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ASYMPTOTIC CONES AND ULTRAPOWERS OF LIE GROUPS

LINUS KRAMER AND KATRIN TENT∗

§1. Introduction. Asymptotic cones of metric spaces were first invented
by Gromov. They are metric spaces which capture the ’large-scale structure’
of the underlying metric space. Later, van den Dries and Wilkie gave a
more general construction of asymptotic cones using ultrapowers. Certain
facts about asymptotic cones, like the completeness of the metric space,
now follow rather easily from saturation properties of ultrapowers, and
in this survey, we want to present two applications of the van den Dries-
Wilkie approach. Using ultrapowers we obtain an explicit description of the
asymptotic cone of a semisimple Lie group. From this description, using
semi-algebraic groups and non-standard methods, we can give a short proof
of the Margulis Conjecture. In a second application, we use set theory to
answer a question of Gromov.

§2. Definitions. The intuitive idea behindGromov’s concept of an asymp-
totic cone was to look at a given metric space from an ’infinite distance’, so
that large-scale patterns should become visible. In his original definition this
was done by gradually scaling down the metric by factors 1/n for n ∈ N.
In the approach by van den Dries and Wilkie, this idea was captured by
ultrapowers. Their construction is more general in the sense that the as-
ymptotic cone exists for any metric space, whereas in Gromov’s original
definition, the asymptotic cone existed only for a rather restricted class of
spaces.
Given a divisible ordered abelian group Λ, we call (X, d ) a Λ-metric space
if d : X×X −→ Λ satisfies the usual axioms of ametric, i.e., for all x, y ∈ X ,
d (x, y)− d (y, x) ≥ 0 if and only if x = y, and the triangle inequality holds.
We can now give the definition of asymptotic cone according to van den
Dries and Wilkie.

Definition 2.1. Let (X, d ) be a metric space and ì a nonprincipal ultrafil-
ter on ù. Let (∗X, ∗d ) =

∏
ì(X, d ) be the ultrapower of (X, d ) with respect
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to ì. Then, clearly, (∗X, ∗d ) is a ∗R-metric space with ∗R =
∏
ìR. Let

α = (n : n ∈ ù)ì ∈
∗R and o ∈ X . Set

X 〈α〉 = {x ∈ ∗X | ∗d (x, o) ≤ nα for some n ∈ N}.

Define x ≈α y on X
〈α〉 if ∗d (x, y) < α/n for all n ∈ N.

Then Cone(X ) = X 〈α〉/≈α is called the asymptotic cone of X . It carries a
natural (R-)metric defined by d (x, y) = std (∗d (x, y)/α) where std denotes
the standard part of the element ∗d (x, y)/α.

Similarly, we can now define the ultracone which will also be useful in our
situation. Let ∗Rfin = {t ∈ ∗R| |t| ≤ k for some k ∈ N} ⊆ ∗R denote the set
of all finite nonstandard reals.

Definition 2.2. With the previous notation, we define

x ≈fin y on
∗X if ∗d (x, y) ≤ n for some n ∈ N.

The ultracone is defined as UCone(X ) = ∗X/≈fin and carries an
∗R/∗Rfin-

metric.

Clearly, the constructions are independent of the base point o ∈ X since
in the cone and in the ultracone all elements of X are identified. While
Gromov’s definition does not depend on the choice of an ultrafilter, and
the asymptotic cone, if it exists, is unique, the definitions given here raise
the obvious question to what extend the asymptotic cone and the ultracone
depend on the choice of ì. This question will be the focus of Section 6.
In any case, asymptotic cones only depend on the large-scale structure of
the metric space in the following sense:

Definition 2.3. Let Λ be a divisible ordered abelian group, and (X, dX )
and (Y, dY ) Λ-metric spaces. Then f : X −→ Y is called a quasi-isometry if
there are constants L ∈ N>0 and C ∈ Λ≥0, such that

(i) L−1dX (x, x
′)−C ≤ dY (f(x), f(x

′)) ≤ LdX (x, x
′)+C for all x, x ′ ∈

X , and
(ii) for every y ∈ Y there is some x ∈ X such that dY (f(x), y) ≤ C .

Special cases of quasi-isometries are, of course, isometrieswithL = 1, C =
0 and bi-Lipschitz maps with C = 0. Notice that quasi-isometries need not
even be continuous and that any two bounded (e.g., compact) spaces are
quasi-isometric.

Remark 2.4. If f : X −→ Y is a quasi-isometry between real met-
ric spaces, then we get obvious induced maps Cone(f) : Cone(X ) −→
Cone(Y ), andUCone(f) : UCone(X ) −→ UCone(Y ). Note that Cone(f)
and UCone(f) are bi-Lipschitz maps. In particular, Cone(X ) and Cone(Y )
are homeomorphic R-metric spaces.
Note also that twoquasi-isometries between realmetric spaces have bounded
distance if and only if they agree on the ultracone.
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Wewill be mostly interested in the asymptotic cones of two types of metric
spaces: finitely generated groups under the word metric, and Lie groups
under some left invariant metric, see Section 3.

The word metric 2.5. In the context of finitely presented groups with
polynomial growth, Gromov studied the asymptotic cones of finitely gener-
ated groups under the word metric: Let Γ be a group with generating set S
and assume that S is closed under inverses. Then for any g ∈ Γ \ {1}, we
define |g| to be theword length of g, i.e., |g| = min{n| g = x1 · · · xn, xi ∈ S}.
Put |1| = 0. Then one can check that d (g, h) = |g−1h| for g, h ∈ Γ defines
a Γ-invariant Z-valued metric, the word metric on Γ. If S ′ is another finite
generating set, and d ′ its corresponding metric, then it is easy to see that the
identity map is a quasi-isometry from (Γ, d ) to (Γ, d ′), see [3, I.8.17(2)].

In general, it is not easy to calculate the asymptotic cone of a given metric
space. As we noted before, the definition of the asymptotic cone depends on
the ultrafilter ì. However, as the following examples show, in many cases,
this ultrafilter does not really matter.

Examples 2.6. (i) Let Γ = Zn be the free abelian group in n-generators
equipped with the word metric defined in 2.5 (which for the canoni-
cal generators coincides with the Manhattan Taxi metric, d (x, y) =
|x1 − y1| + · · · + |xn − yn|). It is easy to see (directly from the defini-
tion) that the asymptotic cone (with respect to the canonical basepoint)
then is the topological group Rn, also with the Manhattan Taxi metric
[8, p. 37]. Hence it is independent of the ultrafilter.

(ii) Let Γ be the free group of rank n with the word metric. Its asymptotic
cone is a complete homogeneous R-tree and again independent of the
ultrafilter. See [8] and [3] for more results.

(iii) Point showed in [17] that if Γ is a finitely generated nilpotent group,
then the asymptotic cone is homeomorphic to Rm, where m is the sum
of the ranks of the descending central series of G .

Questions 2.7. Gromov asked the following questions [8, p. 42]:

(i) What is the asymptotic cone of a Lie group?
(ii) Is there a finitely presented group, for which different ultrafilters yield
non-homeomorphic asymptotic cones?

We will show how to determine the asymptotic cone of a Lie group via
ultrapowers in the next section. Question (ii) will be seen to be closely related
and will be partially answered in Section 6. Examples of finitely generated
groups with non-homeomorphic asymptotic cones were given by Thomas
and Velickovic [20].

§3. Asymptotic cones of Lie groups. Let G be a semisimple Lie group of
non-compact type. We will also use the notation G = G(R) to emphasize
that we will consider G as the group of R-rational points of some semi-
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algebraic group defined over the rational numbers. So for any real closed
field R we may consider the group G(R).
Up to quasi-isometry, the group G(R) carries a unique left-invariant Rie-
mannian metric (see [6, IV §21]). We will describe this metric on (the
diagonalizable part of) G using the real logarithm. Let K = K(R) be a
(suitably chosen) maximal compact subgroup of G(R), and let A = A(R)
denote a (semialgebraically connected) maximal split torus of G(R), which
we may assume to consist of diagonal matrices with positive entries. Then
G(R) = K(R)A(R)K(R), and since K(R) is compact and we are only
concerned with metrics up to quasi-isometry, it suffices to define a K -
invariant metric on A(R). This can be done in the following way: for
g = diag(x1, . . . xn) ∈ A(R) we put d (1, g) = (| log x1|

2+ . . .+ | log xn|
2)1/2.

This metric extends to a left-invariant metric d on G , i.e., d (g, g ′) =
d (1, g−1g ′) for all g, g ′ ∈ G . If D ∈ N is an upper bound for the
diameter of K , and if g−1g ′ = kak′ in the KAK -decomposition, then
d (g, g ′) − 2D ≤ d (1, a) ≤ d (g, g ′) + 2D. Since we are only interested
in quasi-isometries, the constant D can be disregarded. In a similar way,
this also yields an ∗R-metric on the ultrapower G(∗R) of G(R) (note that D
is also an upper bound for the diameter of K(∗R)). We can now explicitly
calculate the cone and ultracone from this data:

Theorem 3.1. [12, 21] Let G = G(R) be a semisimple Lie group of non-
compact type, and ñ = e−α .
ThenCone(G) = G(ñR)/G(O)where ñR is Robinson’s valued fieldM0/M1
withM0 = {t ∈ ∗R| |t| < ñ−k for some k ∈ N} andM1 = {t ∈ ∗R| |t| < ñk

for all k ∈ N} and O = {â ∈ ñR| std (logñ |â |) ≥ 0} is its natural valuation
ring.
Also, UCone(G) = G(∗R)/G(∗Rfin) where

∗Rfin = {t ∈ ∗R| |t| ≤ k for
some k ∈ N}.

The fields ñR were first introduced by Robinson, see [13] and were further
studied among others by Luxemburg and Pestov. They will be crucial in
Section 6.
So far, we have just obtained an explicit description of the cones, but in
order to be able to use this description, we should obtain more information
about their structure. This is given in the following section.

§4. Affine Λ-buildings and spherical buildings. Buildings were introduced
by Tits to give a (uniform) geometric interpretation of algebraic groups and
Lie groups. There are several approaches to introducing them, either as
simplicial complexes or as systems of apartments, which will be our point of
view in this section.
There are two importantmajor classes of buildings, the spherical buildings,
in which the apartments are realized as spheres, and the affine buildings, in
which the apartments are realized as affine spaces.
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The typical examples of spherical buildings are the ones coming from the
standard BN-pair of an algebraic group where the apartments correspond
to the maximal split tori. In fact, Tits proved that any spherical building of
rank at least three arises in this way. He also proved the following in [22, 5.8]:

Theorem 4.1. Let G,G ′ be adjoint absolutely simple algebraic groups de-
fined over fields k, k ′, of rank at least 2. If the spherical buildings ∆ and ∆′

corresponding to the groups G(k) and G ′(k′) are isomorphic, then the fields
k ∼= k′ are isomorphic, and G ∼= G ′ are isomorphic as algebraic groups.

For affine buildings, the basic example to keep in mind is an infinite tree.
There, any branch through the tree can be considered as a copy of the real
line. In a Λ-tree, the branches of the tree are modeled on a divisible ordered
abelian group Λ [1]. For our purposes, we need to work with a larger
class of structures, namely the affine Λ-buildings, which were introduced by
Bennett. These buildings generalize both affine buildings and Λ-trees. In
these buildings, the apartments are affine Λ-spaces Λn, for some divisible
ordered abelian group Λ. The way apartments are required to intersect is
described in the following definition:
Affine Λ-buildings.
Let Λ be an ordered divisible abelian group, and letW be a finite reflection
group arising from a (crystallographic) root system. ThenW acts naturally
on a lattice L ∼= Zn.
Thus, W acts on LΛ = L ⊗ Λ as a reflection group, and the semi-direct
productWΛ =W n LΛ is an affine reflection group acting on the Λ-metric
space LΛ by isometries. A hyperplane fixed by a reflection ofWΛ is called a
wall; a wall divides LΛ into two halfspaces, and there is a natural notion of
Weyl chambers, which are certain intersections of halfspaces.

a wall a halfspace a Weyl
chamber

Definition 4.2. [2] The pair (I,A) is called an affine Λ-building of di-
mension n if I is a Λ-metric space and if the atlas A on I is a family of
Λ-isometric injectionsLΛ −→ I, called coordinate charts, with the following
properties:

(A1) If φ is in A and w ∈WΛ, then φ ◦ w : LΛ −→ I is in A.
(A2) Given two charts φ1, φ2, the set B = φ

−1
2 (φ1(LΛ)) is convex in LΛ,

and there exists a w ∈WΛ with φ2|B = φ1 ◦ w|B .

The sets F = φ(LΛ) ⊆ I are called apartments; the image S = φ(S0) of a
Weyl chamber S0 ⊆ LΛ is called a sector.
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(A3) Given x, y ∈ I, there exists an apartment F = φ(LΛ) containing x
and y.

(A4) Given two sectors S1, S2 ⊆ I, there exist subsectors S ′
1 ⊆ S1 and

S ′2 ⊆ S2 and an apartment F containing S
′
1 ∪ S

′
2.

(A5) If F1, F2, F3 are apartments such that each of the three sets Fi ∩ Fj ,
i 6= j, is a half-apartment (i.e., the φ-image of a halfspace), then
F1 ∩ F2 ∩ F3 6= ∅.

(A6) For any apartment F and any x ∈ F , there exists a retraction ñx,F :
I −→ F (i.e., ñ2x,F = ñx,F , and ñx,F fixes F pointwise) which dimin-

ishes distances, with ñ−1x,F (x) = {x}.

Parreau showed that for Λ = R these axioms are equivalent to the axioms
for a euclidean building given byKleiner andLeeb in [10]. The axioms in [10]
are given in terms of geodesics on the metric structure of the underlying set I
and more differential geometric in flavor. Therefore, we will use the term ’eu-
clidean building’ whenwewant to emphasize that this other set of axioms has
been verified, even though this notion is equivalent to an affine R-building.
Bennett also showed that to each affine Λ-building there is an associated
spherical building, the building at infinity. For Λ = R, this building can be
visualized in the following way: each affine apartment is a real affine space,
say Rn which can be thought of as having an (n−1)-sphere sitting at infinity,
the points on the sphere being determined by geodesic rays inside the affine
space emanating from some fixed (arbitrary) point. In the case of a tree, the
building at infinity is just the set of ends.
For affine Λ-buildings in general there is a combinatorial procedure to
associate to eachΛ-apartment of dimension n a combinatorial (n−1)-sphere
similar to the original way this was done by Tits in [23]. Bennett showed
that these spheres then form a spherical building, the spherical building at
infinity associated to this affine Λ-building.
So far, very few examples were known except for the ones coming from the
group SLn over an arbitrary field with valuation. The following result shows
that there are indeed many natural examples of such buildings around.

Theorem 4.3. [12] LetR be a real closed field,O ⊂ R an o-convex valuation
ring (i.e., O is convex and a 6∈ O ⇒ a−1 ∈ O). Let G be a semisimple Lie
group and A ≤ G its maximal (connected ) R-split torus.
Then (I,A) is an affineΛ-building forΛ = R∗/O∗, where I = G(R)/G(O)
and A = {g : A(R)/A(O) ↪→ I| g ∈ G(R)}.
The spherical building at infinity of (I,A) is the standard one coming from
the canonical BN-pair of G(R).

This result applies in particular in the situation of Theorem 3.1. From
the saturation properties of ultrapowers it follows easily that the asymptotic
cone of G is a complete metric space and that the atlas A one obtains is
maximal (i.e., any subset of Cone(G) isometric to Rn is already the image of
some element of A).
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Corollary 4.4. Cone(G) is a complete affine R-building and UCone(G)
is an affine Λ-building for Λ = ∗R/∗Rfin).

In [10], Kleiner and Leeb verify that Cone(G) satisfies their axioms of a
euclidean buildingwithout obtaining an explicit presentation of the building.
Hence, using [16] the first part of the corollary already follows from their
work. This was crucial in their proof of the Margulis’ Conjecture.
Affine R-buildings are rigid in the sense that any homeomorphism pre-
serves the building structure:

Proposition 4.5. [10, 12] Let (I,A) and (I ′,A′) be complete affine R-
buildingswithmaximal atlasA andA′, respectively. Then any homeomorphism
of I onto I ′ preserves apartments; moreover, it also induces an isomorphism
between the spherical buildings at infinity.

Thus we can state the following crucial observation:

Corollary 4.6. Let G and G ′ be absolutely simple Lie groups of rank at
least 2. The affine R-buildings G(R)/G(O) and G ′(R′)/G ′(O′) obtained
in 3.1 are homeomorphic if and only if G ∼= G ′ and R ∼= R′ as valued fields
with valuation rings O and O′, respectively.

§5. Application to Margulis’ conjecture. Let G = G(R) be a semisimple
Lie group of rank n and without compact factors. If K = K(R) is a
maximal compact subgroup, then X = G/K is a Riemannian symmetric
space of rank n. Every non-compact Riemannian symmetric space is of
this form and we may assume that the Riemannian metric on X is that
induced by the metric on G defined above. For these facts, see [7], [9]; it
is a well-known fact that a semisimple Lie group is (essentially) the same
as the group of real points of a semisimple algebraic group defined over
Q, see [7, 1.14]. Clearly, Cone(X ) = Cone(G), and so we see that the
asymptotic cone of a Riemannian symmetric space is an affine R-building.
Under the cone construction, the maximal flats of X , i.e., the subspaces
of X isometric to Rn are transformed into the apartments of the affine
building.
Margulis conjectured that if X and Y are any two Riemannian symmetric
spaces without compact factors and f : X −→ Y is a quasi-isometry, then
there is an isometry f̃ : X −→ Y at bounded distance from f.
The conjecture was proved for Riemannian symmetric spaces X = G/K
where G contains no simple factors of rank at most 1 by Kleiner and
Leeb. (There are counterexamples in rank 1, and the situation was com-
pletely described by Pansu in [15].) They use the fact that the asymptotic
cone of X is a euclidean building and work with the geodesic structure of
Cone(X ).

Proof of the Margulis conjecture. We can now outline a proof of the Mar-
gulis conjecture, using the previous results. The details will appear in [12].
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Let X = G/K and X ′ = G ′/K ′ be Riemannian symmetric spaces of non-
compact type, where G and G ′ contain no factors of rank at most 1, and
let

f : X −→ X ′

be an (L,C )-quasi-isometry. Using the definition of the metric it can be
shown that we may interpret the metric spaces (X, d ) and (X, d ′) in the
structure (R,+, ·, log). Thus, we may take an ultrapower of this structure
extended by the quasi-isometry f to obtain an (L,C ) quasi-isometry

∗f : ∗X −→ ∗X ′

between the ∗R-metric spaces ∗X, ∗X ′.
We then obtain a (bi-Lipschitz) homeomorphism

Cone(f) : Cone(X ) = G(R)/G(O) −→ G ′(R)/G ′(O) = Cone(X ′)

on the asymptotic cones, where R = ñR denotes Robinson’s field, and O its
natural valuation ring.
By Theorem 4.5 we know that Cone(f) also induces an isomorphism
between the spherical buildings at infinity of Cone(X ) and Cone(X ′). Using
Theorem 4.1 we can now already conclude that the groups G and G ′ are
isomorphic, which implies that X and X ′ are essentially the same.
In order to find an isometry at bounded distance from f, we use the
ultracone UCone(X ) of X .
First we show that there is some finite bound c ∈ N such that for any
maximal flat A of ∗X (i.e., a subset A of ∗X which is ∗R-isometric to ∗Rn)
there is a flat A′ such that the image of A under ∗f has Hausdorff distance
at most c from A′. The main point here is that any two apartments in an
affine building having finite Hausdorff distance are equal, and that Cone(f)
takes apartments to apartments for any asymptotic cone. Such an ’approxi-
mating’ flat A′ exists thus on every large metric ball in ∗X ′, and, by repeated
application of compactness arguments, we deduce the global existence of the
flat A′. In particular, ∗f induces a well-defined bijection between the flats
of ∗X and ∗X ′. Since the maximal flats in X and ∗X can be described using
the group structure of G(R) and G(∗R), respectively, this map is first order
expressible and exists also for the quasi-isometry f : X −→ X ′.
Since c was a finite constant, UCone(f) is an apartment preserving map.
By 4.3, UCone(X ) is the affine ∗R/∗Rfin-building G(

∗R)/G(∗Rfin) whose
spherical building at infinity is that of G(∗R). Using nonstandard analysis
and the structure of this affine ∗R/∗Rfin-buildingwe can show thatUCone(f)
induces a continuousmap on the spherical buildings at infinity of UCone(X )
and UCone(X ′) (which are the canonical spherical buildings associated to
G(∗R) and G ′(∗R)). Using the map defined on the flats, it is not difficult to
see that this continuous map is also first order expressible; thus, the quasi-
isometry f induces a continuous map on the spherical buildings associated
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to G(R) and G ′(R). For rank at least 2, the group of continuous automor-
phisms of this spherical building coincides with the isometry group of X
(and is in fact a finite extension of G). This is essentially due to the fact that
every continuous automorphism of a semisimple Lie group is algebraic, and
that the group can be recovered from the building.
Thus, there is some isometry g : X −→ X ′ inducing on the spherical
buildings of G(R) and G ′(R) the same map as the quasi-isometry f. It
follows that UCone(f) and UCone(g) agree (set-wise) on the collection of
all apartments of UCone(X ). But this implies that UCone(f) = UCone(g).
By Remark 2.4, f and g have bounded distance and we are done.

§6. Application to finitely presented groups. We now turn to Gromov’s
question whether there exists a finitely presented group with non-homeo-
morphic asymptotic cones. This is closely related to asymptotic cones of
Lie groups via the following characterization of finitely presented groups
(see [3, p. 137]):

Theorem 6.1. A group Γ is finitely presented if and only if it acts properly
and cocompactly by isometries on a simply connected geodesic space X .

Here, an action is called cocompact if there exists a compact set K ⊂ X
such that X = Γ.K . The action is called proper if there is some number
r > 0 such that for each x ∈ X the set {ã ∈ Γ | ã(B(x, r)) ∩ B(x, r) 6= ∅} is
finite.
Riemannian symmetric spaces of noncompact type are in particular sim-
ply connected and geodesic, and for these spaces subgroups of the isometry
groupwhich act cocompactly are also called uniform lattices. By an old result
of Borel, any Riemannian symmetric space allows many such uniform lat-
tices. Note that such a lattice is quasi-isometric to theRiemannian symmetric
space onwhich it acts and hence its asymptotic cone is homeomorphic to that
of the symmetric space. Thus, if we can produce non-homeomorphic asymp-
totic cones of Riemannian symmetric spaces, we have also produced exam-
ples of finitely presented groups with non-homeomorphic asymptotic cones.
Since we know that the asymptotic cone of the Riemannian symmetric
space X is the affine R-building G(R)/G(O), with R the Robinson field ñR
and O its valuation ring, it suffices by Proposition 4.6 to produce ultrafilters
giving rise to non-isomorphic Robinson fields. It is not hard to see that if
we assume CH, then all Robinson fields are isomorphic since any countable
ultrapower is saturated. Hence in this case it is impossible to produce non-
homeomorphic asymptotic cones from finitely presented groups acting on
Riemannian symmetric spaces.
So we now assume ¬CH. Examples constructed by Roitman [18] yield
non-isomorphic ultrapowers differing from each other through their degree
of saturation and the existence of scales. However, in the Robinson field
we truncate behind some large non-standard number α and divide out by
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the relative ’infinitesimal’ part, which is exactly the part which contains the
saturation.
Hence, in order to produce non-isomorphic asymptotic cones we concen-
trate on producing ultrafilters which give rise to ultrapowers of the natural
numbers which differ in the coinitial segments of ù.
It is not hard to see that this suffices in order tomake sure that theRobinson
fields obtained from these ultrafilters will be non-isomorphic.
Thus, assuming ¬CH, the following result shows that there are finitely
presented groups with non-homeomorphic asymptotic cones:

Theorem 6.2. [11] Assume ¬CH. Then there are 22
ù
Robinson fields up to

isomorphism.

In fact, we show the following:

Corollary 6.3. [11] Let G be a connected semisimple Lie group with at
least one absolutely simple factor S such that R-rank(S) ≥ 2 and let Γ be a
uniform lattice in G .

(a) If CH holds, then Γ has a unique asymptotic cone up to homeomorphism.
(b) If CH fails, then Γ has 22

ù
asymptotic cones up to homeomorphism.

Furthermore,

Theorem 6.4. [11] If CH holds, then every finitely generated group Γ has
at most 2ù asymptotic cones up to isometry.

Corollary 6.5. [11] The following statements are equivalent.

(a) CH fails.
(b) There exists a finitely presented group Γ which has 22

ù
asymptotic cones

up to homeomorphism.
(c) There exists a finitely generated group Γ which has 22

ù
asymptotic cones

up to homeomorphism.
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