

Eþi ¼ spanC½z�fze1; . . . ; zei; eiþ1; . . . ; eng;

E�i ¼ spanC½1=z�fze1; . . . ; zei; eiþ1; . . . ; eng;

and

V*i ¼ f½gE*i �j g 2 SLnðAÞg:

The incidence is also defined as before. If ½E� 2 V*i and ½E0� 2 V*j , then

½E�I½E0 � ()
def

z*1E4 zkE04E for some k 2 Z

Thus we obtain two simplicial complexes DþðAn
Þ and D�ðAn

Þ which are isomorphic

under the map induced by the ring automorphism z 7! 1=z. The set of all maximal

simplices is denoted by FlðD*ðAn
ÞÞ.

Now there is a canonical map LatnðA;C½z�Þ �!LatnðL;O0Þ which maps E to

spanO0
ðEÞ, and a similar map LatnðA;C½1=z�Þ �!LatnðL;O1Þ; these maps induce

canonical SLnðAÞ-equivariant simplicial maps DþðAn
Þ �!DðLn;O0Þ and

D�ðAn
Þ �!DðLn;O1Þ.

PROPOSITION 4.1. The two maps

DþðAn
Þ �!DðLn;O0Þ and D�ðAn

Þ �!DðLn;O1Þ

are isomorphisms and thus DþðAn
Þ, D�ðAn

Þ are buildings; the group SLnðAÞ acts tran-

sitively on both buildings.

Proof. For the proof we note that the SLnðAÞ-stabilizer of the n� 2-simplex

Bi ¼ f½M0�; . . . ; ½Mi�1�; ½Miþ1�; . . . ; ½Mn�1�g 2 DðLn;O0Þ induces the transitive group

PSL2C on the corresponding panel. Thus SLnðAÞ acts transitively on DðLn;O0Þ by

Lemma 1.5. Since SLnðAÞ has the same stabilizers both in DþðAn
Þ and in DðLn;O0Þ

(see below), we obtain the claimed isomorphism DþðAn
Þ ffi DðLn;O0Þ. The involution

z 7! 1=z on the ring A and the projective line CP1 ¼ C [ f1g normalizes SLnðAÞ,

and we obtain D�ðAn
Þ ffi DðLn;O1Þ. &

If B ¼ ðv1; . . . ; vnÞ is an A-basis for A
n, then we have similarly as before the

chamber EþðBÞ ¼ f½Eþ;B0 �; . . . ; ½E
þ;B
n�1 �g corresponding to the modules Eþ;Bi ¼
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spanC½z�fzv1; . . . ; zvi; viþ1; . . . ; vng, and the apartment Aþ;Afv1; . . . ; vng obtained from

the A-bases ðzk1epð1Þ; . . . ; z
knepðnÞÞ; similarly, we obtain an apartment A�;Afv1; . . . ; vng

for the building D�ðAn
Þ. It can be checked that SLnðAÞ acts strongly transitively on

DþðAn
Þ and D�ðAn

Þ with respect to these apartment systems

A* ¼ fA*;Afv1; . . . ; vngj v1; . . . ; vn an A� basis for A
n
g:

Note that the apartment system Aþ;A is strictly smaller than AL
0 .

PROPOSITION 4.2. The group SLnðAÞ acts strongly transitively both on D
þ
ðA

n
Þ and

on D�ðAn
Þ.

Proof. This follows from the fact that SLnðAÞ acts transitively on pairs of opposite

chambers in DþðAn
Þ � D�ðAn

Þ, ([4]); the opposition relation is defined in the next

section. &

We put

Pi;þalg ¼ P
i
rat \ SLnðAÞ and Bþalg ¼ Brat \ SLnðAÞ:

Thus

P0;þ
alg ¼ SLnðC½z�Þ and Pi;þalg ¼ giðP

0;þ
alg Þg

�1
i ;

where gi ¼ diagðz; . . . ; z; 1; . . . ; 1Þ as before. These are the parabolics corresponding

to DþðAn
Þ; there are similar parabolics for D�ðAn

Þ.

TWIN BUILDINGS

The notion of a twin building was developed by Ronan and Tits in order to supply

geometries for Kac–Moody groups; we refer to [1, 3, 4, 28, 29, 31, 36, 37, 50, 51] for

more details about twin buildings.

Let ðW;SÞ be a Coxeter system, and let ðDþ;D�Þ be a pair of buildings with this

given Coxeter system. The W-valued distance in D* is denoted dD* . A twinning of

Dþ with D� is a W-valued codistance function

d�: ChamðD*Þ � ChamðD+Þ�!W;

subject to the following axioms. The intuitive idea is that objects with a small co-

distance are far apart.

Tw1 The relation d�ðC*;D+Þ ¼ d�ðD+;C*Þ�1 holds for all chambers C* 2 D*,
D+ 2 D+ (the codistance is ‘symmetric’).

Tw2 Let w 2W and s 2 S, and suppose that ‘ðwsÞ ¼ ‘ðwÞ � 1 (i.e. that w has a

reduced expression with s as the last letter). If C* 2 D*, D+;E+ 2 D+ are cham-

bers with d�ðC*;D+Þ ¼ w and dD+ðD+;E+Þ ¼ s, then d�ðC*;E+Þ ¼ ws (all

chambers E+ in the s-panel through D+ are ‘further away’ from C*).

Tw3 If C* 2 D*, D+ 2 D+ are chambers with codistance d�ðC*;D+Þ ¼ w, and if

s 2 S, then there exists a chamber E+ 2 D+, with dD+ðD+;E+Þ ¼ s, and with

d�ðC*;E+Þ ¼ ws (the codistance leads to galleries).

160 LINUS KRAMER



Note that there is a symmetry in the axioms if we exchange the signs ‘þ’ and ‘�’.

Sometimes we will state a result for a specific choice of the signs; the corresponding

result for the opposite choice of signs follows in the same way.

It is clear how to extend the codistance to a double coset valued codistance

d�: D* � D+ �!
[
fWJnW=WKj J;K 	 Ig:

The opposition relation op	 Dþ � D� is defined as follows: two chambers are oppo-

site if their codistance is 1; this relation extends in a natural way to the simplices. The

codistance can be used to sync the type functions in both buildings in such a way that

opposite vertices have the same type, and we will assume this to be done.

A (special) automorphism of a twin building is a pair ðgþ; g�Þ of automorphisms

g* 2 SpeðD*Þ which preserves the codistance, d�ðCþ;C�Þ ¼ d�ðgþðCþÞ; g�ðC�ÞÞ.

EXAMPLE 4.3. Let D be a spherical building, let w0 denote the unique longest

element in the Coxeter group W of D, put Dþ ¼ D� ¼ D, and d�ðC;DÞ ¼ dðC;DÞw0.

The resulting geometry is a twin building.

All twin buildings with spherical halves arise in this way, see [50]. Twin buildings

are natural generalizations of spherical buildings; they share many of the particular

geometric properties of spherical buildings. The twinning is in general not deter-

mined by the pair ðDþ;D�Þ; a pair of buildings (e.g. a pair of trees) can admit many

nonequivalent twinnings.

The group SLnðAÞ induces a twinning on the pair ðDþðAn
Þ;D�ðAn

ÞÞ; the codis-

tance can be defined as follows. The group SLnðAÞ has a Birkhoff decomposition (a

Bruhat twin decomposition) as

SLnðAÞ ¼ B
�
algNB

þ
alg ¼

_[[
fB�alg wB

þ
algj w 2 N=ðB

þ
alg \ B

�
algÞg

where N is the set-wise stabilizer of the twin apartment ðAþ;Afe1; . . . ; eng;

A�;Afe1; . . . ; engÞ. Since

ChamðD*ðAn
ÞÞ ¼ SLnðAÞ=B

*
alg and N=ðBþalg \ B

�
algÞ ffiW;

we may use the Birkhoff decomposition to define the codistance as

d�ðgB�alg; hB
þ
algÞ ¼ w if and only if B�alg g

�1hBþalg ¼ B
�
alg wB

þ
alg:

The following Theorem is ‘folklore’. A nice proof is given in Abramenko and Van

Maldeghem [4].

THEOREM 4.4. The triple ðDþðAn
Þ;D�ðAn

Þ; d�Þ is a twin building, and the group
SLnðAÞ acts as a strongly transitive group of automorphisms. Two chambers

ðCþ;C�Þ 2 DþðAn
Þ � D�ðAn

Þ are opposite if and only if they arise from lattices which

are ‘back to back’, i.e. if there exists an ordered A-basis ðv1; . . . ; vnÞ such that

Cþ ¼ Eþðv1; . . . ; vnÞ and C
� ¼ E�ðv1; . . . ; vnÞ.
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5. Loop Groups

There is one big difference between SLnðLÞ and SLnðAÞ which is due to the fact that

A is a ring, while L is a field: the group SLnðLÞ is almost simple, whereas the group

SLnðAÞ is a semi-direct product.

BASED LOOPS

Fix c 2 C
� and consider the evaluation map evc : SLnðAÞ �!SLnðCÞ given by

evc : fðzÞ 7! fðcÞ. We denote the kernel of this map by OalgðSLnðCÞ; cÞ and we put

OalgSLnðCÞ ¼ OalgðSLnðCÞ; 1Þ for short. The injection SLnðCÞ 	 SLnðAÞ leads to a

split exact sequence

1�!OalgðSLnðCÞ; cÞ �!SLnðAÞ �!
evc

 
SLnðCÞ �! 1;

hence SLnðAÞ is a semi-direct product. (There is an obvious C
�-action on SLnðAÞ

given by fðzÞ 7! fðazÞ; under this action, the collection of normal subgroups

fOalgðSLnðCÞ; cÞj c 2 C
�
g is permuted transitively. Thus one is lead to the semi-direct

product SLnðAÞ �j C
�.)

LEMMA 5.1. For every c 2 C
�, the group OalgðSLnðCÞ; cÞ acts transitively on each of

the sets Vþ0 ;V�0 ; . . . ;Vþn�1;V�n�1.

Proof. We clearly have SLnðCÞ 	 SLnðC½z�Þ ¼ P
0;þ
alg , and thus

P0;þ
alg OalgðSLnðCÞ; cÞ � SLnðCÞOalgðSLnðCÞ; cÞ ¼ SLnðAÞ:

Now Pi;þalg ¼ giP
0;þ
alg g

�1
i and OalgðSLnðCÞ; cÞ is gi-invariant, whence

Pi;þalgOalgðSLnðCÞ; cÞ ¼ giP
0;þ
alg g

�1
i OalgðSLnðCÞ; cÞ ¼ SLnðAÞ: &

There is a natural map SLnðAÞ �!C1ðS1;GLnðCÞÞ ¼ LdiffSLnðCÞ into the set

LdiffSLnðCÞ of smooth maps from the unit circle into SLnðCÞ; this map is obtained

by viewing the elements of SLnðAÞ as maps from S
1
	 C

� into SLnðCÞ. If

f ¼
P

fin fkz
k 2 SLnðAÞ, then

fk ¼
1

2pi

I
jzj¼1

1

zkþ1
fðzÞdz:

Therefore, the map into LdiffSLnðCÞ is an injection. From now on, we denote the

group SLnðAÞ also by LalgSLnðCÞ. The subgroup OalgðSLnðCÞ; cÞ is thus the sub-

group LalgSLnðCÞ \ OdiffðSLnðCÞ; cÞ of c-based algebraic loops (by c-based we mean

that the base-point of S
1 is c—the base point of the group is always the identity

element).
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THE CARTAN INVOLUTION

Consider the semi-linear involution # on the complex vector space AðnÞ which is

given by

f ¼
X
fin

fkz
k 7! f# ¼

X
fin

f ��kz
k:

The subgroup of all elements g 2 SLnðAÞ with g
�# ¼ g is denoted by LalgSUðnÞ. This

terminology is motivated by the fact that

LalgSUðnÞ ¼ LdiffSUðnÞ \ LalgSLnðCÞ:

To see this, note that for z 2 S
1 we have z�1 ¼ �zz, hence fðzÞfðzÞ� ¼ 1 holds for all

z 2 S
1 if and only if f 2 LalgSUðnÞ. For c 2 S

1 we have a semi-direct decomposition

LalgSUðnÞ ¼ SUðnÞOalgðSUðnÞ; cÞ

as before, and an S
1-action which is given by fðzÞ 7! fðazÞ.

LEMMA 5.2. We have LalgSUðnÞ \ SLnðC½z�Þ ¼ SUðnÞ.

Proof. Let f ¼ f0 þ f1zþ � � � þ fkz
k 2 SLnðC½z�Þ. Then f # ¼ f �kz

�k þ � � � þ f �1z
�1

þf0
�. If f # ¼ f�1 2 SLnðC½z�Þ, then fi ¼ 0 for i5 1. &

In particular,

Bþalg \ LalgSUðnÞ ffi T
n�1 and Pi;þalg \ LalgSUðnÞ ffi SðUðiÞ �Uðn� iÞÞ

(as in Section 2, Tk denotes a compact torus of rank k). There is a more geometric

description of the group LalgSUðnÞ. The map A
n #
�!A

n induces isomorphisms

DþðAn
Þ

#
�!D�ðAn

Þ and D�ðAn
Þ

#
�!DþðAn

Þ,

and LalgSUðnÞ ¼ CenSLnðAÞð#Þ. There is a corresponding Cartan decomposition of the

loop algebra slnðAÞ into eigenspaces of the involution #, slnðAÞ ¼ LalgsuðnÞ � X,
where X denotes the traceless hermitian matrices in AðnÞ.

THEOREM 5.3. The group LalgSUðnÞ acts transitively on the periodic flags,

LalgSLnðCÞ ¼ B
þ
algLalgSUðnÞ; FlðDþðAn

ÞÞ ffi LalgSUðnÞ=T
n�1:

Proof. The proof is exactly the same as in Lemma 2.1. The LalgSUðnÞ-stabilizer of

a panel is isomorphic to SUð2Þ � Tn�2 and induces the transitive group SOð3Þ on the

panel. &

In particular, LalgSUðnÞ acts transitively on Vþ0 . Since LalgSUðnÞ½M0�
¼ SUðnÞ, the

group OalgSUðnÞ acts regularly on Vþ0 ,
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Vþ0 ffi LalgSUðnÞ=SUðnÞ ffi OalgSUðnÞ;

and

FlðDþðAn
ÞÞ ffi OalgSUðnÞ � ðSUðnÞ=T

n�1Þ:

Note that the proof above (which is due to Bernhard Mühlherr) is much simpler than

the classical proof given, e.g., in [34], Theorem 8.3.2.

6. The Affine Veronese Representation of DþðAn
Þ

In this section we construct an equivariant embedding DþðAn
Þ,!slnðAÞ which is

very similar to the finite-dimensional Veronese representation DðCn
Þ,!pn 	

slnðCÞ. Recall that we presented the flags in DðCn
Þ as certain Hermitian operators.

Similarly, we want to associate an operator to the C½z�-module E0. To this end we

consider the first order linear differential operator

A�!A; f 7! z@z f ¼ z
@f

@z
:

If f ¼
P

fin fkz
k, then z@z f ¼

P
fin kfkz

k. Thus

kerðz@z � lÞ ¼ zlC; for l2Z,
0; for l2C nZ

�

In particular,

C½z� ¼
M
k5 0

kerðz@z � kÞ and C½1=z� ¼
M
k5 0

kerðz@z þ kÞ:

The operator z@z extends in an obvious way to A
n and to the matrix algebra AðnÞ.

For f 2 A
n we put Df ¼ z@z f: Let

Pk ¼ diagð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
k

; 0; . . . ; 0Þ 2 HðnÞ

and let Ptls
k ¼ Pk � ðk=nÞ 1 denote its traceless image in pn.

Thus

Eþi ¼ spanC½z�fze1; . . . ; zei; eiþ1; . . . ; eng

¼
M
k5 0

kerðD�Pi � k1Þ

¼
M
k5 0

ker ðD�Ptls
i Þ �

�
kþ

i

n

�
1

� �
;

the elements of the flag varieties Vþi correspond bijectively to the LalgSUðnÞ-conju-

gates of D�Ptls
i . Let g 2 LalgSUðnÞ. Then

0 ¼ z@zðgg
#Þ ¼ ðz@zgÞg

# þ gz@zðg
#Þ:
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Therefore

gDg#f ¼ gðz@zðg
#ÞÞfþ gg#Df ¼ Df� ðz@zgÞg

#f;

whence gDg# ¼ D� ðz@zgÞg
#; and

gðD�Ptls
i Þg

# ¼ D� ðz@zgÞg
# � gPtls

i g
#:

We put X ¼ fX 2 slnðAÞj X# ¼ Xg. This is an infinite-dimensional real vector space,

and ðz@zgÞg
# 2 X for all g 2 LalgSUðnÞ. We construct an LalgSUðnÞ-equivariant

embedding of DþðAn
Þ into the infinite-dimensional real vector space X�RD as

follows.

Vþk ,!X�RD;

½gE þk � 7!gðD�Ptls
k Þg

# ¼ D� ðz@zgÞg
# � gPtls

k g
#:

We extend this mapping to the geometric realization jDþðAn
Þj of DþðAn

Þ in the cano-

nical way, and we call the resulting LalgSUðnÞ-equivariant map

jDþðAn
Þj ,!X�RD �!

�pr1
X

the affine Veronese representation of DþðAn
Þ. Explicitly, the Veronese representation

of the vertex ½gEk� is

Fð½gEk�Þ ¼ gPtls
k g

# þ ðz@zgÞg
#:

Note that the group LalgSUðnÞ acts through gauge transformations

X 7! gXg# þ ðz@zgÞg
#

on X. Similarly as in the spherical case, it is not difficult to prove that F injects the

geometric realization jDþðAn
Þj into X. The partial flags in the building DþðAn

Þ

correspond thus to certain operators D� X 2 X�RD with finite-dimensional non-

trivial eigenspaces. Note also that # swaps DþðAn
Þ and D�ðAn

Þ, so F is at the same

time a Veronese representation for D�ðAn
Þ with exactly the same image.

CAVEAT

The affine Veronese representation is not surjective. Let aðzÞ ¼ zþ 1=z and r 2 R�.

The differential equation

ðz@z � raÞf ¼ lf

has the solution fðzÞ ¼ e rðz�1=zÞzl � const. This function is holomorphic on C
� if and

only if l is an integer, but it is not meromorphic on C [ f1g, so f 62 A. Thus, the

traceless diagonal matrix X ¼ diagða; . . . ; a; ð1� nÞaÞ 2 X does not represent a flag

of the building because D� X has no nontrivial eigenspaces.
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The space X is a subspace of the loop algebra slnðAÞ, which in turn is contained in

the semi-direct product slnðAÞ �CD. So X�RD plays a very similar rôole as

pn 	 slnðCÞ. Let Q denote the collection of all barycenters of images of chambers

in X. The closure M of Q in the Hilbert space completion of the real pre-Hilbert

space X is an infinite-dimensional isoparametric submanifold. See [19, 33] for more

information. The set Q coincides with the subset QðpÞ 	M introduced in [18] by

Heintze and Liu. In [12], we prove that all known isoparametric submanifolds of

rank at least 3 in Hilbert spaces arise in a uniform way from Veronese representa-

tions of twin buildings.

7. Topological Geometry and Bott Periodicity

In this section we propose a definition of topological twin buildings. Since spheri-

cal buildings are twin buildings, this is at the same time a definition of topological

spherical buildings. Definitions of spherical topological buildings have been pro-

posed by Burns and Spatzier [9], Jäger [20], Kühne [25], and myself; Mitchell

[27] proposes an ad hoc definition of topological BN-pairs. For spherical buildings

of rank 2 there is a well-established theory, see [13, 14, 17, 23, 24, 39, 40, 42]. The

starting point is always a topology on the set of vertices of the building (i.e. on the

0-simplices). Using the type function, the simplices of higher rank can be interpre-

ted as ordered tuples of vertices, and thus one obtains a topology on D; the ques-

tion then is which maps should be continuous. Burns and Spatzier [9] require only

that ChamðDÞ should be closed, i.e. that every net of chambers, viewed as a net of

r-tuples of vertices, converges to some chamber. Moreover, they claim that for the

classical geometries (projective spaces) this agrees with the traditional notion of a

topological geometry, see loc:cit: p. 1. This is definitely not true, and it is not dif-

ficult to construct perverse topologies on nice geometries which satisfy their condi-

tion nevertheless. However, in the compact spherical case, their definition is the

correct one (and that’s the only instance where they need it in their work [9]),

see Proposition 7.5 below.

Compactness or local compactness in the non-spherical case leads to locally finite

buildings (finite panels), and this in turn is related to locally compact CAT(0)-spaces;

however, these matter are not within the scope of the present article.

Similarly as in [20], our notion of a topological building asks for the continuity of

certain projections. The fact that this definition makes sense for twin buildings was

pointed out by Bernhard Mühlherr during a meeting in Oberwolfach back in

1992; then, we planned to write a joint paper with Martina Jäger on projections

and topologies in buildings which, however, never came to existence. This section

is a first approximation of what we had in mind.

The fact that topological buildings can be used to prove Bott periodicity is parti-

cularly appealing, since topological K-theory is an important ingredient in topologi-

cal geometry; many classification results in [23, 40] depend in an essential way on

Bott periodicity.
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PROJECTIONS IN (TWIN) BUILDINGS

Tits defined projections in (spherical) buildings in [48]; a modern account based on

metric properties of buildings is given in [11]. Let C;D be chambers in a building D,
let dðC;DÞ ¼ w, and let w ¼ si1 � � � sir be a reduced (minimal) expression for w in terms

of the generating set S. Then there exists a unique minimal gallery g ¼
ðC0 ¼ C;C1;C2; . . . ;Cr ¼ DÞ of type ðsi1 ; . . . ; sir Þ, consisting of chambers C0; . . . ;Cr,

such that dðCk�1;CkÞ ¼ sik holds for k ¼ 1; . . . ; r. Now let X 2 D be a simplex and

let C be a chamber. Then there exists a unique chamber E in ResðXÞ which we denote

E ¼ projXC, the projection of C ontoX, with the following property: for every chamber

D 2 ResðXÞ, and for every minimal gallery g starting at C and ending at D, the first

chamber in g which is contained in ResðXÞ is E, the gate of ResðXÞ with respect to C.

Note that projXC ¼ C if C 2 ChamðResðXÞÞ. If Y 2 D is an arbitrary simplex, then

there exists a unique simplexZwhich is contained in some chamber inResðXÞ, such that

ChamðResðZ ÞÞ ¼ projXChamðResðY ÞÞ;

and we put Z ¼ projXY.

Now suppose that ðDþ;D�; d�Þ is a twin building, that X 2 Dþ is a spherical simplex

(recall from Section 1 that this means that ResðXÞ is spherical), and that C 2 D� is a

chamber. Then there exists a unique chamber E 2 ResðXÞ which maximizes the

numerical codistance function D 7! ‘ðd�ðC;DÞÞ on ChamðResðXÞÞ, see Ronan [36]

(4.1). Intuitively, a ‘small’ codistance corresponds to a ‘big’ distance, so E is the cham-

ber ‘closest’ to C; note that D 7! ‘ðd�ðC;DÞÞ is bounded above because X is spherical.
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The chamber E is again denoted E ¼ projXC, and the projection projXY of an arbi-

trary simplex Y 2 D� onto X is defined exactly as before (but only for spherical X!).

7.1 Schubert Cells

Let C0 be a chamber in a building D, let J 	 I, and let wWJ 2W=WJ. The set

CwWJ
ðC0Þ ¼ fX 2 Dj dðC0;XÞ ¼ wWJg

is called a Schubert cell in D. Schubert cells in general buildings have no special

structure (e.g., if D is a tree), but Schubert cells in halves of twin buildings (and

in particular Schubert cells in spherical buildings) have a nice product structure,

i.e. they admit coordinates (labels).

7.2. Coordinatizing a Half Twin

Let C0 2 Dþ and D0 2 D� be a pair of opposite chambers in a twin building

ðDþ;D�; d�Þ. These two chambers determine a unique apartment A 	 D� (half of

the twin apartment spanned by ðC0;D0Þ, see, e.g., [36], 2.8). Let w 2W, and let

w ¼ si1 � � � sir be a reduced expression. Let E 2 CwðC0Þ, and let C0; . . . ;Cr ¼ E be a

(necessarily minimal) gallery of type ðsi1 ; . . . ; sir Þ. Let D0; . . . ;Dr be the unique mini-

mal gallery of the same type in the apartment A 	 D�. Then Ck opDk holds for

k ¼ 0; . . . ; r. We define r coordinates ðX1; . . . ;XrÞ by Xk ¼ projDkuDk�1Ck.

Note that Xk 2 ResðDk uDk�1Þ n fDkg. Now the point is that step by step, the whole

gallery g can be recovered from these coordinates;

C1 ¼ projC0uC1
X1; C2 ¼ projC1uC2

X2; C3 ¼ projC2uC3
X2; etc:;

since Ck�1 and sik determine Ck�1 u Ck, the information needed is only C0, the coor-

dinates ðX1; . . . ;XrÞ, and the reduced expression ðsi1 ; . . . ; sirÞ. Note also that different

reduced expressions for a Schubert cell lead to different coordinates; our coordina-

tization process depends on a choice of a reduced expression for every element

w 2W. In the case of spherical buildings of rank two, the different expressions of
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the longest element in the Coxeter group and the resulting ‘changes of coordinates’

lead to Van Maldeghem’s coordinatizing rings [52].

The process above yields coordinates for the Schubert cells CwðC0Þ 	 ChamðDþÞ.
For a coset wWJ 2W=WJ we may assume that w is the unique shortest coset repre-

sentative. The canonical ‘forgetful’ map CwðC0Þ �! CwWJ
ðC0Þ which sends a chamber

C to the unique subsimplex CjInJ of type I n J contained in C is a bijection; in fact,

C ¼ projCjInJC0. The Schubert cell CwWJ
ðC0Þ can also directly be coordinatized, by the

same method as described above. In any case we see that each Schubert cell is in a

natural correspondence with a finite product of punctured panels; for DþðAn
Þ we see

that the Schubert cell CwWJ
ðC0Þ bijects onto C

m, where m is the length of the shortest

coset representative of wWJ.

TOPOLOGICAL TWIN BUILDINGS

Let ðDþ;D�; d�Þ be a twin building. Suppose that there is a Hausdorff topology on

the set of vertices (the 0-simplices) of both buildings. The simplices of type J can

be regarded as J-tuples of vertices; in this way, the topology on the vertices deter-

mines a topology on both buildings. For J;K 	 I and w 2W we put

DJ;K
WJwWK

¼fðX;YÞ2Dþ�D�j typeðXÞ¼InJ; typeðYÞ¼InK;d�ðX;YÞ¼WJwWKg:

DEFINITION 7.3. A twin building is called a topological twin building if the fol-

lowing condition is satisfied:

TTB If J 	 I is spherical (i.e. if WJ is finite) and K 	 I is arbitrary, then

ðX;YÞ 7�!projXY is continuous on the set DJ;K
WJWK

.

The condition d�ðX;YÞ ¼WJWK means that X and Y are almost opposite, i.e. that

there exist chambers C5X and D5Y with C opD.

Remark 7.4. For spherical buildings of rank 2 and for projective spaces, this is the

common notion of a topological building, ([23, 25, 26]).

In the compact spherical case, there is a nice criterion due to Grundhöfer and Van

Maldeghem: &

PROPOSITION 7.5. If D is spherical, and if the topology on the vertex set is compact,
then D is a topological building if and only if the chamber set is compact.
Proof. This follows from the closed graph theorem for maps into compact spaces,

see [17]. &

We just mention the following result.

PROPOSITION 7.6. Let ðDþ;D�; d�Þ be a topological twin building, and let X 2 Dþ

be spherical. Then ResðXÞ is in a natural way a topological building. If Z is another
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simplex of the same type as X ðin either half of the twin buildingÞ, then ResðZÞ is

continuously isomorphic to ResðXÞ.

Proof. Pick Y 2 D� opposite X. Then proj induces an isomorphism

ResðXÞ ffi ResðYÞ. Let U;V 2 ResðXÞ be simplices with maximal WJ-distance. We

need to show that projVU is continuous. But �UU ¼ projYU depends continuously on

U, and projVU ¼ projV �UU. For the second claim one uses the following fact which is

not difficult to prove (see the proof by Tits [48], 3.30, in the spherical case): given

simplices X;X0 (in the same half of the building and of the same type), there exists a

simplex X00 in the other half which is opposite both to X and to X0. &

EXAMPLE 7.7. The building DðCn
Þ, with the natural topology on its vertex set

Gr1ðC
n
Þ [Gr2ðC

n
Þ [ � � � [Grn�1ðC

n
Þ is a topological building by Proposition 7.5,

since FlðCn
Þ is compact.

There is a natural topology on the group SLnðAÞ; the evaluation map

SLnðAÞ �!V i induces a topology on the set V0 [ � � � [ Vn�1 of vertices of DþðAn
Þ

and similarly on the vertices of D�ðAn
Þ.

THEOREM 7.8. The twin building ðDþðAn
Þ;D�ðAn

Þ; d�Þ is a topological twin building.
Sketch of proof. Let ðC;DÞ 2 DþðAn

Þ � D�ðAn
Þ be a pair of opposite chambers,

let X4C be spherical of type I n J and Y4D of type I n K. Since SLnðAÞ acts

strongly transitively on the twin building, it acts transitively on the set DJ;K
WJWK

, and

DJ;K
WJWk

ffi SLnðAÞ=SLnðAÞX;Y. Now SLnðAÞX;Y fixes Z ¼ projXY, and we have a

continuous map SLnðAÞ=SLnðAÞX;Y�!SLnðAÞ=SLnðAÞZ. It follows that the map

ðX0;Y0Þ 7�! projX0Y
0 is continuous on DJ;K

WJWK
. &

Let - denote the Bruhat order on W=WJ, for all J 	 I, and put

C-wWJ
ðC0Þ ¼

[
fCvWJ

ðC0Þj vWJ - wWJg;

this set is called the Schubert variety corresponding to wWJ. Let mðwWJÞ denote the

‘-length of the shortest coset representative of wWJ.

PROPOSITION 7.9. The Schubert varieties CwWJ
ðC0Þ in D

þ
ðA

n
Þ are CW-complexes,

with Poincaré series
P

vWJ-wWJ
t2mðvWJÞ.

Sketch of proof. Let w be a shortest coset representative for wWJ, and let

Gs1;...;sr ðC0Þ denote the collection of all (possibly stammering) galleries of type

ðs1; . . . ; srÞ (for some fixed reduced expression s1 � � � sr for w), starting with the

chamber C0. It is not difficult that to show that Gs1;...;sr ðC0Þ is an iterated CP1-bundle

(sometimes called a Bott-Samelson cycle); the total space is a smooth manifold of

dimension 2mðwWJÞ ¼ 2‘ðwÞ. These gallery spaces are also known as Bott-Samelson

desingularizations of Schubert varieties. Consider the endpoint map

Gs1;...;srðC0Þ �!
r

C-wWJ
ðC0Þ:

170 LINUS KRAMER



The non-stammering galleries in Gs1;...;srðC0Þ are mapped bijectively onto the Schu-

bert cell CwWJ
ðC0Þ. There is a canonical injection

Gs1;...;sr�1ðC0Þ �!Gs1;...;sr ðC0Þ

(by stammering at the end). The stammering galleries in Gs1;...;sr ðC0Þ are either of this

type, or galleries which don’t stammer at the end, but somewhere before the end.

Using this and the fact that

Gs1;...;srðC0Þ �!Gs1;...;sr�1 ðC0Þ

is a CP1-bundle, one can use induction on ‘ðwÞ to define a cellular map

e2 � e2‘ðwÞ�2 �!
f

Gs1;...;srðC0Þ

which maps the boundary of the cell e2 � e2‘ðwÞ�2 onto the stammering galleries, see

[27], Thm. 2.22, and [23], Section 4.1. Now r � f is an attaching map for a

2‘ðwÞ-cell. &

It follows that the based loop group OalgSUðnÞ has a CW decomposition with

Poincaré series

X
wAn�12 ~AAn�1=An�1

t2mðwAn�1Þ

whereW is the affine Weyl group of type ~AAn�1 generated by s1; . . . ; sn, and An�1 the

subgroup generated by s1; . . . ; sn�1.

KNARR’S CONSTRUCTION FOR DþðAn
Þ

We apply Knarr’s construction to the the halves of the topological twin building

ðDþðAn
Þ;D�ðAn

Þ; d�Þ. The main ideas can be found in Mitchell’s paper [27], although

our approach (which is the same as Knarr’s approach [21]) is more based on geomet-

ric properties (i.e. the coordinatization of twin buildings), whereas Mitchell makes

strong use of the BN-pair. Let jDþðAn
Þj denote the geometric realization of

DþðAn
Þ. By Theorem 7.8, there is a canonical topology on the flag space

FlðDþðAn
ÞÞ and we endow jDþðAn

Þj with the quotient topology induced by the

map FlðDþðAn
ÞÞ � j~n�1j �! jDþðAn

Þj. The resulting space is denoted

jDþðAn
ÞjKnarr.

More generally, assume that ðDþ;D�; d�Þ is a topological twin building, and that

the panels are topological spheres. For example, in DþðAn
Þ the panels are homeo-

morphic to CP1 ffi S
2. Moreover, panels of the same type are homeomorphic by

Proposition 7.6. Let mðsiÞ denote the topological dimension of the i-panels in

Dþ. It is proved in Kramer [23] Prop. 2.0.2 that mðsiÞ ¼ mðsjÞ holds whenever mij
is odd. Thus we obtain a Z-length m :W�!Z. For a Schubert cell CwðC0Þ,

we have

CwðC0Þ ffi RmðwÞ:
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PROPOSITION 7.10 ð½21� and ½27� 2:16Þ. Let ðDþ;D�; d�Þ be a topological twin
building. Assume that the panels are topological spheres. For w 2W; let Xw denote the

image of CwðC0Þ � j~
r�1j in jDþjKnarr. Then for each w 2W, the set

S
fXvj v . wg is

contractible.

Sketch of proof. The proof is by induction on the length ‘ðwÞ. Note that

X1 ¼ fC0g � j~
r�1j is contractible. Moreover,

C-wðC0Þ

.[
fCuðC0Þj u . wg ffi S

mðwÞ;

because this quotient is the one-point compactification of the Schubert cell CwðC0Þ.

The inductive step is accomplished as follows. First of all,
S
fXvj v . ug is contrac-

tible for all u . w. Then it is not hard to see that
S
fXvj v - ug=

S
fXvj v . ug is also

contractible. This implies that
S
fXvj v - ug is contractible. Finally,

S
fXvj v . wg is

homotopy equivalent to a wedge of such contractible spaces and hence itself

contractible. &

COROLLARY 7.11. If Dþ is spherical, then jDþjKnarr is homeomorphic to a sphere

of dimension mðw0Þ þ r� 1, where w0 is the unique longest element in the Coxeter

group W, and r is the rank of the building. In the non-spherical case, jDþjKnarr is

contractible.

Sketch of proof. In the spherical case, let w0 2W denote the longest element; this

is at the same time the unique maximal element in the Bruhat order. Then

Xw0
n
S
fXvj v . w0g ffi Rmðw0Þ �Rr�1, so Xw0

=
S
fXvj v . w0g ffi S

mðw0Þ ^ S
r�1, and this

space is homotopy equivalent to jDþjKnarr, since
S
fXvj v . w0g is contractible.

Finally, it is not difficult to see that Xw0
is a manifold, cf. [23], Prop. 4.2.1, hence

jDþjKnarr is a compact manifold (of dimension at least 5) homotopy equivalent to a

sphere, and thus to homeomorphic to S
mðw0Þþr�1 by the proof of the generalized

Poincaré conjecture due to Smale [43], Stallings [44], and Zeemann [53]. In the

nonspherical case, jDþjKnarr is a limit of contractible spaces and hence itself

contractible. &

The theorem above can be proved in much greater generality; it suffices to assume

that the panels are compact, connected, and of finite covering dimension. Under

these assumptions, the corollary holds up to homotopy equivalence, see [23] Section

3.3. On the other hand, if the vertices of the building are endowed with the discrete

topology, then the theorem leads to a quick proof of the Solomon–Tits Theorem.

BOTT PERIODICITY

The crucial step in the proof of Bott periodicity is the following observation. We

have Resð½E0�Þ ffi DðCn
Þ; and thus a natural map GrkðC

n
Þ ,!Vk. But the first terms

in the Poincaré series for these two spaces agree; the first few shortest coset represen-

tatives for W=WJ and WK=WJ\K are the same, where J ¼ f2; . . . ; ng and

K ¼ f2; . . . ; k� 1; kþ 1; . . . ; ng. For example, we have the following cell structure
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for n ¼ 4. Put I ¼ f1; 2; 3; 4g and let J ¼ f2; 3; 4g and K ¼ f1; 2; 4g; thus we have the

following Coxeter groups.

For Wf1;2;4g=Wf4;2g we have the following Bruhat order for the shortest coset repre-

sentatives ([41], 2.5).

Thus we see that Gr2ðC
4
Þ has a cell decomposition as e0 [ e2 [ e4 [ e4 [ e6 [ e8. The

Bruhat order for the shortest coset representatives of Wf1;2;3;4g=Wf2;3;4g starts as
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(and continues infinitely to the right). Accordingly, the cell structure of

V2 ffi OalgSUð4Þ is e0 [ e2 [ e4 [ e4 [ e6 [ e6 [ e6 [ � � �; in particular, the 5-skeleton

of V2 is the same as for Gr2ðC
4
Þ. The general result is as follows.

PROPOSITION 7.12. Suppose that n ¼ 2k is even. Then the inclusion GrkðC
2k
Þ ,!Vk

is a 2k-equivalence. &

The proof for Bott periodicity is now as follows. If k is large, then GrkðC
2k
Þ is a

good approximation for the classifying space BU; so in the limit, we obtain a homo-

topy equivalence BU ’ OalgSU. There is one problem, though; we have only consid-

ered the space OalgSUðnÞ consisting of all based loops which can be expressed as

Laurent polynomials, whereas topologists consider the space OctsSUðnÞ of all contin-

uous (or smooth) based loops. So the proof is not yet finished. At this point it is con-

venient to introduce Quillen’s space of special paths

S ¼ fðt 7! gðe2pitÞe2pitXg#ð1ÞÞ j X 2 m; g 2 LalgSUðnÞg 	 ðSUðnÞ; 1Þ
ð½0;1�;0Þ

where m 	 pn is a Weyl chamber. The group LalgSUðnÞ acts in a natural way on S.
But m 	 pn 	 X can also be identified with the image of the chamber

f½E0�; . . . ; ½En�1�g under the Veronese representation. This identification extends in

a natural way to an LalgSUðnÞ-equivariant homeomorphism

S �!ffi jDþðAn
ÞjKnarr 	 X

as follows: a path g 2 S is mapped to its ‘logarithmic derivative’

1=2piðd=dtgðtÞÞgðtÞ�1 which is a path in the tangent space T1SUðnÞ. (Conversely, a

smooth path in the tangent space can be read as a differential equation whose solu-

tion starting at 1 is a path in the Lie group.) If we put z ¼ e2pit, then

d

dt
ðgðzÞe2pitXg#ð1ÞÞ ¼ 2piððz@zgðzÞÞe2pitXg#ð1Þ þ gðzÞXe2pitXg#ð1ÞÞ;�
d

dt
ðgðzÞe2pitXg#ð1ÞÞ

�
ðgðzÞe2pitXg#ð1ÞÞ�1 ¼ 2piððz@zgðzÞÞg#ðzÞ þ gðzÞXg#ðzÞÞ:

LEMMA 7.13. The map

g 7 �!
1

2pi
d

dt
gðtÞ

� �
gðtÞ�1

is an LalgSUðnÞ-equivariant homeomorphism S�!jDþðAn
ÞjKnarr 	 X, where the

action on DþðAn
Þ is the standard one, and the action on Quillen’s space of special paths

is by gðtÞ 7�! gðe2pitÞgðtÞg�1ð1Þ. &

In particular, S is contractible. The endpoint map ðSUðnÞ; 1Þð½0;1�;0Þ �! SUðnÞ

yields the universal bundle

OctsSUðnÞ �!ðSUðnÞ; 1Þ
ð½0;1�;0Þ

�!SUðnÞ;

174 LINUS KRAMER



(where cts refers to the group of continuous loops) and as a subbundle we have

OalgSUðnÞ �!S�! SUðnÞ:

Since the total spaces of both bundles are contractible, the inclusion

OalgSUðnÞ ,!OctsSUðnÞ is a weak (and therefore also a strong) homotopy equiva-

lence. We have proved Quillen’s following result:

THEOREM 7.14 ðQuillenÞ. The orbit space jDþðAn
ÞjKnarr=OalgSUðnÞ is home-

omorphic to SUðnÞ. &

Recall that GrkðC
n
Þ is a good approximation of the classifying space BU in small

dimensions.

COROLLARY 7.15 ðUnitary Bott PeriodicityÞ. The inclusion

GrkðC
2k
Þ �!OalgSUðkÞ ,!

’
OctsSUðkÞ

is a 2k-equivalence. In the limit, the natural map

BU�!OctsSU

is a homotopy equivalence. &

This implies in particular the famous Bott isomorphisms p2kðUÞ ¼ 0 and

p2kþ1ðUÞ ffi Z, for all k5 0. Note that we have also proved that the OalgSUðnÞ-orbit

space map

jDþðAn
ÞjKnarr�!SUðnÞ

is a universal classifying bundle for OalgSUðnÞ.

8. Real Forms and Compact Symmetric Spaces

So far, we have discussed the group SLnðAÞ which is the proper generalization of the

complex group SLnðCÞ. In this last section we consider briefly how real groups fit

into the picture; more details can be found in [12] and [27]. Consider the involution

i given by

X
fin

Xnz
n 7 �!

X
fin

�XXnz
n:

The group of i-fixed elements in SLnðAÞ is SLnðR½z; 1=z�Þ, and there is a correspond-

ing twin building over R½z; 1=z� which is defined exactly in the same way as the one

over C½z; 1=z� considered so far. Note however that we cannot interpret the elements

of SLnðR½z; 1=z�Þ as loops in SLnðRÞ. Instead, we view the elements of SLnðR½z; 1=z�Þ

as paths

½0; 1� �!LalgSLnðCÞ

t 7 �! gðeiptÞ:
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These paths have the special property that they start and end in SLnðRÞ. If we inter-

sect SLnðR½z; z
�1�Þ with LalgSUðnÞ, then we obtain the group

SLnðR½z; 1=z�Þ \ LalgSUðnÞ

consisting of paths in SUðnÞ which start and end in SOðnÞ. Similarly as before, this

group is homotopy equivalent with the based loop space

OctsðSUðnÞ=SOðnÞÞ:

These loop spaces of compact Riemannian symmetric spaces play an important rôle

in topology. They can be used to prove the other versions of Bott periodicity (real

and quaternionic), see Mitchell [27].
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28. Mühlherr, B.: A rank 2 characterization of twinnings, European J. Combin. 10 (1998),

603–612.
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