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Abstract. In these notes we describe some buildings related to complex Kac—-Moody groups.
First we describe the spherical building of SL,(C) (i.e. the projective geometry PG(C")) and its
Veronese representation. Next we recall the construction of the affine building associated to a
discrete valuation on the rational function field C(z). Then we describe the same building in
terms of complex Laurent polynomials, and introduce the Veronese representation, which is
an equivariant embedding of the building into an affine Kac-Moody algebra. Next, we intro-
duce topological twin buildings. These buildings can be used for a proof which is a variant of
the proof by Quillen and Mitchell, of Bott periodicity which uses only topological geometry.
At the end we indicate very briefly that the whole process works also for affine real almost split
Kac-Moody groups.
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1. Introduction

We briefly recall the definition of Coxeter complexes and buildings; for more details,
we refer to the books by Brown [8], Ronan [35], Scharlau [41], and Tits [48]. For our
purposes, a simplicial complex is poset (A, <) whose elements are called simplices,
with the following two properties: any two simplices X, ¥ € A have a unique infimum
XY, and for any X € A, the poset A <y = {Y € A|Y < X} is order-isomorphic to
the power set (2F, ) of some finite set F; the cardinality of this set F is called the
rank of the simplex X. Note that the rank of a simplex differs by one from the dimen-
sion of its geometric realization; a k-simplex has rank k + 1. The rank of a simplicial
complex is the maximum of the ranks of its simplices.

COXETER COMPLEXES

Let I be a finite set with r elements, and let (mn;;) be a symmetric matrix indexed by
I x I, with entries in N U {oo}, subject to the following two conditions: mz; > 2 for all
i #j, and m;; = 1 for all i. Such a Coxeter matrix is determined by its Coxeter graph;
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the vertices of this graph are the elements of /, and two vertices i, j are joined by
mj — 2 edges, or by one edge labeled mj;. The corresponding Coxeter system
(W, S) is the group W with generating set S = {s;| i € I} and relators (s;s;)"". Asso-
ciated to such a Coxeter system is a simplicial complex, the Coxeter complex
X = X(W, S) which is defined as follows. For J C I let W, denote the subgroup gen-
erated by the elements s;, for j € J. The simplices of X are the cosets wW; € W/W;,
where J runs over all subsets of 7; the partial ordering is the reversed inclusion, i.e.

gW; < hWy if and only if gW,; > hW,.

The group W acts regularly on the maximal simplices of this simplicial complex (by
left translations). The type of a coset wlW; is type(wW,) = I\ J; a subset J C I is
called spherical if W is finite; if I itself is spherical, then X is called spherical. The
geometric realization of a spherical Coxeter complex of rank k is a triangulated
k — 1-sphere. We define a W-invariant double-coset valued distance function 6 on
% as follows:

5T xE— U{WJ\W/WK| J,KCI,
(5(qu, UWK) = Wju_leK.

Coxeter groups have nice geometric properties; in particular, the word problem can
be solved. Let 4 be an Abelian group, and let a: S—> A be a function. We require
that a(s;) = a(s;) holds whenever m;; is finite and odd. Then there is a well-defined
extension a: W—> A, which is defined as a(s;, ...s;) = a(s;) + -+ -+ a(s;), for a
reduced (minimal) expression w =s;, ...s;, the a-length. In the special case 4 = Z,
with a(s;) = 1 for all i, we obtain the usual length function ¢: W — 7. In general,
the set of generators S is not uniquely determined by the abstract group W, so it
is important to consider the pair (W, S); the question to which extent S is determined
by the group W is treated in [6] and [30] see also [10] for related results.

BUILDINGS

Let A # @ be a simplicial complex, and let £ = Z(W, S) be a Coxeter complex. A
simplicial injection ¢: X —> A is called a chart, and its image 4 = ¢(X) is called
an apartment. The complex A is called a building (of type (m;) and rank r) if there
exists a collection A of apartments with the following properties.

Bld, For any two simplices X, Y € A, there exists an apartment A € A with
X,Y e A.
Bld, Given two charts ¢;: £ A, for i = 1, 2, there exists an element w € W such

that ¢, o w(X) = ¢,(X) holds for all X € $5'(¢,(X) N po(Z)).

A simplex of maximal rank r is also called a chamber; the set of all chambers is
Cham(A). For any subset X C A, we let Cham(X) denote the set of all chambers
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contained in X. The building is thick if every simplex of rank r — 1 is contained in at
least three chambers. A/l buildings in this paper will be thick. A spherical building is a
building with finite apartments.

It follows from the axioms that there is a well-defined double-coset valued distance
function

S:Ax A— | JIW AW/ W J.KS 1)

whose restriction to any apartment is given by the function ¢ defined above in 1.1.
The restriction of 6 to Cham(A) x Cham(A) is Tits’ more familiar WW-valued distance
function; buildings can also be characterized by properties of the distance function 9,
see Ronan’s book [35].

Let A'~! denote the standard r — 1-simplex (2/, C). The two axioms yield a sim-
plicial surjection, the type function (the ‘accordion map’) type: A— A'~!, whose
restriction to any apartment agrees with the type function defined above. The type
function is characterized (up to automorphisms of A’~!) by the fact that its
restriction to every simplex of A is injective. A simplex X € A is called spherical if
I\type(X) is spherical.

For nonspherical buildings the apartment system .4 is in general not unique (there
is always a unique maximal apartment system), but the isomorphism type of the
apartments and the Coxeter system (W, S) is uniquely determined by the simplicial
complex A.

AUTOMORPHISMS

The automorphism group Aut(A) consists of all simplicial automorphisms of A; it
has a normal subgroup Spe(A) consisting of all type-preserving automorphisms.
An action of a group G on A is a homomorphism G — Aut(A). We say that G acts
transitively on A if it acts transitively on the set Cham(A) of chambers.

Strongly transitive actions and BN-pairs. A group G is said to act strongly transi-
tively on A (with respect to A) if G acts as a group of special automorphisms
on A such that

STA; G acts transitively on the set A of apartments.
STA, If A € Ais an apartment, then the set-wise stabilizer NV of A acts transitively
on the chambers in 4.

Let C € A be a chamber in an apartment A, let B = G¢ denote the stabilizer of
C, and N the set-wise stabilizer of 4. Then (B, N) is a so-called BN-pair for the
group G; the Weyl group W = N/(N N B) acts regularly on 4 and is isomorphic
to the Coxeter group of A. The stabilizers of the simplices contained in C are
called standard parabolic subgroups of G.
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PANELS AND RESIDUES

Let X € A be a simplex of type J. The residue of X is the poset Res(X) =
A-yxy={Y € Al Y=X}. The residue is order-isomorphic to the /ink of X, and thus
can be identified with a subcomplex of A (although strictly speaking, Res(X) is not
a subcomplex). It is a basic but important fact that residues are again buildings;
the corresponding Coxeter complex is obtained from the restricted Coxeter matrix
(i) ;- The type of the residue Res(X) is /\J, and its rank is card (/\J). A residue
S; = Res(X) of rank 1 and type {i} is called an i-panel.

The following observation is very simple, but useful.

LEMMA 1.5. Suppose that G acts as a group of special automorphisms on a building
Aof rank r = 2; let C € A be a chamber. Then G acts transitively on A if and only if the
following holds for all r simplices Xy, ..., X, < C of rank r — 1:

o the stabilizer Gy, acts transitively on the panel Res(X;).

Tits pointed out that transitive groups acting on buildings of higher rank can be
represented as amalgams.

THEOREM 1.6 ([49]2.3). Let G be a group acting transitively and type-preservingly on
an irreducible building A of rank r = 3 (i.e. we assume that the Coxeter diagram is con-
nected and has at least 3 vertices). Let X be a chamber, let X1, ..., X,, denote its sub-
simplices of rank r — 1, and Xy, i,j € 1,i # jits ('2) subsimplices of rank r — 2. Then
the ( "J; ) + 1 different G-stabilizers of these simplices with their natural inclusions form
a diagram (a simple 2-complex of groups ([7], 11.12 and II1.C)— the corresponding
poset is the set of all subsets of I with at most two elements) whose limit is G. O

For example, a building of rank 4 with I = {1, 2, 3, 4} yields a complex of groups
as follows, if we put Gy, = Gy for short.

A

\

Gy
/ Gog
Gy Go3

G
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In general, the geometric realization of this 2-complex of groups is the cone over
the first barycentric subdivision of the 1-skeleton of an r — 1-simplex.
For group amalgamations related to twin buildings (cf. Section 4), see [2].

2. The Spherical Case: Projective Space and SL,(C)

In this section we describe the spherical building obtained from »n — 1-dimensional
complex projective space, some related groups, and the Veronese representation.
Given a ring R, we let R(k) denote the matrix algebra of all k x k-matrices with
entries in R.

THE SPHERICAL BUILDING A(C")

The Grassmannian of k-spaces in C" is the complex projective variety
Gr(C") = {U < C"| dim(U) = k}.

A partial flag in C" is a nested sequence of subspaces 0 < U;, < U;, < --- < U;, < C",
with dim(U},) = j,. Such a partial flag can be viewed as a map

(o n=11 275 Gri(C"Y U+ U G,y (CM),

with dim(U;) = j and U; < Uy, for j < k. There is a natural order * <’ on the collec-
tion A(C") of all partial flags: if U and U are partial flags with
JCJ C{l,...,n—1}, then U < U if and and only if U’'|; = U. The resulting poset
is a simplicial complex of rank n — 1, the spherical building

A(CTY = (A(C"), <).

Of course, A(C") is precisely the same as the n — 1-dimensional projective geometry
PG(C") in a different guise.

Given an ordered basis (v1,...,v,) of C", we may consider the maximal flag
U=U"(y,...,v,), where U;=spanc{vj,...,v;}, and the apartment
A%{vy, ..., v,} consisting of all flags obtained as partial flags from the n! distinct
maximal flags (chambers) U"(vn1), - - -, Un@y), Where m € Sym(n). It is not difficult
to check that A(C") together with this collection of apartments is a spherical build-
ing. As a simplicial complex, 4“{v1, ..., v,} is a triangulation of the sphere "2 In
fact, let A" denote the standard n — 1-simplex, and Bd(A”~") its boundary; then
A%{vy, ..., v,} is simplicially isomorphic to the first barycentric subdivision
¥ =Sd(Bd (A"")). The corresponding Coxeter group is the symmetric group
W = Sym(n), given by the presentation

W=(si,....mal (i)™ =1, 1 <i,j<n—1),
1, ifi=j,
where m; = 1 3, if li—jl=1,

2, else.
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The involution s; is the transposition (i, i 4+ 1); the Coxeter diagram is

Apq ———

(n — 1 nodes). The type of a flag

U:.J— Gri(CHU-.-UGr,_1(C"
is type (U) = J, the set of the dimensions of the subspaces occurring in U. In A(C"),
a panel S; is determined by a flag of the form

U1 < U2 < e < Ui_] < UH—I < --~Un_1,

and there is a natural bijection S; — Gr{ (Ui /Ui_;) = CP' = C U {oo} onto a pro-
jective line.

PARABOLICS IN SL,(C)

There are natural actions of the groups GL,(C) and SL,(C) on the building A(C")
(by type preserving automorphisms), and it is not difficult to see that these actions
are strongly transitive. The SL,,(C)-stabilizer of a partial flag is thus a parabolic sub-
group. The maximal parabolics are the stabilizers of the flags of rank 1, i.e. of sub-
spaces 0 < V' < C". Such a maximal parabolic is conjugate to one of the standard
maximal parabolics

p— {(6‘ g)'A e C(i), CeCn—1i), Be ™ det(A)det(C) = 1},

and

Gry(C") = SL,(C)/P'.

The minimal parabolics or Borel subgroups are the stabilizers of maximal flags, i.e.
chambers in A(C"). The Borel subgroups are conjugate to the standard Borel sub-

group

B=P'n...nP~! =8SY,(C) = aa---a, =1

0 a,

consisting of all unimodular upper triangular matrices. The corresponding homoge-
neous space is the complex flag variety

FI(C") = Cham(A(C")) = (U}, ..., Up_1)
10 < U << U, <C" =~ SL,(C)/B.
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THE ANISOTROPIC REAL STRUCTURE OF SL,(C)

We define a semi-linear involution s on C(n) by putting X* = X7 (conjugate trans-
pose). Recall that the Lie algebra 3[,C consists of all traceless n x n-matrices. Let

su(n) = {X e 3[,C|X+X* =0} and p,={X e 3[,CIX = X*}.

The decomposition 31,(C) = s1u(n) & p,, is called the Cartan decomposition of the Lie
algebra 3[,(C). On the group level, let

SU(n) = {g € SL,(C)| g* =g '}

denote the group of fixed elements of the involution (g+> g7*) € Autr(SL,(C)).
Both the involution X+ —X* in the Lie algebra and the involution g+ g™* in
the group are called Cartan involutions. (In terms of algebraic groups, we have
defined an almost simple R-group scheme G such that G(R)=SU(n) and
G(C) =SL,(C). The Galois group of C/R acts on the group SL,(C) of C-points
of G, and SU(n) is the group of fixed elements. The group scheme G is R-anisotropic:
no parabolic of G is defined over R. For semi-simple R-algebraic groups, ‘anisotro-
pic’ is the same as ‘compact’.)

More geometrically, the group SU(n) can be described as follows. Let (x, y) =
X1y1 + -+ + X,p, denote the standard hermitian form on C”. This form induces a
map Gri(C") — Gr,_x(C"), Vi V2, for all k, which extends in a natural way to
an involution L on A(C"). Then SU(n) is the centralizer of this involution,
SU(n) = Cens,(c)(L)

Classically, the involution L is called the standard elliptic polarity on the
complex projective geometry PG(C"); the associated Riemannian symmetric space
X =SL,(C)/SU(n) is—as a subset of Aut(A)—precisely the space of all elliptic
polarities (i.e. the space of all positive definite hermitian forms on C").

Using Gram—Schmidt orthonormalization, one shows that SU(n) acts transi-
tively on the flag variety FI(C"). Bernhard Miihlherr pointed out that there is
a different proof which uses Lemma 1.5, and which carries over to the Kac—
Moody case described later.

LEMMA 2.1. The group SU(n) acts transitively on FI(C").

Proof. Let U=U"(ey, ...,e,) = (Uy,..., U,_) denote the maximal flag arising
from the standard basis of C". The SU(n)-stabilizer of a panel ;=
Res(Uy, ..., U1, Ui, ..., U,_1) containing U is isomorphic to SU(2)- T"2; it

induces the transitive group SO(3) =SU(2)-T"%2/T"? on the panel (we let
Tk =U(l) x --- x U(1) denote the compact torus of rank k; in terms of algebraic
groups, T is the group T(IR) of R-points of an anisotropic R-torus 7 of rank k). The
assertion follows with Lemma 1.5. O

For n = 4, we have by Theorem 1.6 the following complex of groups which repre-
sents SU(4) as an amalgam (we indicate the nonzero entries of a matrix by e, and all
matrices are assumed to be unimodular and unitary).
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[ i) —T)
Here
[ ) [ ) [ ] [ )
[ ) [ ) [ ] [ ) [ )
= = ~SU(2)- T7,
[ [ ] [ )
[ ] [ ) [ ] [ )
[ ) [ ) [ ] [ ]
[ ) [ ) [ ] [ ) [ ) [ )
o~ ~SU@3)- T',
[ ) [ ) [ ] [ ] [ ) [ ]
[ ] [ [ ) [ )
[ ) [ )
[ ) [ )
~ SU(2)-SUQ2) - T'.
[ ] [ ]
[ ] [ ]

In group theoretic terms, we thus have

SL,(C) = SU(n)B, SUm)NB=T1T"",

SL,(C) = SU(n)P', SU(n) N P' =2 S(U(@) x U(n — i).
In particular,

FI(C") = SU®)/T"" and  Gre(C") = SU(n)/S(U(k) - U(n — k)).

KNARR’S CONSTRUCTION

Let |A(C™)| denote the geometric realization of the simplicial complex A(C"). There
are various ways to topologize this set. One possibility is the weak topology deter-
mined by the simplices: by definition, a subset 4 C |A(C")| is closed in the weak
topology if and only if its intersection with every simplex is closed. We denote
the resulting topological space by |A(C")|,eax; there are other nice topologies, all
of which yield the same weak homotopy type for the space |A(C")| ([7], 1.7).
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The Solomon-Tits Theorem asserts in our situation that there is a homotopy
equivalence

|A(CH)|weak = S”_z A X+’

where X is a discrete set of cardinality 2™ and X its one-point compactification. (In
general, the Solomon-Tits Theorem says that for a spherical building A of rank r,

qr-1 ~ qr-1
|A|weak = Sr A X+ — \/ S’
card(X)

where X is a discrete space whose cardinality is card(X) = card{4 € A| C € A4} for
some fixed chamber C. The action of the automorphism group SL,(C) on the top-
dimensional homology group H,_i(|A|yex) of this complex is called the Steinberg
representation. See [35], App. 4, for more details and further references.)

However, this construction neglects the natural topology of A(C"). Consider the
following construction. Fix an (n — 2)-simplex A"~> and label its vertices as
1,2,...,n— 1. There is a natural surjection

FI(C") x | A" 72— |A(C™)]

which maps {U} x | A" 2| to the geometric realization of the simplex of A(C") span-
ned by the vertices Uy, ..., U,_; of the given flag U, in such a way that the ith vertex
of {U} x A”"? is identified with U, There is a natural compact topology on
FI(C") x |A"?|, and we endow |A(C")| with the quotient topology. We denote
the resulting space by |A(C")|kpare (because Knarr—inspired by Mitchell [27]—intro-
duced it first in [21] for compact buildings of rank 2). It can be shown that there is a
homeomorphism |A(C")|gparr = S”z_z, see [21]. We will prove this in the next section,
using the Veronese representation of A(C"); a more general result is stated in
Section 7.

The Knarr construction works for general topological buildings. If the topology
on the chamber set of a spherical building A of rank r satisfies certain natural con-
ditions (e.g. the inclusions between its Schubert varieties should be cofibrations),
then |Algpar =~ S~ A Oy, where O is the set of all chambers opposite to a fixed
chamber, and O, its one-point compactification. For the special case of a discrete
topology on the chamber set, this is precisely the Solomon-Tits Theorem. There is
a well-developed theory of compact spherical buildings (the case of rank 2 is worked
out in [23], and the results proved there extend immediately to the case of higher
rank); the result for the homotopy type of |A|gp.r can be proved in much greater
generality, see [23], Section 3.3. If the building is spherical, irreducible, compact, con-
nected, and of rank at least 3 (see § 7 for definitions), then by the results in [9, 14-16],
the space |Alg e can be identified with the visual boundary X(oc0), ([7] 11.8), of a Rie-
mannian symmetric space X; for A(C"), the symmetric space in question is
X = SL,(C)/SU(n); the same conclusion holds for buildings of rank 2, provided that
the automorphism group acts transitively on the flags ([14-16]).
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THE VERONESE REPRESENTATION OF A(C")

We endow C(n) with the positive definite Hermitian form (X, Y) = tr(X*Y).
Consider the subspace H(n) < C(n) consisting of all Hermitian matrices in
C(n). Every matrix X € H(n) has a unique decomposition X = X" + (tr(X)/n)1
into a traceless Hermitian matrix X" and a real multiple of the identity matrix.
The adjoint action of SU(n) on H(n) is the action by conjugation, X+ gXg*.
We have an orthogonal SU(n)-invariant splitting H(n) = p, @ 1R (recall that
p, ={X € Hn)|tr (X) =0}). Suppose that X e H(n) is a projector, i.e. that
X?=X. If X#0,1, then the minimal polynomial of X is uy(f) = #(t — 1), and
tr(X) =k, for some ke {l,...,n—1}. The kernel V of X is then an n— k-
dimensional subspace of C". In this way, we obtain an SU(n)-equivariant one-
to-one correspondence between elements of Gr,_,(C") and self-adjoint projectors
with trace k& which is given by the map X ker(X). The map
X X = X — (tr(X)/n)1 is SU(n)-equivariant; in this way, we obtain an embed-
ding @ : Gri(C") < p, as follows. For V € Gri(C") let X, denote the unique
self-adjoint projector with ker(X,) =¥, and put ®(V) = (X,)®™. The elliptic
polarity L is built-in: the other eigenspace of Xj is the image V* of V under
the elliptic polarity. Even better, the incidence can be seen in p,: two self-adjoint
operators ®(V), ®(W) € p, representing subspaces V € Gri(C") and W e Gry(C")
are incident if and only if the Euclidean distance |®(V)— ®(W)| attains the
minimum possible value d;; = dist(®(Gr(C"), O(Gr(C"). If U is a flag in
A(C™"), and if pe A"? has barycentric coordinates (pi,...,p,—1), then we
map (U, p) € FI(C") x A"? to the Hermitian operator

n—1
O(U.p) = > _ p®(U) € v,
i=1

In this way we obtain an SU(n)-equivariant injection @: |[A(C")| < p,. We call this
the Veronese representation of the building A(C"). The image of the flag space FI(C")
in p, is an isoparametric submanifold (we identify a chamber with the barycenter of
its geometric realization); the images of the partial flag varieties are parallel focal
submanifolds in this isoparametric foliation ([22, 32, 46, 47]). (The corresponding
construction for the real projective geometry PG(R?) leads to the classical Veronese
embedding of RP?> < S* whence the name.)

The following variation of the map ® is also useful. For a nonzero matrix
X € C(n), put X= | X171 X, where |.| denotes the Euclidean norm, and consider the

map d: (U, p)— ®(U, p). Then is is not difficult to see that
dUAC) =82 Cp, 2 R

the map is injective, since we can recover a flag (U, ..., U;) from its image X € p, as
follows: the Hermitian matrix X has eigenvalues 4; <4; <--- < 4,, and
U;, =ker(X — ;1) @ - - - ® ker(X — A,1). The surjectivity follows from the fact that
every Hermitian matrix can be diagonalized under the SU(n)-action, because the



LOOP GROUPS AND TWIN BUILDINGS 155

image of the Veronese representation contains certainly all diagonal traceless
matrices of norm 1; these are precisely the images of the simplices in the apartment
A{ey, ..., e,}. Since @ is continuous on |A(C")|gpars We Obtain in particular the
claimed homeomorphism |A(C")|g parr = sm2,

3. The Affine Building of C(z)

In this section we describe the affine building associated to the discrete valuation on
the rational function field C(z). This building is discussed in considerably more detail
in the books by Brown [8] and Ronan [35].

LATTICES IN C(z)"

We let . = C(z) denote the field of fractions of the polynomial ring C[z]. Thus, I is
the field of rational functions on the complex projective line CP' = C U {oc}. For
¢ € CP! we let O, < L. denote the subring of all rational functions which don’t have
a pole in ¢, and m. = {f € O,] f(c) = 0} the maximal ideal of O,.. Evaluation at ¢
yields a map ev.: O, — C, fi— f(c) with kernel m,, and we obtain exact sequences

ev,
0—m,—0,—-C—0

and
1— SL,(m.) — SL,I(OC)i; SL,(C)—1

(the group SL,(m,) is defined to be the kernel of the evaluation map ev.). We may
view the elements of SL, (L) as rational maps from CP! into SL,(C). Note also that
every element ¢ ## 0 of [, can be expressed in the form ¢ = (z — c)k‘g, with k € 7,
f,ge€Clz], and flc) #0 #g(c). We put v.(q) =k, and v.(0) =oco. The map
ve:llL— Z U{oo} is a discrete valuation on 1. (with some modifications for
¢ =o00). Note that OF = {g € O| v.(q) =0}. There is nothing special about the
choice of ¢ € CP!, and we put ¢ = 0 for the remainder of this section.

The group SL,(IL) acts on the projective geometry PG(IL") in very much the same
way as SL,(C) on PG(C"), and we could consider the spherical building A(IL"). But
now we introduce a different geometry for this group, the affine building A(L", Oy).
Given an [.-basis vy, ..., v, of I.”, we have the free Oy-module

M = spang {vy, ..., v} = 0100 + - -+ + 1,09

of rank n generated by these basis vectors. We call M an Oy-lattice, and we let
Lat, (L, Op) denote the collection of all such lattices. (The following simple observa-
tion is useful. If M C " is a free Op-module of rank k, with Ogy-basis {v1, ..., vk},
then {vy, ..., v} is linearly independent over I, because L is the field of fractions
of Oy. Thus, the Oy-lattices are precisely the free Op-modules of rank 7z in 1.".) Evi-
dently, the group GL,(IL) acts transitively on Lat,(L,, Op); the GL,(IL)-stabilizer of
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the Op-module M spanned by the canonical basis ey,...,e, of L. is the group
GL,(0y), and therefore

Lat,(LL, Oy) = GL,(IL)/GL,(Oy).

We call two lattices M, M’ € Lat, (I, Oy) projectively equivalent if M = gM’ for some
g € L*. In view of the factorization of ¢ given above, this is clearly equivalent with
the condition that M = z¥M’ holds for some k € 7. The projective equivalence class
of M e Lat,(LL, Oy) is denoted by

[M] = {"M| k € 7))

Thus we have obtained an action of the projective groups PGL,(I) and PSL,(I.) on
the set

{IM]| M € Lat,(L., Oo)}

of projective equivalence classes of Oy-lattices.

THE ACTION OF SL,(I.) AND THE TYPE FUNCTION

The group SL,(IL) is not transitive on set of projective equivalence classes of Oy-lat-

tices. Let Mo = spang {ey, ..., e,} denote the Op-module spanned by the canonical
basis ey,...,e, of L. Suppose that g(My) = M’, for some g e GL,(IL). Since
vo(det(h)) = 0 for all 1 € GL,(Oy) (because vo(q) = 0 if ¢ € Oy is a unit), the number

vo(det(g)) depends only on the module M. The determinant of the map A : v+ zfv
is det() = z*". Thus we have a well-defined map
type([M']) = v(det(g)) + n”Z € Z/n

which is SL,(I)-invariant. Note also that the stabilizers agree, SL,(L.),, = SL,(L)pars
since det(4.x) # 1 for k £ 0. We put

Vi = {[M]| M e Lat,(L., Oy), type(IM]) = i}.

Let

M; = spang {zey, ..., ze;, i1, .. ., en}
denote the Op-module spanned by the vectors zey,...,ze;, e€i1,...,e,. Then
[M] €V,

LEMMA 3.1. The action of SL,(I.) on V; is transitive.

Proof. If [M]=[g(M))] € V; for some g € GL,(L), then vy(det(g)) = 0 (mod n),
whence v(det(zFg)) = 0 for a suitable k € 7Z. Put g’ = z*g, then [M] = [¢'(M;)], and
vo(det(g")) = 0, whence det(g’) € Oy. Finally, put 4 = diag(det(¢’)~", 1,...,1). Then h
fixes M;, and thus g’h € SL,(I) maps [M;] to [M]. O

These n different Oy-modules My, ..., M,_; thus form a cross-section for the action
of SL,(I)) on the set of projective equivalence classes of Oy-lattices, and we put
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P?at = SLH(H/*)MO = SL,(0y),

P=SL,(L) {( 4 ZlB)'A Oli) (A B) SL,(O )}
at = SLy = € i), e SL,
rat M :C D “\e b 0
fori=1,...,n— 1. The sets Vo, ..., V,_| play the same role as the Grassmannians
Grj(C") in Section 1.1, and the stabilizers P2, ..., P.;! play the same role as
the standard maximal parabolics P,..., P lin SL,(C). However, there is one fun-
damental difference: the stabilizers P!, i=0,...,n— 1, are conjugate to P2 in
GLI’I(‘T”)a

Pp, = giSL.(Oo)g; ™,
where

g = diag(z,...,z,1,.. 1) e GL,(L).

i n—i

INCIDENCE, PERIODIC FLAGS, AND APARTMENTS

We define an incidence relation I on the set {{M]| M € Lat, (I, Oy)} as follows:

def :
IMIIIM] & =M <M <M forsome k € 7.

This relation is symmetric, since zM < zXM’ < M implies that zM' < z'*M < M'.
Clearly, SL,(I) acts by incidence preserving automorphisms on this incidence geo-
metry. Similarly as before, we can use the incidence relation to construct a poset
A(L", Oy), the affine building of (L", Op); the elements of A(L", Opy) are the sets of
pairwise incident elements of VyU---UV,_;.

Note also that [M;]I[M;] holds for all i, j. The chambers are of the following form.
Let B = (vy,...,v,) be an ordered basis of L.”, and put M;B = spang, {zvy, ..., 2v;,
Vitls ..., Uy}, Then M(D) = {[M?],...,[M?‘Ll]} is a maximal flag, which can be
viewed as an infinite sequence of free Oy-modules

_ 3
>z ]M?_l>M§S>M;B>--->M;B_l>ZM?>ZM1~>~~-

of rank n. The quotient of two consecutive modules in this chain is a one-dimen-
sional complex vector space. Note that A(L", Op) has rank n.

The collection of all chambers is called the periodic flag variety FI(L", Oyp). The sta-
bilizer of the chamber {[My], ..., [M,_1]} is the Borel group

B =Py NPy, NN P!
O Oy
= € SLy(Op) } = evg ' (SN,(C))
z0y Oq
Given a basis vy, ..., v, of ", we define the standard apartment A§{vy, ..., v,} as the

collection of all partial flags obtained from the maximal flags M(B), where B runs
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through the collection of all bases of the form B = (z~ Ur(l)s -« - » 2k Un(n)), form € Sym(n)
and ki, ..., k, € 7. The set-wise SL,(IL)-stabilizer Ny of Al = Al {er, ..., e,} is the
collection of all unimodular permutation matrices with entries in L., and the ele-
ment-wise stabilizer Ty of A%" is the collection of all diagonal unimodular matrices with
entriesin Oy . The quotientis the affine Weyl group W = Nyat/ Trar =2 A, of SL,(L). As
a simplicial complex, 4} is a triangulation of R™1,

THEOREM 3.2. The simplicial complex A", Oy) is a building of rank n and type

/I,,_l; as an apartment system, we may choose the set Ag]" = {A})"{vl, e Ul
vy, ..., v, a basis for L"}. The Coxeter diagram is A,_;;

X . forn=2 forn >3
(n nodes).

Proof. Probably the easiest way to see that this is a building is to verify that
(Brat, Nrat) 1s @ BN-pair for the group SL,(L); cf [8], Ch. V.8, and [35], Ch. 9.2. [J

It is not difficult to see that the residue of [M;] is isomorphic to A(C"), for
i=0,...,n— 1. Thus the panels in A(L", Opy) are again isomorphic to the complex
projective line CP'.

One final remark. We have constructed the affine building A(L", Oy) related to the
discrete valuation vo. There is nothing special about the point 0 € CP'; if we choose
a different point ¢ € CP!, then we obtain a different affine building A(L", ©.). These
buildings are pairwise isomorphic; in fact they are permuted by the group PSL,(C).
Each of these building has a distinct collection of parabolics, so SL,(I.) contains an
uncountable set of BN-pairs.

4. The Twinning over C[z, 1/z]

Now we describe the buildings A(L", Op) and A(L", O) in a slightly different way,
replacing the field C(z) by the ring C[z, 1/z]. This section owes much to the paper [4]
by Abramenko and Van Maldeghem. So let

A=Clz /7= O x e CX)

denote the ring of all rational functions which are holomorphic on C* € CP!. This
is a subring of I, the ring of Laurent polynomials. Note that A N Oy = C[z] and
AN Oy = C[l/z]. Similarly as before, we let Lat,(A, C[z]) denote the collection
of all free C[z]-modules in A" which are spanned by an A-basis, and
Lat, (A, C[1/z]) the collection of all free C[1/z]-modules spanned by A-bases. Thus

Lat,(A, Clz]) = (g(ED ¢ € GL.(A)
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and

Lat, (A, C[1/z]) = {g(£y)| g € GL,(A)},
where

Ef" =spancyfer,....e,} and  Ey =spancq gfer, ... e}
For

E e Lat,(A, C[z]) U Lat,(A, C[1/z])

we put, as before, [E] = {ZFE| k € 7},
and

+
E" = spanc,izey, ..., zej, eit1, .. ., enl,

E = spanu[l/zl{zel, RS < A T P
and
Vi = ([$E71l g € SL/(A)).
The incidence is also defined as before. If [E] € Vf and [E] € Vf, then

[EII[E'] g AE<E <E forsome k € 7
Thus we obtain two simplicial complexes AT(A") and A~(A") which are isomorphic
under the map induced by the ring automorphism z+ 1/z. The set of all maximal
simplices is denoted by FI(A*(A")).

Now there is a canonical map Lat,(A, C[z]) — Lat,(IL,, Op) which maps E to
spangy, (E), and a similar map Lat,(A, C[1/z]) — Lat,(L,, Ox); these maps induce
canonical ~ SL,(A)-equivariant simplicial maps AT(A")— A(L",Op) and
A™(A") — AL, Oy).

PROPOSITION 4.1. The two maps
AT(A") — AL, Oy) and A~ (A") — A(L", Oy)

are isomorphisms and thus AT (A"), A~(A") are buildings, the group SL,(A) acts tran-
sitively on both buildings.

Proof. For the proof we note that the SL,(A)-stabilizer of the n — 2-simplex
Bi={{Myl,....[Mi_1],[Mi1], ..., [M,_1]} € A(L", Op) induces the transitive group
PSL,C on the corresponding panel. Thus SL,(A) acts transitively on A(L", Oy) by
Lemma 1.5. Since SL,(A) has the same stabilizers both in AT(A") and in A(L", Op)
(see below), we obtain the claimed isomorphism AT (A") = A(L", Op). The involution
z+> 1/z on the ring A and the projective line CP! = C U {oo} normalizes SL,(A),
and we obtain A™(A") 2 A(L", Oy). O

If B=(v,...,v,) is an A-basis for A", then we have similarly as before the
chamber E*(B) = {[ES"], ..., [E-¥]} corresponding to the modules E% =
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spanc{zvi, . . ., ZU;, Vi1, - - -, Uy}, and the apartment AT™Muy, ..., v,} obtained from
the A-bases (z¥ex1), - - ., ZX"en()); similarly, we obtain an apartment A= {vy, ..., v,}
for the building A™(A"). It can be checked that SL,(A) acts strongly transitively on
AT(A™) and A™(A") with respect to these apartment systems

AT = (Ao, ..., o0} 1, ..., 0, an A — basis for A"}.

Note that the apartment system AP s strictly smaller than ,43 .
PROPOSITION 4.2. The group SL,(A\) acts strongly transitively both on A*(A") and
on A (A").

Proof. This follows from the fact that SL,(A) acts transitively on pairs of opposite
chambers in AT(A") x A~(A"), ([4]); the opposition relation is defined in the next

section. O
We put
P;g = P, NSLy(A) and B, = Brai N SLy(A).
Thus
Phr =SL,(Clz) and Pt =g(Pyi)gr
where g; = diag(z,...,z, 1,..., 1) as before. These are the parabolics corresponding

to AT(A"); there are similar parabolics for A™(A").

TWIN BUILDINGS

The notion of a twin building was developed by Ronan and Tits in order to supply
geometries for Kac—-Moody groups; we refer to [1, 3, 4, 28, 29, 31, 36, 37, 50, 51] for
more details about twin buildings.

Let (W, S) be a Coxeter system, and let (AT, A7) be a pair of buildings with this
given Coxeter system. The W-valued distance in A* is denoted o Az A twinning of
AT with A~ is a W-valued codistance function

6*: Cham(A%) x Cham(AT) — W,

subject to the following axioms. The intuitive idea is that objects with a small co-
distance are far apart.

Tw, The relation 6*(C*, DF)="(DF, C*)"! holds for all chambers C* e A%,
DT € AT (the codistance is ‘symmetric’).

Tw, Let we W and s € S, and suppose that £(ws) = £(w) — 1 (i.e. that w has a
reduced expression with s as the last letter). If C* € A*, D¥, EF € AT are cham-
bers with 6*(C*, DF) =w and 6,=(DT, ET) =5, then 6*(C*t, ET) = ws (all
chambers ET in the s-panel through DT are ‘further away’ from C¥).

Tws If C* € A*, D¥ € AT are chambers with codistance 6*(C*, DF) = w, and if
s € S, then there exists a chamber ET € AT, with d,+(DF, ET) = 5, and with
§*(C*, ET) = ws (the codistance leads to galleries).
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Note that there is a symmetry in the axioms if we exchange the signs ‘4’ and ‘—’.
Sometimes we will state a result for a specific choice of the signs; the corresponding
result for the opposite choice of signs follows in the same way.

It is clear how to extend the codistance to a double coset valued codistance

5 AT x AT — U{WJ\W/WK| J,KCI).

The opposition relation op € At x A~ is defined as follows: two chambers are oppo-
site if their codistance is 1; this relation extends in a natural way to the simplices. The
codistance can be used to sync the type functions in both buildings in such a way that
opposite vertices have the same type, and we will assume this to be done.

A (special) automorphism of a twin building is a pair (g*, g~) of automorphisms
g+ € Spe(A*) which preserves the codistance, 0*(C*, C7) = §*(gT(C*), g~ (C)).

EXAMPLE 4.3. Let A be a spherical building, let wy denote the unique longest
element in the Coxeter group W of A, put A" = A~ = A, and 6*(C, D) = 6(C, D)wy.
The resulting geometry is a twin building.

All twin buildings with spherical halves arise in this way, see [50]. Twin buildings
are natural generalizations of spherical buildings; they share many of the particular
geometric properties of spherical buildings. The twinning is in general not deter-
mined by the pair (AT, A7); a pair of buildings (e.g. a pair of trees) can admit many
nonequivalent twinnings.

The group SL,(A) induces a twinning on the pair (AT(A"), A“(A"); the codis-
tance can be defined as follows. The group SL,(A) has a Birkhoff decomposition (a
Bruhat twin decomposition) as

SL.(A) = By, NBf, = | J {By, wBl,| w € N/(BS, 0 By}

alg alg alg a
where N is the set-wise stabilizer of the twin apartment (4H*{e;,..., e},
A=Mey, ..., e,)). Since

Cham(A*(A")) = SL,(A)/B:, and N/(B: NB;)= W,
alg alg alg

we may use the Birkhoff decomposition to define the codistance as

5*(¢Byg hBj,) =w if and only if By, ¢ 'hBj, = By, wB},.

The following Theorem is ‘folklore’. A nice proof is given in Abramenko and Van
Maldeghem [4].

THEOREM 4.4. The triple (AT (A"), A=(A"), §) is a twin building, and the group
SL,(A) acts as a strongly tranmsitive group of automorphisms. Two chambers
(CH, C7) e AT(A") x A (A") are opposite if and only if they arise from lattices which
are ‘back to back’, i.e. if there exists an ordered A-basis (vi,...,v,) such that
Ct=E"(v1,...,05) and C~ = E~(vy, ..., 0p).
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5. Loop Groups

There is one big difference between SL,(I) and SL,,(A) which is due to the fact that
A is a ring, while [ is a field: the group SL, (L) is almost simple, whereas the group
SL,(A) is a semi-direct product.

BASED LOOPS

Fix ¢ € C* and consider the evaluation map ev.: SL,(A)—> SL,(C) given by
ev. : f{z) > flc). We denote the kernel of this map by Q,3(SL,(C), ¢) and we put
Qa1 SLA(C) = Qq1g(SL,,(C), 1) for short. The injection SL,(C) € SL,(A) leads to a
split exact sequence

1 —> Quo(SL,(C), ¢) —> SL,(A) —> SL,(C) —> 1,

hence SL,(A) is a semi-direct product. (There is an obvious C*-action on SL,(A)
given by f(z)+ flaz); under this action, the collection of normal subgroups
{Qa1e(SL,(C), ¢)| ¢ € C*}is permuted transitively. Thus one is lead to the semi-direct
product SL,,(A) x C*))

LEMMA 5.1. For every ¢ € C*, the group Qus(SL,(C), ¢) acts transitively on each of
the sets V§, Vo, ..., V!,V

n—1° Yn—-1"

Proof. We clearly have SL,(C) € SL,(Cl[z]) = Pgi;r, and thus

Pl Quig(SLA(C), ) 2 SLy(C) Quig(SLA(C), ¢) = SL,(A).

Now Pt = gP%F g1 and Que(SL,(C), ¢) is gi-invariant, whence

alg alg
PiEQug(SLA(C), ©) = &Pl g Quig(SLa(C), €) = SLy(A). -

There is a natural map SL,(A)— C(S!, GL,(C)) = LyirSL,(C) into the set
LgierSL,(C) of smooth maps from the unit circle into SIL,(C); this map is obtained
by viewing the elements of SL,(A) as maps from S'C C* into SL,(C). If
f=s.fkzK € SL,(A), then

1 1
fi=5- 7I§ = f(z)dz.

Therefore, the map into LgirSL,(C) is an injection. From now on, we denote the
group SL,(A) also by L, sSL,(C). The subgroup Q,s(SL,(C), ¢) is thus the sub-
group Ly SL,(C) N Qyigr(SL,(C), ¢) of c-based algebraic loops (by c¢-based we mean
that the base-point of S' is ¢—the base point of the group is always the identity
element).
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THE CARTAN INVOLUTION

Consider the semi-linear involution # on the complex vector space A(n) which is
given by

[= e rt=>"r2t

fin fin

The subgroup of all elements g € SL,(A) with g7 = g is denoted by L.zSU(n). This
terminology is motivated by the fact that

LalgSU(n) = Ldift‘SU(n) N LalgSLn(C)-
To see this, note that for z € S' we have z~! = Z, hence f{z)f(z)* = 1 holds for all
z e SYif and only if f € L,zSU(n). For c € S! we have a semi-direct decomposition

L SU(n) = SUm)Qu(SU(). ©)

as before, and an S'-action which is given by f(z) - f(az).

LEMMA 5.2. We have L,,SU(n) N SL,(C[z]) = SU(n).
Proof. Let f=fo+fiz+---+fiz" € SL,(C[z]). Then f# =fizk+... 4 fiz7!
+fo*. If f# = 71 € SL,(C[z]), then f; = 0 for i > 1. O

In particular,

Bl N LagSUm) =2 T"' and Pt N Ly, SU(n) = S(UG) - Un — i)

alg

(as in Section 2, T* denotes a compact torus of rank l;) There is a more geometric
description of the group L,,SU(n). The map A" = A" induces isomorphisms
ATA") AT (A") and A—(A") 2 AT(AD),

#
atar a- (A"

and L,gSU(n) = Cengy,(a)#). There is a corresponding Cartan decomposition of the
loop algebra $[,(A) into eigenspaces of the involution #, $[,(A) = Ly31(n) & X,
where X denotes the traceless hermitian matrices in A(n).

THEOREM 5.3. The group Ly,SU(n) acts transitively on the periodic flags,
LaSLy(C) = B}, LagSUM), FI(AT(A")) = Ly SUn)/T"".

Proof. The proof'is exactly the same as in Lemma 2.1. The L,SU(n)-stabilizer of
a panel is isomorphic to SU(2) - 72 and induces the transitive group SO(3) on the
panel. Ll

In particular, L,,SU(n) acts transitively on V{. Since LagSU(n)ppy,) = SU(n), the
group Q,,SU(n) acts regularly on Vg,
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V¢ 2 LygSU(n)/SU(n) = Q,,SU(n),

and
FI(AT(A")) = Qu,SU®n) x (SU®m)/T"").

Note that the proof above (which is due to Bernhard Miihlherr) is much simpler than
the classical proof given, e.g., in [34], Theorem 8.3.2.

6. The Affine Veronese Representation of AT(A")

In this section we construct an equivariant embedding AT(A")— &[,(A) which is
very similar to the finite-dimensional Veronese representation A(C")—p, C
3[,(C). Recall that we presented the flags in A(C") as certain Hermitian operators.
Similarly, we want to associate an operator to the C[z]-module E;. To this end we
consider the first order linear differential operator

0

A— A, fr—>28:f:z—f.

0z

If f =g, /k2", then 23, /= > kfiz*. Thus

#C, for AeZ,

k — =
er(z0: = 4) {o, for e C\7Z

In particular,

Cle] = EP ker(zd. — k) and  C[1/2] = €] ker(zd. + k).
k>0 k>0
The operator zd, extends in an obvious way to A” and to the matrix algebra A(n).
For f'e A" we put Df = zd. f. Let
Il = diag(1,...,1,0,... H
x = diag(1, k ,1,0,...,0) € Hn)

and let l'[}cls = II; — (k/n) 1 denote its traceless image in p,,.

Thus
Ei+ = Spanc[z]{ZEh A I A IO en}
= €P ker(D — 1I; — k1)
k=0
- P ker((D — 1) — (k+’)1>;
k=0 n

the elements of the flag varieties V] correspond bijectively to the L,,SU(n)-conju-
gates of D — 1. Let g € LygSU(n). Then

0 = z3.(gg") = (z0.9)g" + gzd.(g").
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Therefore

gDg"f = g(z0.(¢"))f + g&" Df = Df — (z0-2)¢"/,
whence gDg" = D — (z9.g)g", and
gD —MP)g* = D — (z0.9)¢" — g"g".

We put X = {X € 3[,(A)| X* = X}. This is an infinite-dimensional real vector space,
and (zd.g)g"” € X for all g € LygSU(m). We construct an L, SU(n)-equivariant
embedding of AT(A") into the infinite-dimensional real vector space X @ RD as
follows.

Vi—>Xa@RD,
[sEf1g(D —)g" = D — (z8.9)g" — gTL"g".

We extend this mapping to the geometric realization |A*T(A™)| of AT(A”) in the cano-
nical way, and we call the resulting L., SU(n)-equivariant map

IAT(A—> X ®RD 5 X

the affine Veronese representation of AT(A"). Explicitly, the Veronese representation
of the vertex [gEk] is

O(gEx) = gIlg” + (zd:9)g".
Note that the group L.,SU(n) acts through gauge transformations

X gXg" + (zd.9)g"

on X. Similarly as in the spherical case, it is not difficult to prove that @ injects the
geometric realization |[AT(A")| into X. The partial flags in the building AT(A")
correspond thus to certain operators D — X € X @ RD with finite-dimensional non-
trivial eigenspaces. Note also that # swaps AT(A”") and A~(A"), so @ is at the same
time a Veronese representation for A7(A") with exactly the same image.

CAVEAT

The affine Veronese representation is not surjective. Let a(z) =z + 1/z and r € R™.
The differential equation

(z0: —ra)f = Jf

has the solution f{z) = e’¢~1/9z% . const. This function is holomorphic on C* if and
only if / is an integer, but it is not meromorphic on C U {oo}, so f'¢& A. Thus, the
traceless diagonal matrix X = diag(a, ..., a, (1 —n)a) € X does not represent a flag
of the building because D — X has no nontrivial eigenspaces.



166 LINUS KRAMER

The space X is a subspace of the loop algebra 31,(A), which in turn is contained in
the semi-direct product 3[,(A)@® CD. So X ® RD plays a very similar role as
p, C 3[,(C). Let Q denote the collection of all barycenters of images of chambers
in X. The closure M of Q in the Hilbert space completion of the real pre-Hilbert
space X is an infinite-dimensional isoparametric submanifold. See [19, 33] for more
information. The set QO coincides with the subset Q(p) € M introduced in [18] by
Heintze and Liu. In [12], we prove that all known isoparametric submanifolds of
rank at least 3 in Hilbert spaces arise in a uniform way from Veronese representa-
tions of twin buildings.

7. Topological Geometry and Bott Periodicity

In this section we propose a definition of topological twin buildings. Since spheri-
cal buildings are twin buildings, this is at the same time a definition of topological
spherical buildings. Definitions of spherical topological buildings have been pro-
posed by Burns and Spatzier [9], Jager [20], Kiihne [25], and myself; Mitchell
[27] proposes an ad hoc definition of topological BN-pairs. For spherical buildings
of rank 2 there is a well-established theory, see [13, 14, 17, 23, 24, 39, 40, 42]. The
starting point is always a topology on the set of vertices of the building (i.e. on the
0-simplices). Using the type function, the simplices of higher rank can be interpre-
ted as ordered tuples of vertices, and thus one obtains a topology on A; the ques-
tion then is which maps should be continuous. Burns and Spatzier [9] require only
that Cham(A) should be closed, i.e. that every net of chambers, viewed as a net of
r-tuples of vertices, converges to some chamber. Moreover, they claim that for the
classical geometries (projective spaces) this agrees with the traditional notion of a
topological geometry, see loc.cit. p. 1. This is definitely not true, and it is not dif-
ficult to construct perverse topologies on nice geometries which satisfy their condi-
tion nevertheless. However, in the compact spherical case, their definition is the
correct one (and that’s the only instance where they need it in their work [9]),
see Proposition 7.5 below.

Compactness or local compactness in the non-spherical case leads to locally finite
buildings (finite panels), and this in turn is related to locally compact CAT(0)-spaces;
however, these matter are not within the scope of the present article.

Similarly as in [20], our notion of a topological building asks for the continuity of
certain projections. The fact that this definition makes sense for twin buildings was
pointed out by Bernhard Miihlherr during a meeting in Oberwolfach back in
1992; then, we planned to write a joint paper with Martina Jiger on projections
and topologies in buildings which, however, never came to existence. This section
is a first approximation of what we had in mind.

The fact that topological buildings can be used to prove Bott periodicity is parti-
cularly appealing, since topological K-theory is an important ingredient in topologi-
cal geometry; many classification results in [23, 40] depend in an essential way on
Bott periodicity.
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PROJECTIONS IN (TWIN) BUILDINGS

Tits defined projections in (spherical) buildings in [48]; a modern account based on
metric properties of buildings is given in [11]. Let C, D be chambers in a building A,

let 6(C, D) = w,and let w = s;, - - - 5;, be a reduced (minimal) expression for w in terms
of the generating set S. Then there exists a wunique minimal gallery y =
(Co=C,Cy,Cy,...,C.=D)of type (si,, ..., ), consisting of chambers Cy, ...,C,,

such that 6(Ci_;, Cr) = s;, holds for k=1, ..., r. Now let X € A be a simplex and
let C be a chamber. Then there exists a unique chamber E in Res(X) which we denote
E = proj,C, the projection of C onto X, with the following property: for every chamber
D € Res(X), and for every minimal gallery y starting at C and ending at D, the first
chamber in y which is contained in Res(X) is E, the gate of Res(X) with respect to C.

C

Cham(Res(X))

Note that projyC = C if C € Cham(Res(X)). If Y € A is an arbitrary simplex, then
there exists a unique simplex Z which is contained in some chamber in Res(X), such that

Cham(Res(Z)) = projyCham(Res(Y)),

and we put Z = projyY.

Now suppose that (AT, A™, §) is a twin building, that X € A" is a spherical simplex
(recall from Section 1 that this means that Res(X) is spherical), and that C € A™ is a
chamber. Then there exists a unique chamber E € Res(X) which maximizes the
numerical codistance function D £(5*(C, D)) on Cham(Res(X)), see Ronan [36]
(4.1). Intuitively, a ‘small’ codistance corresponds to a ‘big’ distance, so E is the cham-
ber ‘closest’ to C; note that D — £(6*(C, D)) is bounded above because X is spherical.

Cham(A™) Cham(A")
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The chamber E is again denoted £ = proj,C, and the projection proj, Y of an arbi-
trary simplex Y € A~ onto X is defined exactly as before (but only for spherical X7).

7.1 Schubert Cells
Let Cy be a chamber in a building A, let J C I, and let wWW,; € W/W,. The set
Cow,(Co) = {X € Al §(Co, X) = wWy}

is called a Schubert cell in A. Schubert cells in general buildings have no special
structure (e.g., if A is a tree), but Schubert cells in halves of twin buildings (and
in particular Schubert cells in spherical buildings) have a nice product structure,
i.e. they admit coordinates (labels).

7.2. Coordinatizing a Half Twin

Let Co e A" and Dy € A~ be a pair of opposite chambers in a twin building
(AT, A7, ). These two chambers determine a unique apartment 4 € A~ (half of
the twin apartment spanned by (Cy, Dy), see, e.g., [36], 2.8). Let w e W, and let
w=sys; ---5; be a reduced expression. Let E € C,,(Cy), and let Cy,...,C, = E be a
(necessarily minimal) gallery of type (s;, ..., ;). Let Dy, ..., D, be the unique mini-
mal gallery of the same type in the apartment 4 € A~. Then Cj op D holds for
k=0,...,r. We define r coordinates (Xi, ..., X;) by Xy = projp,qp, , Ck-

Dy
L]
X
D,
Xi
CO 01 .DO
!
1
Y
G
\\\ .
Cham (A™) Cy Cham(A”)

Note that X € Res(Dy 1 Dy_1) \ {Dr}. Now the point is that step by step, the whole
gallery y can be recovered from these coordinates;

C = pfOJC‘on(?le’ G = prOijCZXZ» G = pijQm(g/"L etc.,

since Ci_; and s;, determine Ci_; M Cy, the information needed is only Cj, the coor-
dinates (X1, ..., X,), and the reduced expression (s;,, . . ., s;). Note also that different
reduced expressions for a Schubert cell lead to different coordinates; our coordina-
tization process depends on a choice of a reduced expression for every element
w € W. In the case of spherical buildings of rank two, the different expressions of
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the longest element in the Coxeter group and the resulting ‘changes of coordinates’
lead to Van Maldeghem’s coordinatizing rings [52].

The process above yields coordinates for the Schubert cells C,(Cy) € Cham(A™).
For a coset wW,; € W/W, we may assume that w is the unique shortest coset repre-
sentative. The canonical ‘forgetful’ map C,,(Cy) — C,.w,(Cp) which sends a chamber
C to the unique subsimplex C|,; of type 7'\ J contained in C is a bijection; in fact,
C= projCWCo. The Schubert cell C,.»,(Cp) can also directly be coordinatized, by the
same method as described above. In any case we see that each Schubert cell is in a
natural correspondence with a finite product of punctured panels; for AT(A") we see
that the Schubert cell C,,i,(Cp) bijects onto C”, where m is the length of the shortest
coset representative of wi.

TOPOLOGICAL TWIN BUILDINGS

Let (AT, A™, 6*) be a twin building. Suppose that there is a Hausdorff topology on
the set of vertices (the 0-simplices) of both buildings. The simplices of type J can
be regarded as J-tuples of vertices; in this way, the topology on the vertices deter-
mines a topology on both buildings. For J, K C I and w € W we put

DX, ={(X. V) e AT x A type(X)=1\J. type(Y) =1\ K, 5*(X, Y)= W,wWk}.

DEFINITION 7.3. A twin building is called a topological twin building if the fol-
lowing condition is satisfied:

TTB If JC I is spherical (i.e. if W, is finite) and K C [ is arbitrary, then
(X, Y)1— projy Y is continuous on the set D{,I’,IfWK.

The condition 0*(X, Y) = W, Wy means that X and Y are almost opposite, i.e. that
there exist chambers C > X and D > Y with Cop D.

Remark 7.4. For spherical buildings of rank 2 and for projective spaces, this is the
common notion of a topological building, ([23, 25, 26]).

In the compact spherical case, there is a nice criterion due to Grundhéfer and Van
Maldeghem: ]

PROPOSITION 7.5. If A is spherical, and if the topology on the vertex set is compact,
then A is a topological building if and only if the chamber set is compact.

Proof. This follows from the closed graph theorem for maps into compact spaces,
see [17]. O

We just mention the following result.

PROPOSITION 7.6. Let (AT, A™, 6%) be a topological twin building, and let X € A*
be spherical. Then Res(X) is in a natural way a topological building. If Z is another
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simplex of the same type as X (in either half of the twin building), then Res(Z) is
continuously isomorphic to Res(X).

Proof. Pick Y eA™ opposite X. Then proj induces an isomorphism
Res(X) =2 Res(Y). Let U, V' € Res(X) be simplices with maximal W;-distance. We
need to show that proj, U is continuous. But U = proj, U depends continuously on
U, and proj, U = proj, U. For the second claim one uses the following fact which is
not difficult to prove (see the proof by Tits [48], 3.30, in the spherical case): given
simplices X, X’ (in the same half of the building and of the same type), there exists a
simplex X” in the other half which is opposite both to X and to X’. O

EXAMPLE 7.7. The building A(C"), with the natural topology on its vertex set
Gri(C"YU Gry(C"HU---UGr,_1(C") is a topological building by Proposition 7.5,
since FI(C") is compact.

There is a natural topology on the group SL,(A); the evaluation map
SL,(A) — V; induces a topology on the set Vo U---UV,_; of vertices of AT(A")
and similarly on the vertices of A™(A").

THEOREM 7.8. The twin building (AT (A"), A~(A"), 6*) is a topological twin building.

Sketch of proof. Let (C, D) € AT(A") x A~(A") be a pair of opposite chambers,
let X < C be spherical of type 7\ J and Y < D of type I\ K. Since SL,(A) acts
strongly transitively on the twin building, it acts transitively on the set Di,‘/lfwk, and
D{i,’fwk = SL,(A)/SL,(A)y.y. Now SL,(A)yy fixes Z =projyY, and we have a
continuous map SL,(A)/SL,(A)y y —> SL,(A)/SL,(A)z. It follows that the map
(X', Y')I— projy Y’ is continuous on DJV,’/[fWK. O

Let < denote the Bruhat order on W/ W, for all J C I, and put
Coomw,(Co) = | J (Com,(Co)l vWy < wW);

this set is called the Schubert variety corresponding to wW,. Let m(wW ) denote the
£-length of the shortest coset representative of wi¥.

PROPOSITION 7.9. The Schubert varieties C,,w,(Co) in AT(A") are CW-complexes,
with Poincaré series ZuW, W, R CLON

Sketch of proof. Let w be a shortest coset representative for wl,, and let
Gs,...5,(Co) denote the collection of all (possibly stammering) galleries of type
(s1,...,8) (for some fixed reduced expression s;---s, for w), starting with the
(sometimes called a Bott-Samelson cycle); the total space is a smooth manifold of
dimension 2m(wW,) = 2¢(w). These gallery spaces are also known as Bott-Samelson
desingularizations of Schubert varieties. Consider the endpoint map

g.yl,.“,.yr(CO) —p> waWJ(CO)'
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The non-stammering galleries in G, . ;,(Co) are mapped bijectively onto the Schu-
bert cell C,,i,(Co). There is a canonical injection

gsl,...,s,_l(c()) — gsl ,,,,, s,-(CO)

(by stammering at the end). The stammering galleries in G, (Cp) are either of this
type, or galleries which don’t stammer at the end, but somewhere before the end.
Using this and the fact that

g‘yl,_,,,y,.(CO) —> gsl oS (CO)

is a CP'-bundle, one can use induction on £(w) to define a cellular map

Voo ¢
e? x e?™M2 = g (Co)

which maps the boundary of the cell e> x e*()~2 onto the stammering galleries, see

[27], Thm. 2.22, and [23], Section 4.1. Now po ¢ is an attaching map for a
24(w)-cell. O

It follows that the based loop group €Q,,SU(n) has a CW decomposition with
Poincaré series

Z tzm(WA,,, 1)

WA 1 6141,771//1”—1

where W is the affine Weyl group of type A, generated by sq,...,s,, and A4,_; the
subgroup generated by sy, ..., 5,_1.

KNARR’S CONSTRUCTION FOR A*(A”")

We apply Knarr’s construction to the the halves of the topological twin building
(AT(A™), A(A"), 5*). The main ideas can be found in Mitchell’s paper [27], although
our approach (which is the same as Knarr’s approach [21]) is more based on geomet-
ric properties (i.e. the coordinatization of twin buildings), whereas Mitchell makes
strong use of the BN-pair. Let |[AT(A”")| denote the geometric realization of
AT(A"). By Theorem 7.8, there is a canonical topology on the flag space
FI(AT(A")) and we endow |[AT(A")| with the quotient topology induced by the
map FIAT(A") x |A"'|— |AT(A")|. The resulting space is denoted
|A+(AH) | Knarr-

More generally, assume that (A%, A, §*) is a topological twin building, and that
the panels are topological spheres. For example, in AT(A”) the panels are homeo-
morphic to CP' = S%. Moreover, panels of the same type are homeomorphic by
Proposition 7.6. Let m(s;) denote the topological dimension of the i-panels in
A*. Tt is proved in Kramer [23] Prop. 2.0.2 that m(s;) = m(s;) holds whenever m;
is odd. Thus we obtain a Z-length m: W— 7. For a Schubert cell C,(Cy),
we have

CW(CO) = Rm(“‘)-
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PROPOSITION 7.10 ([21] and [27] 2.16). Let (A*,A™, %) be a topological twin
building. Assume that the panels are topological spheres. For w € W let X\, denote the
image of C,,(Co) x | A" in |AT |kparr- Then for each w € W, the set | J{X,| v < w} is
contractible.

Sketch of proof. The proof is by induction on the length ¢(w). Note that
X; = {Cy} x | A" is contractible. Moreover,

CﬁW(CO)/ U {C(Co)| u < w} =2 8™,

because this quotient is the one-point compactification of the Schubert cell C,,(Cy).

The inductive step is accomplished as follows. First of all, | J{X,| v < u} is contrac-
tible for all # < w. Then it is not hard to see that |J{X,| v < u}/ U{X,| v < u} is also
contractible. This implies that | J{X,| v < u} is contractible. Finally, [ J{X,| v < w} is
homotopy equivalent to a wedge of such contractible spaces and hence itself
contractible. OJ

COROLLARY 7.11. If A" is spherical, then |A" |y is homeomorphic to a sphere
of dimension m(wg) +r — 1, where wy is the unique longest element in the Coxeter
group W, and r is the rank of the building. In the non-spherical case, |AT|gpare IS
contractible.

Sketch of proof. In the spherical case, let wy € W denote the longest element; this
is at the same time the unique maximal element in the Bruhat order. Then
X \UIXL] 0 < wo) 22 R™) 5 R 50 X,/ UXo| v < wo} 22 ™07 A S™! and this
space is homotopy equivalent to |A¥|g.m, since (J{X,] v < wy} is contractible.
Finally, it is not difficult to see that X, is a manifold, cf. [23], Prop. 4.2.1, hence
|AT |k narr 1 @ compact manifold (of dimension at least 5) homotopy equivalent to a
sphere, and thus to homeomorphic to S""*~! by the proof of the generalized
Poincaré conjecture due to Smale [43], Stallings [44], and Zeemann [53]. In the
nonspherical case, |AY|g,., 1S a limit of contractible spaces and hence itself
contractible. OJ

The theorem above can be proved in much greater generality; it suffices to assume
that the panels are compact, connected, and of finite covering dimension. Under
these assumptions, the corollary holds up to homotopy equivalence, see [23] Section
3.3. On the other hand, if the vertices of the building are endowed with the discrete
topology, then the theorem leads to a quick proof of the Solomon-Tits Theorem.

BOTT PERIODICITY

The crucial step in the proof of Bott periodicity is the following observation. We
have Res([Ep]) =2 A(C"), and thus a natural map Gr(C") < V. But the first terms
in the Poincaré series for these two spaces agree; the first few shortest coset represen-
tatives for W/W, and Wg/Wx are the same, where J={2,...,n} and
K={2,....,k—1,k+1,...,n}. For example, we have the following cell structure
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forn=4.Put I={1,2,3,4}and let J = {2, 3,4} and K = {1, 2, 4}; thus we have the
following Coxeter groups.

] ———2 1 ——-2 2 2

For W 2.4)/ W, we have the following Bruhat order for the shortest coset repre-
sentatives ([41], 2.5).

548

5

57 5451 —_— 55288

528

Thus we see that Gr,(C*) has a cell decomposition as ¢® Ue? Ue* Ue* UeS Ue®. The
Bruhat order for the shortest coset representatives of Wy 234,/ W23,4) starts as

51548
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(and continues infinitely to the right). Accordingly, the cell structure of
Vs 2 Qq,SU@) is Ue? UetUetUeb Ue®Ue® U --; in particular, the S-skeleton
of Vs, is the same as for Gr,(C*). The general result is as follows.

PROPOSITION 7.12. Suppose that n = 2k is even. Then the inclusion Gri(C**) < V.
is a 2k-equivalence. O

The proof for Bott periodicity is now as follows. If k is large, then Gri(C*) is a
good approximation for the classifying space BU; so in the limit, we obtain a homo-
topy equivalence BU ~ Q,},SU. There is one problem, though; we have only consid-
ered the space Q,;SU(n) consisting of all based loops which can be expressed as
Laurent polynomials, whereas topologists consider the space Q. SU(n) of all contin-
uous (or smooth) based loops. So the proof is not yet finished. At this point it is con-
venient to introduce Quillen’s space of special paths

S = {(t1+> (™™ X g*(1)) | X € 4, g € LygSU(n)} C (SU(n), 1)1

where € C p,, is a Weyl chamber. The group L,,SU(n) acts in a natural way on S.
But €Cp,CX can also be identified with the image of the chamber
{[Eo], ..., [Es_1]} under the Veronese representation. This identification extends in
a natural way to an L,,SU(n)-equivariant homeomorphism

S i |A+(A/y1)|l(narr < %

as follows: a path yeS is mapped to its ‘logarithmic derivative’
1/2mi(d/dey(0))y(r)~" which is a path in the tangent space T;SU(n). (Conversely, a
smooth path in the tangent space can be read as a differential equation whose solu-
tion starting at 1 is a path in the Lie group.) If we put z = e>™*, then

d . . _
4 (g(2)e™ " g" (1)) = 2mi((20:8(2))™ " (1) + g(2) Xe™™ ¥ g (1)),

d ; .
<E (g(Z)ezm’Xg#(l))> (g(2)e™ g (1) = 27i((20.(2))g" (2) + 8(2)Xg" (2)).

LEMMA 7.13. The map

1 /d
1= 32z (50 )0

is an LygSU(n)-equivariant homeomorphism S — |AT(A")|kpare € X, where the

action on AT(A") is the standard one, and the action on Quillen’s space of special paths
is by y(1)1—> g™ (n)g~" (1) O

In particular, S is contractible. The endpoint map (SU(n), N9 — SU(®n)
yields the universal bundle

Q. SU(n) — (SUn), N1 sU(®n),
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(where cts refers to the group of continuous loops) and as a subbundle we have
Q,:SU(n) — S — SU(m).

Since the total spaces of both bundles are contractible, the inclusion
Qa1,SU(n) — Q. sSU(n) is a weak (and therefore also a strong) homotopy equiva-
lence. We have proved Quillen’s following result:

THEOREM 7.14 (Quillen). The orbit space |A"(A")|nar/QaieSU®) is home-
omorphic to SU(n). ]

Recall that Gri(C") is a good approximation of the classifying space BU in small
dimensions.

COROLLARY 7.15 (Unitary Bott Periodicity). The inclusion

Gri(C) — Q,,SU(k) S QusSU(K)
is a 2k-equivalence. In the limit, the natural map

BU — QCtSSU
is a homotopy equivalence. ]

This implies in particular the famous Bott isomorphisms 7(U) =0 and
Tor+1(U) 2 Z, for all k£ = 0. Note that we have also proved that the Q,,,SU(n)-orbit
space map

|A+(*%’1)|Knarr - SU(H)

is a universal classifying bundle for Q,;SU(n).

8. Real Forms and Compact Symmetric Spaces

So far, we have discussed the group SL,(A) which is the proper generalization of the
complex group SL,(C). In this last section we consider briefly how real groups fit
into the picture; more details can be found in [12] and [27]. Consider the involution
1 given by

Z X,z — Z X,z

fin fin
The group of i-fixed elements in SL,(A) is SL,(R[z, 1/z]), and there is a correspond-
ing twin building over R[z, 1/z] which is defined exactly in the same way as the one
over C[z, 1/z] considered so far. Note however that we cannot interpret the elements
of SL,(R[z, 1/z]) as loops in SL,(R). Instead, we view the elements of SL,(R[z, 1/z])
as paths

[0, 1] —> Ly SL,(C)

t—s g(e'™).
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These paths have the special property that they start and end in SL,(R). If we inter-
sect SL,(R[z, z71]) with L,,SU(n), then we obtain the group

SL,(R[z, 1/2]) N Ly, SU(n)

consisting of paths in SU(n) which start and end in SO(n). Similarly as before, this
group is homotopy equivalent with the based loop space

Qeis(SU(n)/SO(n)).

These loop spaces of compact Riemannian symmetric spaces play an important role
in topology. They can be used to prove the other versions of Bott periodicity (real
and quaternionic), see Mitchell [27].
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