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Abstract

We study locally compact group topologies on simple and semisimple Lie groups. We show that the Lie
group topology on such a group S is very rigid: every “abstract” isomorphism between S and a locally
compact and σ -compact group Γ is automatically a homeomorphism, provided that S is absolutely simple.
If S is complex, then noncontinuous field automorphisms of the complex numbers have to be considered,
but that is all. We obtain similar results for semisimple groups.
© 2011 Elsevier Inc. All rights reserved.
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Abstract isomorphisms between Lie groups have been studied by several authors. In particular,
É. Cartan [2] and B. van der Waerden [19] proved that an abstract isomorphism between compact
semisimple Lie groups is automatically continuous. This was generalized by H. Freudenthal [3]
to isomorphisms between absolutely simple real Lie groups. A model-theoretic proof of Freuden-
thal’s result was given later by Y. Peterzil, A. Pillay and S. Starchenko [14]. More generally,
abstract isomorphisms between simple algebraic groups were studied by A. Borel and J. Tits [1].

However, all of these results deal with rigidity within the class of Lie groups. In the present
paper, we study a more general problem: what can be said about abstract isomorphisms between
locally compact groups and simple Lie groups. To put it differently, we want to determine to what
extent the group topology of a simple Lie group is unique. Some restrictions on the topology are
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obviously necessary. We have to exclude the discrete topology, and also all topologies that are
not locally compact (the field of real numbers admits many field topologies which are not locally
compact). A simplified version of our main result can be stated as follows. For compact S, this
was proved by R. Kallman [9].

Theorem. Let S be an absolutely simple real Lie group. Then the Lie group topology is the
unique locally compact and σ -compact group topology on S.

More general results are given in Theorems 8, 11, 18, and 20.

1 Notation. By a simple Lie group we mean a connected centerless real Lie group S whose Lie
algebra Lie(S) = s is simple. Such a Lie group is simple as an abstract group, see Salzmann et al.
[15, 94.21], and conversely, every nondiscrete Lie group which is simple as an abstract group is
a simple Lie group in the sense above. We say that S (or s) is absolutely simple if s ⊗R C is a
complex simple Lie algebra.

By AutLie(S) we denote the Lie group of all Lie group automorphisms of S. This is the
same group as AutR(s), the group of all R-linear Lie algebra automorphisms. The group S acts
faithfully by conjugation on itself (from the left). In this way we may view it in a natural way
as an open subgroup of AutLie(S). In fact, S = AutLie(S)◦ and S has finite index in AutLie(S),
see Helgason [5, IX, Thm. 5.4] for the compact (and complex) case and Murakami [13, Cor. 2]
for the noncompact real case. In particular, AutLie(S) is second countable.

2 Definition. We call a Hausdorff space σ -compact if it is a countable union of compact subsets
(some authors require that σ -compact spaces are also locally compact, but the present defini-
tion is more suitable for our purposes). Finite products of σ -compact spaces are σ -compact. If
f : X −→ Y is a continuous map between Hausdorff spaces and if X is σ -compact, then f (X)

is also σ -compact. Closed subspaces of σ -compact spaces are again σ -compact.

All topological groups are assumed to be Hausdorff. We recall the following results about
locally compact groups.

3 Theorem (Open Mapping Theorem). Let ψ : G −→ H be a surjective continuous homomor-
phism between locally compact groups. If H is σ -compact, then ψ is an open map.

Proof. See Hewitt and Ross [6, II.5.29] or Stroppel [17, 6.19]. �
4 Theorem (Automatic continuity). Suppose that G is a locally compact group and that H is a
σ -compact group. Assume that ψ : G −→ H is a group homomorphism which is also a Borel
map, i.e. that the preimage of every open set U ⊆ H is a Borel set. Then ψ is continuous.

Proof. This is a special case of Hewitt and Ross [6, V.22.18]; see also Kleppner [11,
Thm. 1]. �
5 Lemma. Let S be a simple m-dimensional Lie group and G ⊆ AutLie(S) an open subgroup.
Suppose that C ⊆ G is a compact subset that contains a nonconstant smooth curve. Then there
exist elements g0, . . . , gm ∈ G such that g0Cg1Cc2 · · ·gr−1Cgm is a compact neighborhood of
the identity.
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Proof. Let c : (−1,1) −→ C be a smooth curve with tangent vector ċ(0) = X �= 0. Trans-
lating by c(0)−1, we may assume that c(0) = e and that X ∈ TeG = Lie(G). Since G

acts via Ad irreducibly on Lie(G), we find elements h1, . . . , hm ∈ G such that the vectors
Ad(h1)(X), . . . ,Ad(hm)(X) span Lie(G). From the inverse function theorem we see that D =
h1Ch−1

1 h2Ch−1
2 · · ·hmCh−1

m is a neighborhood of the identity. �
The next lemma is essentially due to van der Waerden; see [19, p. 783] and Freudenthal [3,

Satz 8]. We denote the commutator by [a, b] = aba−1b−1.

6 Lemma. Let S be a simple m-dimensional Lie group and G ⊆ AutLie(S) an open sub-
group. Assume that D ⊆ G is a compact neighborhood of the identity. Let U ⊆ G be an
arbitrary neighborhood of the identity. Then there exist elements a1, . . . , am ∈ G such that
[a1,D][a2,D] · · · [am,D] is a neighborhood of the identity which is contained in U .

Proof. Let a ∈ G − {e}. Then Ad(a) �= id, so there exists X ∈ Lie(G) with Ad(a)(X) − X �= 0.
Since S acts irreducibly on Lie(G), we can find elements a1, . . . , am in any neighborhood of the
identity, and vectors X1, . . . ,Xm ∈ Lie(G) such that Ad(a1)(X1) − X1, . . . ,Ad(am)(Xm) − Xm

is a basis of Lie(G). It follows readily from the inverse function theorem that [a1,D] · · · [am,D]
is a compact neighborhood of the identity.

Let now U be an open neighborhood of the identity. Consider the continuous map
h : Gm × Gm −→ G, (x1, . . . , xm, y1, . . . , ym) �−→ [x1, y1][x2, y2] · · · [xm,ym]. We have that
h({e}m×Dm) ⊆ U . By Wallace’s Lemma, see Kelley [10, 5.12], there is an open neighborhood V

of the identity such that h(V m × Dm) ⊆ U . The claim follows if we choose a1, . . . , am ∈ V . �
The following technical result is the main ingredient in our continuity proofs. It generalizes

Kallman’s method [9].

7 Theorem. Let Γ be a locally compact and σ -compact group. Let S be a simple Lie group, let
G be an open subgroup of AutLie(S) and suppose that

ϕ : Γ −→ G

is an abstract surjective group homomorphism. Suppose that there is a compact subset C ⊆ G

which contains a nonconstant smooth curve and whose ϕ-preimage ϕ−1(C) is σ -compact. Then
ϕ is continuous and open.

Proof. By Lemma 5, there are elements g0, . . . , gr ∈ G such that D = g0Cg1Cg2 · · ·gr−1Cgr

is a compact neighborhood of the identity. If we choose ϕ-preimages g′
i of the gi , then we have

ϕ−1(D) = g′
0ϕ

−1(C)g′
1ϕ

−1(C)g′
2 · · ·g′

r−1ϕ
−1(C)g′

r . In particular, ϕ−1(D) is σ -compact. Let
U ⊆ G be an open neighborhood of the identity. By Lemma 6 we find elements a1, . . . , am ∈ G

such that Ea1,...,am = [a1,D] · · · [am,D] ⊆ U is a neighborhood of the identity. Moreover, the
set ϕ−1(Ea1,...,am) is σ -compact and in particular a Borel set in Γ . If W ⊆ G is an arbitrary
open subset, then we find a countable collection of elements bj , a1,j , . . . , am,j ∈ G such that
W = ⋃∞

j=0 bjEa1,j ,...,am,j
, because G is second countable. Each set ϕ−1(bjEa1,j ,...,em,j

) is Borel,

so ϕ−1(W) is a Borel set in Γ . Therefore ϕ is a Borel map and by Theorem 4 continuous. By
Theorem 3, ϕ is open. �
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If S is a compact simple Lie group, then every open subgroup G of AutLie(S) is compact by
the remarks in Notation 1. Therefore we have the following consequence of Theorem 7. In the
case that ϕ is bijective, this result was proved by Kallman in [9], and for compact Γ in Hofmann
and Morris [7, Thm. 5.64].

8 Corollary. Suppose that S is a compact simple Lie group and that G ⊆ AutLie(S) is open. Let
Γ be a locally compact and σ -compact group and assume that ϕ : Γ −→ G is an abstract surjec-
tive group homomorphism. Then ϕ is continuous and open. In particular, Aut(S) = AutLie(S).

In order to extend this result to noncompact simple Lie groups, we need some structure theory.
We will avoid the classification of real simple Lie groups. The following case, however, requires
special considerations in our approach.

9 Lemma. Let s be an absolutely simple real Lie algebra of real rank rkR(s) = 1. Let s =
k ⊕ a ⊕ n be an Iwasawa decomposition and put m = Cenk(a). If m is abelian, then s = sl2(R)

or s = su2,1(C) (the Lie algebra of the special unitary group of a 3-dimensional nondegenerate
complex hermitian form of Witt index 1).

Proof. We note that dim(a) = rkR(s) = 1. If m is abelian, then (m⊕a)⊗R C is a Cartan subalge-
bra in s⊗R C; see Knapp [12, 6.47] or Helgason [5, p. 259]. Thus s is quasi-split: all nodes in the
Tits diagram are white/encircled (see Tits [18], and also the “Satake diagrams” in [5, Table VI]
or in Warner [20]). Because s has real rank 1, all white/encircled nodes of the underlying Dynkin
diagram are in one orbit of the Gal(C/R)-action. Since s is absolutely simple, the underlying
Dynkin diagram is connected and hence a tree. Thus the Dynkin diagram is either A1 or A2. The
corresponding quasi-split real Lie algebras are sl2(R) and su2,1(C) (this follows either from the
tables in Helgason [5, p. 259] or directly from the classification of involutions on sl3(C); see also
Tits [18, p. 55]). �

We need the following characterization of real absolutely simple Lie algebras which we could
not find in the literature. The result follows of course also from the classification of the real
simple Lie algebras, see Helgason [5, pp. 532–534]. We remark that the complex Kac–Moody
algebra of type Ã2k+1 has, for k � 1, a real form where every rank 1 Levi factor is of type sl2(C),
so the result is not completely trivial.

10 Lemma. Let s be an absolutely simple real Lie algebra. Then there exists a next-to-minimal
parabolic subalgebra whose semisimple Levi algebra is not isomorphic to sl2(C).

Proof. Assume that the semisimple Levi algebra of every next-to-minimal parabolic subalgebra
is isomorphic to sl2(C). Then the underlying Dynkin diagram of each corresponding complexi-
fied Levi algebra is A1 × A1 and the Galois group Gal(C/R) permutes the two nodes. In the Tits
diagram, the two nodes are white/encircled.

Now in general, the Tits diagram of a semisimple Levi group of a parabolic is obtained by re-
moving from the Tits diagram of s a collection of Gal(C/R)-orbits consisting of white/encircled
nodes. Thus, in our situation all nodes are white/encircled (hence s is quasi-split) and all
Gal(C/R)-orbits consist of two white/encircled nodes which do not form an edge in the Dynkin
diagram. It follows that Gal(C/R) acts freely on the Dynkin diagram.
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On the other hand, the Dynkin diagram of s⊗R C is connected (because s is absolutely simple)
and therefore a tree. This is a contradiction: the Galois group Gal(C/R) ∼= Z/2 cannot act freely
on a tree. �

The following theorem contains and extends Freudenthal’s Continuity Theorem [3].

11 Theorem. Suppose that S is an absolutely simple Lie group and that G ⊆ AutLie(S) is open.
Let Γ be a locally compact and σ -compact group and assume that ϕ : Γ −→ G is an abstract
group isomorphism. Then ϕ is a homeomorphism. In particular, Aut(S) = AutLie(S).

Before we embark on the proof, we note the following. We may assume that the real rank
� = rkR(s) of S is at least 1, since we dealt already with compact simple groups (groups of real
rank � = 0) in Corollary 8. We first consider the case � = 1 in a slightly more general situation.
Suppose that H is a (not necessarily connected) reductive real Lie group of real rank 1 (i.e. the
semisimple part of H ◦ has real rank 1). Let Lie(H) = h denote its Lie algebra. The semisimple
part hss of h decomposes as a sum of a simple ideal hs of real rank 1 and a compact semisimple
ideal hc (which may be trivial). We assume that there is a maximal compact subgroup K ⊆ H

corresponding to a Cartan involution and correspondingly an Iwasawa decomposition

h = k ⊕ a ⊕ n.

From our assumptions, the identity component H ◦ has finite index in H . Let m = Cenk(a) and
A = exp(a). The compact group M = CenK(A) has m as its Lie algebra and m contains hc. We
distinguish the following cases.

Case (A). m is not abelian. Then we find an element h ∈ M◦ such that the conjugacy class
C = {ghg−1 | g ∈ M} is compact and of positive dimension. Put L = CenH (A). Then L = MA

is a central product and therefore

C = {
ghg−1

∣∣ g ∈ M
} = {

ghg−1
∣∣ g ∈ L

}
.

Case (B). m is abelian. Then hc = 0 and thus the semisimple part hss = hs is in fact simple
of real rank 1. Thus we may use Lemma 9. If hs �= sl2(C), then k ∩ hs is isomorphic to R

or R ⊕ su(2); in particular, k ∩ hs has a 1-dimensional center z. Assume that this is the case.
Let Z ⊆ K denote the corresponding connected subgroup. Since k ∩ hs is an ideal in k, the
group K◦ centralizes Z. Let h be an element in the analytic subgroup Hs corresponding to hs

whose Z-conjugacy class has positive dimension. Let L = CenH (Z). The Lie algebra Lie(L) = l

decomposes as l ∼= Cen(h) ⊕ z. Since L is a finite extension of L◦, the set

C = {
ghg−1

∣∣ g ∈ L
}

is compact and of positive dimension.

The remaining case, where hs = sl2(C), will not be important.

Proof of Theorem 11. We use the structure theory of the (not necessarily connected) group G.
See Warner [20, p. 85] for some remarks on the nonconnected case. By Lemma 10 we can find
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a next-to-minimal parabolic P ⊆ G whose semisimple Levi group is not of type sl2(C). Let
H ⊆ P denote the reductive Levi group of P . The group H can be written as a centralizer of a
torus; see Warner [20, p. 73]. From this description it is clear that ϕ−1(H) is closed in Γ .

We now use our results above about reductive groups of real rank 1. In Cases (A) and (B)
above, we see from the respective definitions of the subgroup L ⊆ H that ϕ−1(L) is also closed
and hence σ -compact. Therefore ϕ−1(C) is in both cases σ -compact. The claim follows now
from Theorem 7. �

It may seem that the previous proof with the two Cases (A) and (B) is too complicated. How-
ever, Theorem 11 is false if G happens to be a complex Lie group. In this case, the general
construction of the subset C with the properties required in Theorem 7 will, in general, not be
possible. In such a complex Lie group, the subgroup M◦ that we used in our construction of C

will always be abelian. Nevertheless, we can prove something in the complex case. Our methods
are, however, somewhat different. We use the following results.

12 Theorem. Let G be a locally compact group. If G/Cen(G) is compact, then the algebraic
commutator group DG of G has compact closure.

Proof. See Grosser and Moskowitz [4, Cor. 1, p. 331]. �
The following is well known; actually, we need it only for the group G = SU(2), where it is

easily verified by hand.

13 Theorem. Let G be a compact semisimple Lie group. Then G consists of commutators, G =
{[a, b] | a, b ∈ G}.

Proof. See Hofmann and Morris [7, Thm. 6.55]. �
Finally, we use the following fact about the complex numbers. We recall that C has 22ℵ0

(noncontinuous) field automorphisms.

14 Theorem. Let T be a nondiscrete locally compact Hausdorff topology on the set C. Suppose
that for every a ∈ C, the maps z �−→ a + z and z �−→ az are continuous with respect to T . Then
there is a field automorphism α ∈ Aut(C) such that α(T ) is the standard topology on C.

Proof. By Warner [21, Thm. 11.17], (C, T ) is a topological field. By Weil [22, I, §3, Thm. 5],
there is, up to topological isomorphism, only one nondiscrete locally compact algebraically
closed field; see also Salzmann et al. [16, 58.8]. �
15 Complex simple Lie groups. Suppose that S is a complex simple Lie group with Lie algebra
Lie(S) = s. The group AutC(s) of all C-linear automorphisms is a complex Lie group contain-
ing S. We denote by AutQ(s) the group of all semilinear automorphisms of s (with respect to
arbitrary field automorphisms of C).

The group AutC(s) is a complex linear algebraic group. It can be realized as a matrix group
which is defined by a (finite) set of polynomial equations on the entries. In this way, one obtains
an action of Aut(C) on AutC(s) (and on s), where the field automorphisms are applied entry-wise
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to the matrices.2 In particular, there are split short exact sequences

1 � AutC(s) � AutR(s)
j

←� Gal(C/R) � 1

1 � AutC(s)

�����
� AutQ(s)

�

∩

j

←� Aut(C)
�

∩

� 1.

The group AutQ(s) is thus contained in the group Aut(S) of all “abstract” automorphisms of S.
We will see below that both groups are equal. For α ∈ AutQ(s) we put

cα = [
g �−→ αg = αgα−1].

As in the real case, we first consider groups of rank 1. We remark that PSL2(C) has index 2
in AutLie(PSL2(C)); the quotient is Gal(C/R).

16 Lemma. Suppose that S = PSL2(C) and s = sl2(C). Let G ⊆ AutQ(s) be a subgroup con-
taining S and let Γ be a locally compact and σ -compact group. Suppose that ϕ : Γ −→ G is
an abstract group isomorphism. Then there exists an element α ∈ AutQ(s) such that cα ◦ ϕ is a
homeomorphism onto an open subgroup of AutLie(S). In particular, Aut(S) = AutQ(s).

Proof. We represent the elements of SL2(C) in the standard way as complex 2 × 2 matrices.
This gives us a canonical action of Aut(C) on S = PSL2(C). Let V ⊆ S denote the unipotent
subgroup represented by all upper triangular matrices with ones on the diagonal. Then V =
CenG(V ) is isomorphic to the additive group (C,+). Let T ⊆ S denote the group presented by
all diagonal matrices. Then T = CenG(T ) acts on V as multiplication by (squares of) nonzero
complex numbers.

The group V ′ = ϕ−1(V ) = CenΓ (V ′) is a closed and therefore locally compact and σ -
compact copy of the abstract group (C,+). Moreover, the multiplication by any complex scalar
is continuous on V ′, since each element of T ′ = ϕ−1(T ) acts continuously on V ′. By Theo-
rem 14, there is a field automorphism α ∈ Aut(C) such that the restriction cα ◦ ϕ|V ′ : V ′ −→ V

is a homeomorphism of topological groups.
We now consider the action of Γ on the complex projective line CP1 via cα ◦ ϕ. The Γ -

stabilizer of a suitable point is NorΓ (V ′). Since S acts transitively on CP1, we have a factoriza-
tion Γ = NorΓ (V ′)(cα ◦ϕ)−1(S). Thus Γ and NorΓ (V ′) have the same images in Aut(C) under
j ◦ cα ◦ ϕ. But NorΓ (V ′) acts continuously on V ′ ∼= C, hence it maps into Gal(C/R). Thus
αG = cα(ϕ(Γ )) ⊆ AutLie(S). Now we can apply Theorem 7. Let C ⊆ V denote the closed unit
disk. Then (cα ◦ ϕ)−1(C) is closed in V ′ and hence closed in Γ . By Theorem 7, the composite
cα ◦ ϕ : Γ −→ αG ⊆ AutLie(S) is a homeomorphism. �
17 . For groups of higher rank, we recall a few combinatorial facts. Associated to a complex
simple Lie group S of rank � there is an � − 1-dimensional simplicial complex, the spherical
building �(S). The groups S and AutQ(s) act on � (the latter by not necessarily type-preserving

2 This follows also if S is viewed as a group scheme defined over Q, but the present down-to-earth approach with
matrix groups suffices for our purposes.
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automorphisms). The group AutQ(s) acts on the Dynkin diagram of S. In this action, AutQ(s)

cannot exchange long and short roots, that is, the action is trivial for the diagrams Cn, F4 and G2.
To see this, we note that AutQ(s) can be split as a semidirect product of AutC(s) and Aut(C),
with Aut(C) acting trivially on the Dynkin diagram. This reduces the claim to the group AutC(s),
where it is a well-known fact; see Jacobson [8, IX, Thm. 4].

Pairs of opposite roots determine walls in �(S); these walls are combinatorial � − 2-spheres.
The result that we will need below is that AutQ(s) in its action on �(S) has the same orbits on
the walls as S: one orbit if the Dynkin diagram is simply laced, and two orbits for the Dynkin
diagrams Cn, n � 2, F4 and G2.

18 Theorem. Let S be a complex simple Lie group with Lie algebra s, let G ⊆ AutQ(s) be
a subgroup containing S and let Γ be a locally compact and σ -compact group. Suppose that
ϕ : Γ −→ G is an abstract group isomorphism. Then there exists an element α ∈ AutQ(s) such
that the composite cα ◦ ϕ : Γ −→ AutQ(s) is a homeomorphism onto an open subgroup of
AutLie(S). In particular, Aut(S) = AutQ(s).

Proof. Let H ⊆ S be a reductive Levi subgroup of rank 1 in a next-to-minimal parabolic P ⊆ S.
Thus H ∼= H0T , where H0 is isomorphic to PSL2(C) or SL2(C) and T ∼= (C∗)�−1 where � is the
complex rank of S. In view of Lemma 16 we may assume that � � 2, so T is nontrivial. We can
arrange the matrix representation of AutC(s) in such a way that T is a group of diagonal matrices
which is invariant under Aut(C).

Let L = CenG(T ). We claim that L is contained in AutC(s). The group Aut(C) normalizes T ,
hence every element g ∈ L is a product g = hη, with η ∈ Aut(C) and h ∈ NorAutC(s)(T ). Since T

is nontrivial, we find a nontrivial algebraic character λ : T −→ C∗ which commutes with Aut(C)

(by evaluating a suitable matrix entry on the diagonal). Then h−1 has to act in the same way on
C∗ as η. However, the only nontrivial algebraic automorphism of C∗ is inversion, and this map
is not induced by a field automorphism of C (because it is not additive). It follows that η = 1 and
thus g = h ∈ AutC(s).

The group L is thus an algebraic finite extension of H and acts algebraically on H/Cen(H) ∼=
PSL2(C), with kernel Cen(L). Thus

L/Cen(L) ∼= H/Cen(H) ∼= PSL2(C)

(here we use that AutC(sl2(C)) = PSL2(C)).
Now we consider the preimage L′ = ϕ−1(L) = CenΓ (ϕ−1(T )). This is a closed subgroup

of Γ . The map ϕ induces an abstract group isomorphism

ϕ̃ : L′/Cen
(
L′) −→ L/Cen(L) ∼= PSL2(C)

between the locally compact and σ -compact group L′/Cen(L′) and the Lie group L/Cen(L). By
Lemma 16 there is an element α ∈ Aut(C) such that cα ◦ ϕ̃ is a homeomorphism.

We claim that αG ⊆ AutLie(S). We note that the Levi group H ⊆ S is the pointwise stabilizer
of a unique wall M ∼= S�−2 in the spherical building �(S). (The wall is the boundary of the
flat subspace corresponding to the vector part of Lie(T ) in the symmetric space of S.) As we
remarked above, AutQ(s) acts on �(S) (by simplicial, but not necessarily type-preserving maps).
The group Aut(C) fixes this wall M pointwise and acts by type-preserving automorphisms on �.
The group NorαG(T ) = NorαG(L) is precisely the setwise αG-stabilizer of this wall M . Now αG
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has the same orbits on the walls of � as S, whence αG = NorαG(T )S. The group NorΓ (L′) acts
continuously on L′/Cen(L′). Pushing this action forward with cα ◦ϕ, we see that NorαG(L) acts
by homeomorphisms on L/Cen(L). Thus NorαG(L) maps into Gal(C/R) ⊆ Aut(C), because
Aut(C) acts faithfully on L/Cen(L). It follows from the factorization of αG above that αG also
maps into Gal(C/R), that is, αG ⊆ AutLie(S).

Now we want to apply Theorem 7, and we have to find a set C ⊆ αG. Let K ⊆ H/Cen(H)

be a maximal compact subgroup, K ∼= SO(3). Let J ′ ⊆ L′ denote the preimage of K under the
continuous map

L′ −→ L′/Cen
(
L′) cα◦ϕ̃−−−→ L/Cen(L) = H/Cen(H).

We note that as an abstract group, J ′ is a central product of a group C′ which is isomorphic
to SO(3) or SU(2) and an abelian group. Moreover J ′/Cen(J ′) is (via cα ◦ ϕ̃) homeomorphic
to SO(3) and thus compact. By Theorem 12, the algebraic commutator group DJ ′ has compact
closure DJ ′. Algebraically, C′ is the set of commutators C′ = {[g,h] | g,h ∈ J ′} by Theorem 13.
Thus C′ = {[g,h] | g,h ∈ DJ ′} is a compact subset of Γ . Now cα ◦ ϕ maps C′ onto a closed

subgroup C ⊆ αG. We now may apply Theorem 7 to the map Γ
cα◦ϕ−−−→ αG ⊆ AutLie(S) and

conclude that cα ◦ ϕ is continuous. �
We finally consider semisimple groups. If S is an absolutely simple real Lie group with Lie

algebra s, then AutQ(s) = AutR(s) = AutLie(S). We need the following fact.

19. Let S be a connected centerless semisimple Lie group with Lie algebra s. Let s = s1 ⊕· · ·⊕sn

be its decomposition into simple ideals, and S = S1 × · · · × Sn the corresponding factoriza-
tion into simple groups. Then AutR(s) = AutLie(S) is a semidirect product of a subgroup
Π ⊆ Sym(n) and the direct product AutR(s1) × · · · × AutR(sn). The group Π consists of all
permutations π of {1, . . . , n} that preserve isomorphy of the simple ideals, i.e. si

∼= sπ(i) for all i.
Similarly, the group Aut(S) of all abstract automorphisms of S decomposes as a semidirect prod-
uct of the same group Π and the direct product Aut(S1) × · · · × Aut(Sn). In particular, there is a
split exact sequence

1 −→ Aut(S1) × · · · × Aut(Sn) −→ Aut(S) −→ Π −→ 1.

20 Theorem. Let S be a connected centerless semisimple Lie group with Lie algebra Lie(S) = s.
Let S = S1 × · · · × Sn denote its decomposition into simple factors. Let G ⊆ Aut(S) be a
subgroup containing S. Suppose that Γ is a locally compact and σ -compact group and that
ϕ : Γ −→ G is an abstract group isomorphism. Then there exist elements αi ∈ Aut(Si) such that
α = α1 × · · · × αn conjugates G to an open subgroup αG ⊆ AutLie(S), and cα ◦ ϕ : Γ −→ αG

is a homeomorphism. If Si is absolutely simple, then αi may be chosen to be the identity.

Proof. Let Hi = ∏
k �=i Sk . The Aut(S)-centralizer of Hi is CenAut(S)(Hi) = Aut(Si). Thus we

have
∏

i Aut(Si) = ⋂
i NorAut(S)(CenAut(S)(Hi)). From this description it is clear that the sub-

group Γ0 = ϕ−1(
∏

i Aut(Si)) is closed (and open, since it has finite index). By Theorem 11 and
Theorem 18, we find αi ∈ Aut(Si) such that α = α1 × · · · × αn conjugates ϕ(Γ0) into an open
subgroup of AutLie(S1) × · · · × AutLie(Sn), and such that cα ◦ ϕ : Γ0 −→ αG is a homeomor-
phism onto its image. The identity component Γ ◦ of Γ is contained in the open subgroup Γ0.
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Therefore cα ◦ ϕ maps Γ ◦ homeomorphically onto S. Since Γ acts by automorphisms on Γ ◦,
the map cα ◦ ϕ extends continuously to Γ −→ AutLie(S), that is, cα(ϕ(Γ )) ⊆ AutLie(S). �

So far, all the groups that we considered were centerless. It is, however, easy to see that we
have the following consequence of Theorem 20.

21 Corollary. Let S and G be as in Theorem 20. Suppose that Γ̃ is a locally compact and
σ -compact group and that ϕ : Γ̃ −→ G is a central surjective homomorphism. If Cen(Γ̃ ) is
discrete (for example, finite or countable), then there exist elements αi ∈ Aut(Si) such that α =
α1 × · · · × αn conjugates G to an open subgroup αG ⊆ AutLie(S), and cα ◦ ϕ : Γ̃ −→ αG is an
open map. If Si is absolutely simple, then αi may be chosen to be the identity.

Proof. We just note that Γ̃ −→ Γ = Γ̃ /Cen(Γ̃ ) is an open map. �
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