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Abstract. We classify compact homogeneous geometries of irreducible spherical type
and rank at least 2 which admit a transitive action of a compact connected group, up
to equivariant 2-coverings. We apply our classification to polar actions on compact sym-
metric spaces.

We classify compact homogeneous geometries which look locally like compact
spherical buildings. Geometries which look locally like buildings arise naturally in
various recognition problems in group theory. Tits’ seminal paper A local approach
to buildings [Ti2] is devoted to them. Among other things, Tits proved there that
a geometry which looks locally like a building can be 2-covered by a building if
and only if a local geometric obstruction vanishes. The condition is that the links
of all corank 3 simplices of type C3 and H3 admit coverings by buildings.

There exists a famous finite geometry of type C3 which is not covered by any
building, the so-called Neumaier Geometry [Neu] (see also 1.18 below). It seems
to be an open problem if there exist other (finite) examples of non-building Cm

geometries, and if there exist geometries of type H3 (note that we assume geome-
tries to be thick). Assuming a transitive group action, Aschbacher classified all
finite homogeneous geometries of type C3, see [Asch] and [Yos]. Using this result,
Aschbacher classified the finite homogeneous geometries with irreducible spherical
diagrams [Asch, Thm. 3]. Our Theorem A below may be viewed as a Lie group
analog of his classification. More results and references can be found in Pasini’s
book [Pas].

We are here concerned with the classification of geometries on which compact
Lie groups act transitively. Such geometries arise in the classification of polar
actions. For example, Thorbergsson’s classification of isoparametric submanifolds
in spheres [Th] relied heavily on the Burns–Spatzier classification of compact con-
nected spherical buildings admitting a strongly transitive action [BuSp]. In the
last section we describe an application of our results to polar actions on compact
symmetric spaces.
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Our results are as follows. With Grundhöfer and Knarr, the first author ob-
tained in the mid-1990s a complete classification of irreducible homogeneous com-
pact connected spherical buildings. We recall the result (which is built on earlier
work of Salzmann, Löwen, and Burns–Spatzier [CPP], [BuSp]).

Theorem ([GKK1], [GKK2], [GKVW]). Let Δ be a compact building of irredu-
cible spherical type and rank at least 2, with connected panels. Assume that its
topological automorphism group acts transitively on the chambers of Δ. Then Δ
is the spherical building associated to a noncompact simple Lie group.

Using a combination of this and results in Tits’ local approach [Ti2], we prove
the following main results. The exceptional C3 geometry that appears in Theorem
A was discovered by Podestà–Thorbergsson [PoTh]. We describe this geometry in
detail in Section 3B. For the unexplained definitions we refer to our paper below,
in particular to Sections 1 and 2. A map between geometries is called a 2-covering
if it is bijective on the links of all simplices of corank 2, see 1.10 below.

Theorem A. Let Δ be a compact geometry of irreducible spherical type and rank
at least 2, with connected panels. Assume that a compact group acts continuously
and transitively on the chambers of Δ.

If Δ is not of type C3, then there exists a simple noncompact Lie group S,
a compact chamber-transitive subgroup K ⊆ S and a K-equivariant 2-covering
Δ̃ → Δ, where Δ̃ is the canonical spherical building associated to S.

If Δ is of type C3, then either there exists a building Δ̃ and a 2-covering Δ̃ → Δ
as in the previous case, or Δ is isomorphic to the unique exceptional homogeneous
compact C3 geometry which cannot be 2-covered by any building.

More general results are proved in 5.4, 5.3, 4.1, 3.18. In this way we obtain a
complete classification of homogeneous compact geometries with connected panels
whose irreducible factors are of spherical type and rank at least 2, up to equiv-
ariant 2-coverings. In certain situations the conclusion of Theorem A may be
strengthened. For example, we prove the following in 2.24.

Proposition. Let Δ be a homogeneous compact geometry as in Theorem A. If
Δ is of type Am or E6 or if all panels are 2-dimensional, then Δ is the building
associated to a noncompact simple Lie group S, and the compact connected group
induced on Δ is a maximal compact subgroup of S.

One application of this classification is the following result, which builds heavily
on results by the second author [Lyt]. See 5.5 below for more details, an outline
of proof, and how this relates to independent work on the classification of polar
actions in positive curvature by Fang–Grove–Thorbergsson [FGTh].

Theorem B. Suppose that G×X → X is a polar action of a compact connected Lie
group G on a symmetric space X of compact type. Then, possibly after replacing
G by a larger orbit equivalent group, we have splittings G = G1 × · · · × Gm and
X = X1×· · ·×Xm, such that the action of Gi on Xi is either trivial or hyperpolar
or the space Xi has rank 1, for i = 1, . . .m.
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The following problems seem to be open.

Problem 1. Are there geometries of type H3, H4, F4, or Cm, m ≥ 4, that are not
2-covered by buildings?

Note that we assume geometries to be thick. Possibly, in some cases affirmative
answers can be obtained along the lines of [BeKa].

Problem 2. Is the topological automorphism group of a compact geometry of
spherical type locally compact in the compact-open topology?

Our approach avoids this question. However, we show that the compact groups
that appear are automatically Lie groups, provided that the panels are connected.

Problem 3. Does the conclusion of Theorem A still hold if we just assume that
the topological automorphism group acts transitively on the chambers?

Problem 4. Are there non-homogeneous compact geometries of irreducible spher-
ical type and rank at least 3 that are not 2-covered by buildings?

We remark that non-homogeneous compact geometries which are 2-covered by
buildings arise naturally from polar foliations, see for example [DoVa].

Problem 5. Is the exceptional C3 geometry from Section 3B simply connected?
Is there an analogy with the Neumaier Geometry? Can this geometry be defined
over other fields?

The paper is organized as follows. In Section 1 we introduce the relevant combi-
natorial notions and explain Tits’ results. In Section 2 we introduce a convenient
category of homogeneous compact geometries, and we show the existence of univer-
sal objects. In Section 3 we review the known examples of homogeneous compact
geometries of type C3, and in Section 4 we prove that this list is complete. In
the final Section 5 we combine our classification results and prove, among other
things, Theorem A and explain the main steps for the proof of Theorem B.

Acknowledgment. We thank Karl Hofmann, Misha Kapovich, Andreas Koll-
ross, Karl-Hermann Neeb, Antonio Pasini, and the anonymous referee for helpful
comments.

1. Geometries and buildings

In order to make this paper self-contained, we first introduce some elementary
combinatorial terminology. For the following facts and definitions we refer to
Tits [Ti1], [Ti2]. Additional material can be found in [Buek], [BuPa], [Pas]. The
geometries which we consider here are a standard tool in the structure theory of
the finite simple groups. We allow ourselves a few small deviations from Tits’
terminology. These will be indicated where they appear.

1.1. Chamber complexes. Let V be a (nonempty) set and Δ a collection of fi-
nite subsets of V . If V is closed under going down (i.e.,α ⊆ β ∈ Δ implies α ∈ Δ)
and if V =

⋃
Δ, then the poset (Δ,⊆) is called a simplicial complex. The elements

of V are called vertices and the elements of Δ are called simplices. The rank of
a simplex α is the number of its vertices, rk(α) = card(α). Two vertices which
are contained in a simplex are called adjacent. If the simplex α is contained in
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the simplex β, we call α a face of β. A simplicial complex is called a flag complex
if every finite set of pairwise adjacent vertices is a simplex (‘every non-simplex
contains a non-edge’). The link of a simplex α is the subcomplex

lkΔ(α) = lk(α) = {β ∈ Δ | α ∩ β = ∅ and α ∪ β ∈ Δ}
and the residue of α is the set Δ≥α = {β ∈ Δ | β ⊇ α} of all simplices having α
as a face. The link and the residue of α are poset-isomorphic. We note that Δ is
the link of the empty simplex.

A simplicial map between simplicial complexes is a map between their vertex
sets which maps simplices to simplices. We call a simplicial map regular if its
restriction to every simplex is bijective; these are Tits’ morphisms [Ti1, 1.1]. The
geometric realization |Δ| of Δ consists of all functions ξ : V → [0, 1] whose support
supp(ξ) = {v ∈ V | ξ(v) > 0} is a simplex, and with

∑
v∈V ξ(v) = 1. We also

write
ξ =

∑
v∈V

v · ξ(v).

The weak topology turns |Δ| into a CW complex which we denote by |Δ|w. A
simplicial map f : Δ → Δ′ induces (by piecewise linear continuation) a continuous
map |Δ|w → |Δ′|w which we denote by the same symbol f .

A simplicial complex is called pure if every simplex is contained in a maximal
simplex and if all maximal simplices have the same rank n. In this case we say
that Δ has rank n and we call the simplices of rank n chambers. The set of all
chambers is denoted Cham(Δ). The corank of a simplex α is then defined as

cor(α) = n− rk(α)

(the corank coincides with the codimension of the simplex in the geometric real-
ization). The residue of a corank 1 simplex is called a panel. Abusing notation
slightly, we call the link of such a simplex also a panel. Given a simplex α and
k ≥ cor(α), we denote by Ek(Δ, α) the union of the links of the corank k faces
of α,

Ek(Δ, α) =
⋃

{lkΔ(β) | β ⊆ α and cor(β) = k} .
A gallery in a pure simplicial complex is a sequence of chambers (γ0, . . . , γr),

where γi−1 ∩ γi has corank at most 1. A gallery stammers if γi−1 = γi holds for
some i. A pure simplicial complex where any two chambers can be connected by
some gallery is called a chamber complex. A gallery (γ0, . . . , γr) is called minimal
if there is no gallery from γ0 to γr with less than r + 1 chambers. If every panel
contains at least 3 different chambers, the chamber complex is called thick.

1.2. Geometries. Suppose that Δ is a thick chamber complex of rank n with
vertex set V and that I is a finite set of n elements. A type function is a map
t : V → I whose restriction to every simplex is injective. We view the type
function also as a regular simplicial map t : Δ → 2I and extend it to the geometric
realizations, t : |Δ| → |2I |. The latter map is, for obvious reasons, sometimes
called the accordion map. We call (Δ, t) a geometry if Δ has the following two
properties.
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(1) Δ is a flag complex.
(2) The link of every nonmaximal simplex is a chamber complex.

We remark that what we call here a geometry is called a thick residually connected
geometry in [Ti2]. The type (resp. cotype) of a simplex α is t(α) (resp. I − t(α)).
If α is a simplex of cotype J , then lk(α) is a geometry over J . The simplicial
join of two geometries is again a geometry. The type of a nonstammering gallery
(γ0, . . . , γr) is the sequence (j1, . . . , jr) ∈ Ir, where jk is the cotype of γk−1 ∩ γk.
Automorphisms and homomorphisms of geometries are defined in the obvious way;
they are regular simplicial maps which preserve types.

The idea behind this is that the vertices in a geometry are points, lines, planes
and so on. The type function says what kind of geometric object a given vertex
is and the simplices are the flags. The set of all simplices of a given type J ⊆ I is
the flag variety VJ (Δ). The chambers are thus the maximal flags, VI = Cham(Δ).
A gallery shows how one maximal flag can be altered into another maximal flag
by exchanging one vertex at a time. The type of the gallery records what types of
exchanges occur.

1.3. Generalized n-gons. Let n ≥ 2 be an integer. A geometry of rank 2 is
a bipartite simplicial graph. It is called a generalized n-gon if it has girth 2n
and diameter n, i.e., if it contains no circles of length less than 2n and if the
combinatorial distance between two vertices is at most n.

A generalized digon is the same as a complete bipartite graph, i.e., the simpli-
cial join of two vertex sets (of cardinalities at least 3, because of the thickness
assumption). A generalized triangle is the same as an abstract projective plane;
one type gives the points and the other the lines. The axioms above then say that
any two distinct lines intersect in a unique point, and that any two distinct points
lie on a unique line.

Lemma 1.4. Let Δ be a simplicial flag complex with a type function t : Δ →
2I . Suppose that the link of every vertex v is a thick chamber complex of rank
card(I)− 1. If |Δ|w is connected as a topological space, then Δ is a geometry.

Proof. The simplicial complex Δ is pure (since this a local condition). We have to
show that it is gallery-connected. Since the 1-skeleton Δ(1) is connected, it suffices
to show that any two chambers that have a vertex v in common can be joined by
a gallery. But this is true since lk(v) is a chamber complex. �
1.5. Geometries of type M . Suppose that M : I × I → N is a Coxeter matrix,
i.e.,Mi,j = Mj,i ≥ 2 for all i 	= j, and Mi,i = 1 for all i. A geometry (Δ, t) is of
type M if the link of every simplex α of corank 2 and cotype {i, j} is a generalized
Mi,j-gon.

We putMα = Mi,j for short. The link of a simplex α of cotype J is a geometry of
type M ′, where M ′ is the restriction of M to J ×J . The Coxeter group associated
to M is

W = 〈I | (ij)Mi,j = 1〉,
see [Hum, 5.1]. The Coxeter group and diagram for M ′ will be called the Coxeter
group and diagram of the simplex α. A gallery is called reduced if the word which
is represented by its type in W is reduced in the sense of Coxeter groups, see
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[Hum, 5.2]. Recall that a Coxeter group is called spherical if it is finite. We will
be mainly concerned with geometries of spherical type.

For the irreducible spherical Coxeter groups we use the standard names Ak, Ck,
Dk and so on as in [Hum]. By C3 and H3 we mean in particular the octahedral
and the icosahedral group. The dihedral group of order 2n is denoted

I2(n) = 〈a, b | a2 = b2 = (ab)n = 1〉.

If Δ is a geometry of type M whose Coxeter diagram is not connected, then Δ
is in a natural way a join of two geometries, see [Ti2, 6.1.3]. It therefore suffices in
many cases to consider geometries with connected Coxeter diagrams. A geometry
of type A1 is a set without further structure. Therefore a geometry whose Coxeter
diagram has an isolated node is a join of a set with a geometry. For this reason
we will often exclude geometries whose Coxeter diagrams have isolated nodes.

Lemma 1.6. Suppose that Δ is a geometry of type M . Then every minimal gallery
is reduced. In particular there is a uniform upper bound on the length of minimal
galleries if M is of spherical type.

Proof. This is an easy consequence of the reduction process of words in Coxeter
groups, see 3.4.1–3.4.4 in [Ti2]. �
1.7. Homogeneous geometries. If a group G acts (by type preserving auto-
morphisms) transitively on the chambers of a geometry Δ, we call the pair (G,Δ)
a homogeneous geometry. We denote the stabilizer of a simplex α by Gα. If (G,Δ)
is homogeneous, then (Gα, lkΔ(α)) is also homogeneous. The following fact about
the bounded generation of stabilizers will be important on several occasions.

Lemma 1.8. Let (G,Δ) be a homogeneous geometry of type M . Let γ be a cham-
ber and suppose that β ⊆ γ is a face of corank at least 1 whose Coxeter group is
of spherical type. Let α1, . . . , αt ⊆ γ be the faces of corank 1 which contain β. Let
s be the length of the longest word in the Coxeter group of β. Then the st-fold
multiplication map (

Gα1 × · · · ×Gαt

)s → G

which sends a sequence of st group elements to their product has Gβ as its image.

Proof. It is clear that the image of the multiplication map is contained in Gβ ,
since each of the groups Gαk

is contained in Gβ . Suppose that g is in Gβ . Then
there is a gallery γ = γ0, γ1, . . . , γr−1, γr = g(γ) in Δ≥β, with r ≤ s. We show by
induction on r that g is in the image of the multiplication map. For r = 0, 1 we
have g ∈ Gα1 ∪ · · · ∪Gαt . For r > 1 we find h ∈ Gα1 ∪ · · · ∪Gαt with h(γ0) = γ1.
Then h−1g(γ) can be connected to γ by a gallery of length r − 1 in Δ≥β . By
the induction hypothesis h−1g can be written as a product of r− 1 elements from
Gα1 ∪ · · · ∪Gαt and the claim follows. �
1.9. Simple complexes of groups. A simple complex of groups G is a cofunctor
from a poset to the category of group monomorphisms, see [BrHa, II.12.11]. In
other words, it assigns in a functorial way to every poset element α a group Gα

and to every inequality β ≤ α a group monomorphism Gβ ← Gα, such that all
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resulting triangles of maps commute. IfH is a group, then a simple homomorphism
ϕ : G → H consists of a collection of homomorphisms ϕα : Gα → H such that all
resulting triangles commute.

Let γ be a chamber in a homogeneous geometry (G,Δ). The stabilizers Gα of
the nonempty simplices ∅ 	= α ⊆ γ form in a natural way a simple complex of
groups G, with a simple homomorphism G → G. The pair (G,Δ) is completely
determined by this datum G → G. We will see that in certain situations (G,Δ) is
already determined by G. This is for example true if |Δ|w is simply connected as
a topological space, since then G = lim−→G, see [Ti3] or [BrHa, II.12.18]. However,
this condition is not so easy to check in our setting of compact Lie groups and we
will replace the ‘abstract’ colimit lim−→G in 2.27 by a compact group Ĝ which serves
essentially the same purpose in the category of compact groups. We remark that
an analogous construction works for finite geometries and groups.

Finally, we need Tits’ notion of a k-covering of geometries [Ti2].

1.10. k-Coverings. Let Δ and Δ′ be chamber complexes of rank n and let
ρ : Δ → Δ′ be a surjective regular simplicial map. We call ρ a k-covering if for
every simplex α ∈ Δ of corank at most k, the induced map lkΔ(α) → lkΔ′(ρ(α))
is an isomorphism. If ρ is an (n − 1)-covering, then |Δ|w → |Δ′|w is a covering
in the topological sense. We call an (n − 1)-covering a covering for short. As
Tits remarks, one should view k-coverings as ‘branched coverings’. We note the
following: if ρ : Δ → Δ′ is a covering and if Δ′ is a flag complex, then Δ is also a
flag complex (since this is a local condition). For k-coverings between geometries
we always assume that they preserve types.

1.11. Universal k-coverings. A k-covering ρ̃ : Δ̃ → Δ is called universal if
it has the following property: for every k-covering ρ : Δ′ → Δ and every pair
of chambers γ′ ∈ Δ′ and γ̃ ∈ Δ̃ with ρ̃(γ̃) = ρ(γ ′), there is a unique k-covering

ρ′ : Δ̃ → Δ′ with ρ′(γ̃) = γ′ and ρ̃ = ρ ◦ ρ′.

Δ′

ρ

��
Δ̃

ρ̃ ��

ρ′

��

Δ.

Applying this universal property twice, we have the following.

Lemma 1.12. Let ρ : Δ̃ → Δ be a universal k-covering of geometries of type
M , for k ≥ 2. Suppose g is an automorphism of Δ. Given any two chambers
γ1, γ2 ∈ Δ̃ with g(ρ(γ1)) = ρ(γ2), there exists a unique automorphism g̃ of Δ̃ with
ρ ◦ g̃ = g ◦ ρ and g̃(γ1) = γ2. �

We call the lifts of the identity deck transformations. The following is an im-
mediate consequence of the previous lemma.

Proposition 1.13. Let ρ : Δ̃ → Δ be a universal k-covering of geometries of type
M , for k ≥ 2. Suppose that H ⊆ Aut(Δ) acts transitively on the chambers of
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Δ. Let H̃ ⊆ Aut(Δ̃) denote the collection of all lifts of the elements of H and

let F ⊆ H̃ denote the collection of all deck transformations. Then we have the
following.

(1) H̃ is a group acting transitively on the chambers of Δ̃ and F ⊆ H̃ is a
normal subgroup.

(2) The map ρ is equivariant with respect to the map H̃ → H ∼= H̃/F .

(3) If α ∈ Δ̃ is a simplex of corank at most k, then H̃α∩F = {id} and H̃α maps
isomorphically onto Hρ(α).

(4) For a simplex α of corank at most k in Δ̃, the H̃-stabilizer of ρ(α) splits as

a semidirect product H̃ρ(α) = H̃αF .

Proof. From 1.12 we see that products and inverses of lifts are again lifts. Thus H̃
is a group. The natural map H̃ → H which assigns to a lift g̃ the automorphism g
which was lifted is an epimorphism with kernel F . Therefore we have (1) and (2).

Suppose that α ∈ Δ̃ has corank at most k and that γ ⊇ α is a chamber. A deck
transformation which sends γ to a chamber in lk(α) must fix γ and is therefore

the identity. Thus F ∩ H̃α = {id}. If g ∈ H fixes ρ(α), then we find a unique

chamber γ′ ∈ Δ̃≥α with ρ(γ′) = g(ρ(γ)) and hence a lift g̃ ∈ H̃α of g. This shows

that H̃α → Hρ(α) is surjective, and therefore an isomorphism. Thus we have (3).

For (4) we note that H̃αF fixes ρ(α). Conversely, suppose that g̃ in H̃ fixes
ρ(α) and that γ is a chamber containing α. Then ρ(g̃(γ)) contains ρ(α). There

exists an element f ∈ F such that f(g̃(γ)) ∈ Δ̃α, because F acts transitively on
the preimage of g(ρ(γ)). This proves (4). �
Remark 1.14. The existence of a universal 2-covering of a geometry seems in gen-
eral to be an open problem. The existence of a universal (n−1)-covering is not an
issue; see also Pasini [Pas, Chap. 12]. For n ≥ 2, the topological universal covering

|̃Δ|w → |Δ|w is the universal (n − 1)-covering, as one sees from 1.4. We remark
also that an analog of the construction that we give in 2.27 below gives universal
homogeneous geometries in the class of finite homogeneous geometries of spherical
type. In any case, we have the following important fact.

Theorem 1.15 (Tits). Suppose that ρ : Δ̃ → Δ is a 2-covering of geometries. If

Δ̃ is a building, then ρ is universal.

Proof. This follows from Theorem 3 and 2.2 in [Ti2]. �
We close this section with the following deep result due to Tits. It says that the

only obstruction to the existence of a 2-covering by a building lies in the rank 3
links. We remark that (thick) buildings of type H3 and H4 do not exist, see [Ti1,
Addenda]. (Tits’ result applies also to non-thick geometries.)

Theorem 1.16 (Tits). Let Δ be a geometry of type M . Then the following are
equivalent.

(1) There exists a building Δ̃ and a 2-covering Δ̃ → Δ.
(2) For every simplex α ∈ Δ of corank 3 whose Coxeter diagram is of type C3

or H3, there exists a building Γ and a 2-covering Γ → lkΔ(α).
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Proof. Our assumptions allow us to go back and forth between chamber systems
and geometries. The result follows thus from 5.3 in [Ti2]. �

1.17. The following facts illustrate two interesting cases:

(a) Every geometry Δ of type An is a projective geometry and in particular a
building, see [Ti2, 6.1.5]. Therefore id : Δ → Δ is the universal 2-covering (and Δ
admits no quotients).

(b) Suppose that Δ is a geometry of type C3 and that we call the three types
of vertices points, lines and hyperlines as in [Ti2, p. 542]. Then Δ is a building if
and only if any two lines which have at least two distinct points in common are
equal, i.e., if there are no digons, see [Ti2, 6.2.3].

1.18. The Neumaier Geometry. We briefly explain the one known finite ge-
ometry of type C3 which is not covered by a building. Let V1 be a set consisting of
seven points and let V2 =

(
V1

3

)
denote the set of all 3-element subsets of V1. These

are the lines of the geometry. There are 30 ways of making V1 into a projective
plane by choosing 7 appropriate lines in V2; let X ⊆ (

V2

7

)
be this set. Finally, let

G = Alt(V1) = Alt(7) and let V3 ⊆ X be one of the two 15-element G-orbits in X .
The elements of this orbit are the planes of the geometry. Put V = V1 ∪ V2 ∪ V3

and define two vertices v, w ∈ V to be adjacent if v ∈ w or w ∈ v. Let Δ denote
the corresponding flag complex. Then Δ is a geometry of type C3. We note that
points (vertices of type 1) and planes (vertices of type 3) are always incident. See
Neumaier [Neu] and Pasini [Pas, 6.4.2] for more details.

2. Compact geometries

Now we consider actions of compact Lie groups on geometries. This leads to a
different topology on |Δ|. The next definition is very much in the spirit of Burns–
Spatzier [BuSp]; see also [GKVW, 6.1]. Suppose that Δ is a geometry over I.
Given a simplex α of type J ⊆ I, let α(j) denote its unique vertex of type j ∈ J .
In this way we can view α as a map J → V or as a J-tuple of vertices, α ∈ V J .

Definition 2.1. Let Δ be a geometry of type M over I. Suppose that the vertex
set V of Δ carries a compact Hausdorff topology and that for every J ⊆ I, the flag
variety VJ (viewed as a subset of the compact space V J) is closed. Then we call Δ
a compact geometry. The proof of [GKVW, 6.6] applies verbatim and shows that
for every simplex α ∈ Δ, the link lk(α) is again a compact geometry. We say that
Δ has connected panels if the panels are connected in this topology.

Examples of compact geometries arise as follows from groups. Suppose that
(G,Δ) is a homogeneous geometry of type M and that G is a locally compact
group. If every simplex stabilizer Gα is closed and cocompact (i.e.,G/Gα is com-
pact), then V carries a compact topology and the flag varieties are also compact,
hence closed. We then call (G,Δ) a homogeneous compact geometry. The spheri-
cal buildings associated to semisimple or reductive isotropic algebraic groups over
local fields are particular examples of homogeneous compact geometries.

The topology on V can be used to define a new topology on |Δ| as follows.
Consider the map
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p : Cham(Δ)× |2I | → |Δ|(
γ,

∑
i∈I i · ξ(i)

)
�→ ∑

i∈I γ(i) · ξ(i)

Both Cham(Δ) and |2I |w are compact and we endow |Δ| with the quotient topol-
ogy with respect to the map p. The resulting compact space is denoted |Δ|K . The
identity map |Δ|w → |Δ|K is clearly continuous, and we call the topology of |Δ|K
the coarse topology on |Δ|.
Lemma 2.2. The space |Δ|K is compact Hausdorff. If Δ has rank at least 2, then
|Δ|K is path-connected.

Proof. From the continuity of the natural maps

Cham(Δ)× |2I |w → |Δ|K t−→ |2I |w

we see that we can separate points which have different t-images.
Suppose now that x, y ∈ |Δ|K have the same type ξ = t(x) = t(y) ∈ |2I |. We

let J = supp(ξ) = {j ∈ I | ξ(j) > 0} denote the support of ξ and we put

u(ξ) = {ζ ∈ |2I | | supp(ζ) ⊇ supp(ξ)}.

Then u(ξ) is an open neighborhood of ξ. Let U ⊆ VJ be open and let UC ⊆
Cham(Δ) denote the open set of all chambers whose face of type J is in U . We
claim that UC × u(ξ) is p-saturated. Indeed, if (γ, ζ) ∈ UC × u(ξ) and if

p(γ, ζ) =
∑

γ(i) · ζ(i) = ∑
γ′(i) · ζ ′(i) = p(γ′, ζ′),

then ζ = ζ ′ and t(γ ∩ γ′) ⊇ J . It follows that the p-image of UC × u(ξ) is open.
Now for x, y as above, we choose disjoint open neighborhoods X,Y ⊆ VJ of the

type J simplices containing them. Then the p-images of XC × u(ξ) and YC × u(ξ)
are disjoint open neighborhoods.

Finally, we note that |Δ|w is path-connected if Δ has rank at least 2, so the
same is true for |Δ|K . �
Lemma 2.3. Let Δ be a compact geometry with connected panels. Then all flag
varieties VJ are connected (in the coarse topology).

Proof. We show first that Cham(Δ) is connected. If (γ0, . . . , γr) is a gallery, then
γk−1, γk are in a common panel and hence in a connected subset. Since Δ is gallery-
connected, Cham(Δ) is connected. For J ⊆ I we have a continuous surjective map
Cham(Δ) → VJ , hence VJ is also connected. �
Lemma 2.4. Let Δ be a geometry of type M over I. Suppose that ∅ � J � I
and that Mj,k = 2 holds for all j ∈ J and k ∈ K = I − J . Then Δ is a join of
two geometries Δ1, Δ2 of types M |J×J and M |K×K. If Δ is a compact geometry,
then this decomposition is compatible with the topology.
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Proof. The proof in [GKVW, 6.7] applies verbatim. �

A compact homogeneous geometry of type A1 is just a compact space with a
transitive group action. Therefore we will often assume that the Coxeter diagram
of the geometry has no isolated nodes. A compact homogeneous geometry (K,Δ)
of type A1 × A1 consists of two compact spaces X,Y and a transitive K-action

on X × Y which is equivariant with respect to the maps X
pr1←−− X × Y

pr2−−→ Y .
Suppose that X = Sm, that Y = Sn and that K is a compact connected Lie group
acting faithfully and transitively on Sm ← Sm × Sn → Sn. We note that such
a group K embeds into SO(m + 1) × SO(n), see [CPP, 96.20]. In this case, a
classification is possible. The result that we need is as follows.

Lemma 2.5. Let K ⊆ SO(m+1)×SO(n+1) be a compact connected group acting
transitively on Sm×Sn. Let K1 and K2 denote the projections of K to SO(m+1)
and SO(n+1), respectively. Assume that m = 1, 2, 4, 8 and that K1 = SO(m+1).
If m = 1 assume in addition that K2 = SO(n+ 1) or that K2 is a compact simple
Lie group. Then K = K1 ×K2, unless m = 2, n = 4k − 1 and K = Sp(1) · Sp(k)
acting on Pu(H)⊕Hk via (a, g) · (u, v) = (auā, gvā).

Proof. We decompose the Lie algebra Lie(K) into the ideals h1 = Lie(K)∩(so(m+
1) ⊕ 0), h2 = Lie(K) ∩ (0 ⊕ so(n + 1)) and a supplement h0, such that Lie(K) =
h1 ⊕ h2 ⊕ h0 and K = (H1 ×H2) · H0, where Hi is the closed connected normal
subgroup with Lie algebra hi. Since Lie(K)/h2 ∼= h1 ⊕ h0 ∼= so(m + 1) is either
1-dimensional or simple, we have necessarily h1 = 0 or h0 = 0. We consider these
two cases separately.

(a) Assume that h0 = 0. Then we have a product decomposition of the Lie
algebra and therefore K = H1 ×H2 = K1 ×K2.

(b) Assume that h1 = 0. Then we have h0 ∼= so(m+1) and thus the Lie algebra
of the group induced on the second factor Sn is so(m+ 1)⊕ h2. We compare this
with the classification of transitive actions of compact connected Lie groups on
spheres, see [Oni, p. 227] or [CPP, 96.20–23] or [Kr5, 6.1]. We note also that the
K-stabilizer of a nonzero vector v ⊕ 0 ∈ Rm+1 ⊕ Rn+1 acts transitively on Sn.

If m = 8 then n = 8, 15 and h2 = 0. However, a group with Lie algebra so(8)
cannot act transitively on S8 or S15, so this case cannot occur. If m = 4, then
n = 4, 7 and h2 ⊆ so(3). Again, a group with Lie algebra so(4) ⊕ h2 cannot act
transitively on S4 or S7. If m = 2, then H0 cannot act transitively on Sm × Sn by
a similar argument as in the case m = 8. Hence H0 is not transitive on Sn and
the only remaining possibility is that n = 4k− 1 and h2 = sp(k). The case m = 1,
with Lie(K) = R⊕ h2 is excluded by our assumptions. �

A general classification of transitive action on products of spheres can be found
in Onishchik [Oni, p. 274], Straume [Str, Table II]. The transitive SO(4)-action on
S2 × S3 ⊆ Pu(H)⊕H will play a role for the exceptional C3 geometry.

The following result is a main ingredient in our classification of homogeneous
compact geometries. A spherical building is Moufang if it has a ‘large’ automor-
phism group; see [Ti1, p. 274]. The buildings associated to reductive isotropic
algebraic groups have this property and conversely, the spherical Moufang build-
ings can be classified in terms of certain algebraic data [TW]. A deep result due
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to Tits says that all irreducible spherical buildings of rank at least 3 are Moufang,
see [Ti1, 4.1.2] [We]. Spherical buildings of rank 2 need not be Moufang.

Theorem 2.6. Let (G,Δ) be a homogeneous compact geometry of type M with
connected panels. Suppose that α is a simplex of corank 2 and cotype {i, j}, and
with Mi,j = Mα ≥ 3. Then Mα ∈ {3, 4, 6} and lk(α) is a compact connected
Moufang Mα-gon (and explicitly known).

The panels of cotype i and j are homeomorphic to spheres (in the coarse topol-
ogy), of dimensions mi,mj ≥ 1. If G is compact, then the panel stabilizers act lin-
early (i.e., as subgroups of orthogonal groups) on these panels. The space |lk(α)|K
is homeomorphic to a sphere of dimension Mi,j(mi +mj) + 1.

If Mi,j = 3, then mi = mj = 1, 2, 4, 8, if Mi,j = 6, then mi = mj = 1, 2 and
if Mi,j = 4, then either 1 ∈ {mi,mj} or mi = mj = 2 or mi + mj is odd (with
further number-theoretic restrictions).

In particular, there are no homogeneous compact geometries of type H3 with
connected panels.

Proof. The link lk(α) is a homogeneous compact generalized Mα-gon with con-
nected panels. By the main results in [Szm, Kn, GKK1, GKK2] we have Mα ∈
{3, 4, 6} and lk(α) is the compact connected Moufang Mα-gon associated to a
simple real Lie group S of R-rank 2. Moreover, |lk(α)|K is G-equivariantly home-
omorphic to unit sphere in the tangent space of the symmetric space S/G, where
G ⊆ S is a maximal compact subgroup. The principal G-orbits have dimension
Mα(m1 + m2) and codimension 1 in this sphere. A different, purely topological
proof that |lk(α)|K is a sphere of this dimension is given in [Kn]. A complete classi-
fication of these compact geometries and their chamber-transitive closed connected
subgroups is given in [GKK2]. �

Corollary 2.7. Let (G,Δ) be a homogeneous compact geometry of type M with
connected panels. Suppose also that G is compact. If the Coxeter diagram of M
has no isolated nodes and if all panels have in (the coarse topology) dimension at
least 2, then the commutator group [G,G] of G acts transitively on the chambers
of Δ.

Proof. Let α ∈ Δ be a simplex of corank 1 and let m denote the dimension of the
sphere |lk(α)|K ∼= Sm. The stabilizer Gα induces a transitive subgroup of O(m+1)
on this panel. Since m ≥ 2, the commutator group of Gα still acts transitively
on lk(α), see [Oni, p. 94]. In particular, ([G,G])α acts transitively on lk(α). Since
any two chambers can be connected by some gallery, [G,G] acts transitively on
the chambers. �

Lemma 2.8. Let (G,Δ) be a homogeneous compact geometry of type M with con-
nected panels. If G is compact and acts faithfully on Δ, then Gγ acts faithfully on
E1(Δ, γ), for every chamber γ.

Proof. Suppose that g ∈ Gγ fixes E1(Δ, γ) pointwise. Let α ⊆ γ be a face of corank
2. If Mα ≥ 3, then g fixes lk(α) pointwise by [GKK2, 2.2]. If Mα = 2, then lk(α)
is a join of two panels and therefore g fixes lk(α) pointwise. Thus g fixes E2(Δ, γ)
pointwise. If (γ, γ′) is a gallery, then E1(Δ, γ′) ⊆ E2(Δ, γ), hence g fixes E1(Δ, γ′)
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pointwise. Since Δ is gallery-connected, we conclude that g acts trivially on Δ.
�
In order to show that compact groups acting transitively on compact geometries
are automatically Lie groups, we use the following fact.

Lemma 2.9. Let K be a compact group and H �K a closed normal subgroup. If
H and K/H are Lie groups, then K is a Lie group as well.

Proof. We show that K has no small subgroups, see [HoMo, 2.40]. Let W ⊆ K/H
be a neighborhood of the identity which contains no nontrivial subgroup and let
V be its preimage in K. Let U ⊆ K be a neighborhood of the identity such that
U ∩ H does not contain a nontrivial subgroup of H . Then U ∩ V contains no
nontrivial subgroup of K. �
Theorem 2.10. Let (G,Δ) be a homogeneous compact geometry of spherical type
M , with connected panels. Assume that G is compact and acts effectively, and that
the Coxeter diagram of Δ has no isolated nodes. Then G is a compact Lie group.

Proof. We first show that certain simplex stabilizers are compact Lie groups. Let
γ be a chamber. By 2.8, Gγ acts faithfully on E1(Δ, γ). From 2.6 we see that Gγ

injects into a finite product of orthogonal groups. Thus Gγ is a Lie group. Now let
α ⊆ γ be a face of corank 1. Let N �Gα denote the kernel of the action of Gα on
the panel lk(α). Then N is a closed subgroup of Gγ and hence a Lie group. The
quotient Gα/N is by 2.6 a closed subgroup of an orthogonal group and therefore
also a Lie group. By 2.9, Gα is a Lie group.

Let now α1, . . . , αt denote the corank 1 faces of γ. Let s be the length of
the longest word in the Coxeter group of Δ. Recall from 1.8 that we have a
surjective multiplication map

(
Gα1 × · · · ×Gαt

)s → G. If we compose it with the

projectionG → G/[G,G], it becomes a surjective continuous homomorphism, since
the target group is abelian. Thus G/[G,G] is a compact abelian Lie group. From
the multiplication map we see also that G has only finitely many path components,
and that the path components of G are closed, and therefore open. In particular,
G◦ is an open and path-connected subgroup. Since Cham(Δ) is connected by
2.3, the identity component G◦ acts transitively and (G◦,Δ) is a homogeneous
compact geometry. It now suffices to show that G◦ is a compact Lie group, and
for this we may as well assume that G = G◦ is connected.

Then G is a central quotient
(
Z ×∏

ν∈N Sν

)
/D, where (Sν)ν∈N is a (possibly

infinite) family of simply connected compact almost simple Lie groups, Z is a
compact connected abelian group, and D is a compact totally disconnected central
subgroup of the product Z × ∏

ν∈N Sν , see [HoMo, 9.24]. We claim that the
index set N of the product is finite. Otherwise, G admits a homomorphism onto
a semisimple Lie group H of dimension strictly bigger than r = s dim(Gα1 ×
· · · × Gαt). The composite

(
Gα1 × · · · × Gαt

)s → G → H is a smooth map
between Lie groups. Therefore its image has (by Sard’s Theorem, see, e.g., [Mil,
Chap. 3]) dimension at most r, a contradiction. So the index set N is finite, and
[G,G] = [G,G] is a compact semisimple Lie group. By 2.9, the group G is a
compact Lie group. �

The following byproduct of the proof will be useful later.
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Corollary 2.11. Under the assumptions of 2.10, the identity component G◦ acts
transitively on Cham(Δ) and (G◦,Δ) is a homogeneous compact geometry. �

We do not know the answer to the following problem (see Problem 2 and Prob-
lem 3 in the introduction). For compact connected buildings, it is in both cases
affirmative.

Problem 2.12. Suppose that M has no isolated nodes. Is the automorphism group
of a compact geometry of type M locally compact in the compact-open topology?
If the geometry is homogeneous, does there necessarily exist a compact chamber-
transitive group?

A first application of 2.10 is that there is an upper bound for the topological
dimension of the chamber set.

Corollary 2.13. Let (G,Δ) be a homogeneous compact geometry of spherical type
M , with connected panels. Assume that G is compact and acts effectively, and that
the Coxeter diagram of Δ has no isolated nodes. Each panel of cotype i is by 2.6
a sphere, of dimension mi. Let (i1, . . . , ir) be a representation of the longest word
in the Coxeter group W of M and let γ be a chamber. Then

dim(G)− dim(Gγ) ≤ mi1 +mi2 + · · ·+mir .

Proof. Let α ⊆ γ be a face of corank 1 and cotype i. The canonical map

Cham(Δ) ∼= G/Gγ → G/Gα
∼= VI−{i}

is a locally trivial Gα/Gγ = Smi -bundle. We fix a chamber γ = γ0 and a sequence
(i1, . . . , ir) ⊆ Ir. Pulling these sphere bundles back several times, we see that the
space of stammering galleries (the ‘Bott–Samelson cycles’)

{(γ0, . . . , γr) ∈ Cham(Δ)r+1 | I − {ik} ⊆ t(γk−1 ∩ γk), k = 1, . . . r}

is a smooth manifold of dimension mi1 + · · ·+mir , see also [Kr4, 7.9]. The map
sending such a stammering gallery (γ0, . . . γr) to γr is smooth, hence its image has
(by Sard’s Theorem) dimension at most mi1+· · ·+mir . By 1.6, every chamber can
be reached from γ0 by a gallery whose type is reduced. Since there are only finitely
many reduced words in a spherical Coxeter group we obtain an upper bound for
the dimension. From the Bruhat order on the Coxeter group we see that this
upper bound is of the form that we claim, (and does not depend on the chosen
representation of the longest word), see [Hum, 5.10] and [Kr4, 7.9]. �

If Δ is a homogeneous compact building with connected panels and if the Cox-
eter diagram is spherical and has no isolated nodes, then |Δ|K is homeomorphic to
a sphere. This is the ‘Topological Solomon–Tits-Theorem’, which has been proved
in various degrees of generality, see [Mit], [Kn], [Kr1]. For a homogeneous compact
geometry, |Δ|K need not be a manifold. However, we have the following result for
geometries of rank 3.
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Proposition 2.14. Suppose that (G,Δ) is a homogeneous compact geometry of
irreducible spherical type M with connected panels and that G is compact. If Δ
has rank 3, then |Δ|K is a closed connected topological manifold of dimension
dim(G/Gγ) + 2.

Proof. Replacing G by G/N , where N is the kernel of the action, we may by 2.10
assume that G is a compact Lie group acting faithfully and transitively on the
chambers. We put I = {1, 2, 3} and we fix a chamber γ ∈ Δ. Recall from 2.1 the
closed quotient maps

Cham(Δ)× |2I |w p−→ |Δ|K t−→ |2I |w,
(γ′, ζ) �→ ∑

γ′(i) · ζ(i) �→ ζ.

We use the same notation as in the proof of 2.2. Suppose that x ∈ |Δ|K has
type t(x) = ξ ∈ |2I |. Let J = supp(ξ) = {j ∈ I | ξ(j) 	= 0} and u(ξ) = {ζ ∈ |2I | |
supp(ζ) ⊇ supp(ξ)}. Let W = Cham(Δ)× u(ξ). This set is p-saturated, hence its
p-image is open (compare the proof of 2.2) and a neighborhood of x. We claim
that p(W ) is a tube around the orbit G(x) ⊆ |Δ|K , see Bredon [Bred, II.4]. Let
α ⊆ γ denote the face of type J . We put

r
(∑

γ′(i) · ζ(i)) = ∑
γ′(i) · ξ(i).

From the commutative diagram

W ��

p

��

G/Gγ

��
p(W )

r �� G(x)

we see that r is continuous, since the preimage inW of an open set in G(x) ∼= G/Gα

is p-saturated (by the same arguments as in the proof of 2.2). Thus r is an
equivariant retraction. From the chamber-transitivity of Gα on lk(α) we have that
Gα(p({γ} × u(ξ)) = r−1(x). By [Bred, II.4.2], the set p(W ) is a tube with slice
S = r−1(x) and

p(W ) ∼= G×Gα S.

By construction, the slice S is Gα-equivariantly homeomorphic to a product of
Rcard(J)−1 and the open cone over |lk(α)|K . If I = J , then the slice S is thus
an open 2-disk. If J = {1, 2}, then S is an open m + 2-disk, since |lk(α)|K is
an m-sphere. If J = {1}, then |lk(α)|K is Gα-equivariantly homeomorphic to
unit sphere in a polar representation of Gα of cohomogeneity 2 (here we use the
classification 2.6). Thus p(W ) is in each case equivariantly homeomorphic to an
open disk bundle over G/Gα and therefore a manifold. �

The previous proof works also for irreducible spherical types of higher rank if
we assume that all proper links arise from polar representations.

We collect a few more elementary facts about homogeneous compact geometries.
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Lemma 2.15. Suppose that ρ : (G′,Δ′) → (G,Δ) is a continuous equivariant
k-covering between homogeneous compact geometries of type M with connected
panels, for k ≥ 2, and that G′ is compact and acts faithfully on Δ′. If α ∈ Δ′ is a
simplex of corank at most k, then G′

α → Gρ(α) is injective.

Proof. Let γ be a chamber containing α. Then E1(Δ′, γ)
ρ−→ E1(Δ, ρ(γ)) is a

G′
γ-equivariant bijection. By 2.8, the group G′

γ acts faithfully on E1(Δ′, γ), hence
G′

γ → Gρ(γ) is injective. By assumption, ρmaps lkΔ′(α) bijectively onto lkΔ(ρ(α)).
So if g ∈ G′

α is in the kernel of G′
α → Gρ(α), then g ∈ G′

γ , and therefore g = 1.
�
Definition 2.16. We call a homogeneous compact geometry (G,Δ) minimal if G
has no closed normal chamber-transitive subgroup N ⊆ G.

Such minimal actions are called irreducible in Onishchik [Oni], but this ter-
minology would conflict with our terminology for geometries. Since compact Lie
groups satisfy the descending chain condition, we have the following fact.

Lemma 2.17. Suppose that the Coxeter diagram of M is spherical and has no
isolated nodes and that (G,Δ) is a homogeneous compact geometry of type M with
connected panels. If G is compact and acts faithfully, then there exists a closed
connected normal subgroup K �G◦ such that (K,Δ) is minimal.

Proof. The group G◦ acts transitively on the chambers by 2.11. Among all closed
normal connected chamber transitive subgroups of G◦, let K ⊆ G◦ be a smallest
one. Every closed connected normal subgroup of K is also normal in G◦, hence
(K,Δ) is minimal. �

Under the assumptions of 2.17, the group K is necessarily connected (by 2.11)
and if all panels have dimension at least 2, then K is semisimple (by 2.7).

2.18. In the setting of 2.17, the group G◦ can be recovered from K as follows.
Let α be a simplex and put N = NorK(Kα). Then H = N/Kα acts from the
right on K/Kα. It is not difficult to see that in this action, H is isomorphic to the
centralizer of K in the symmetric group of the set K/Kα. Now let L � G◦ be a
connected normal complement of K, i.e.,G = K ·L is a central product with K∩L
finite. The group L is therefore a closed connected subgroup of H . See [Kr3, 3.5
and 3.6] or Onishchik [Oni, p. 75] for more details. Note that this applies to every
nonempty simplex α. In particular, we have K = G◦ if one of the K-stabilizers is
self-normalizing in K.

2.19. The category HCG(M). Our aim is the classification of compact ho-
mogeneous geometries of a given spherical type M . To this end, we consider the
following category HCG(M). Its objects are homogeneous compact geometries
(G,Δ) of spherical type M with connected panels, where G is a compact group
acting transitively and faithfully on Cham(Δ). The morphisms are equivariant
2-coverings which are continuous with respect to the coarse topologies on the re-
spective geometries. We note that the continuity condition can be also phrased as
follows: the homomorphisms between the groups are continuous.

In what follows, we have sometimes to compare ‘abstract’ homomorphisms in the
sense of 1.2 with homomorphisms which are in addition continuous in the coarse
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topology. The group of all continuous automorphisms of a compact geometry
Δ will be denoted AutTop(Δ), in contrast to the group Aut(Δ) of all abstract
automorphisms of the underlying combinatorial structure.

There is a Moufang spherical building Δ associated to every noncompact simple
Lie group S, which can be defined in various ways. For example, there is a Rieman-
nian symmetric space X = S/K of noncompact type whose connected isometry
group is S, and whose Tits boundary ∂∞X is the (metric) realization |Δ|. The
cone topology on ∂∞X coincides with the coarse topology on |Δ|. See Eberlein
[Eber] and Bridson–Haefliger [BrHa] for more details. The building Δ can also be
defined in group-theoretic terms: the Lie group S has a canonical Tits system (or
BN-pair) whose building is Δ, see Warner [War]. The latter approach is used in
the next result.

Theorem 2.20. Let Δ denote the Moufang building associated to a centerless
simple real Lie group S of real rank k ≥ 2 and let K ⊆ S be a maximal compact
subgroup. Then (K,Δ) is in HCG(M), where M is the relative diagram of S, see
[Hel, Chap. X Table VI].

If S is absolutely simple (i.e., if Lie(S) ⊗R C is simple), then every automor-
phism of Δ is continuous in the coarse topology, Aut(Δ) = AutTop(Δ). Moreover,
Aut(Δ) ⊆ AutR(Lie(S)) is a second countable Lie group.

If S is a complex Lie group, then Aut(Δ) is a semidirect product of the group
AutC(Δ) of C-algebraic automorphisms of Δ and the (uncountable) automorphism
group of the field C. The group AutTop(Δ) is a semidirect product of AutC(Δ)
and Gal(C/R) (this is again a second countable Lie group). An automorphism of
Δ which is (in the coarse topology) continuous on at least one panel is continuous
everywhere.

Proof. The simple Lie group S is simple as an abstract group, see, e.g., [CPP,
94.21]. Therefore it coincides with the group S† generated by the roots groups of
Δ. Thus we have Aut(Δ) ⊆ Aut(S). From the Iwasawa decomposition S = KAU
and the fact that the S-stabilizer of a chamber is the Borel subgroup B = MAU ,
with M = CenK(A), we see that K acts transitively on the chambers.

If S is absolutely simple, then its abstract automorphism group Aut(S) coincides
with Aut(Lie(S)) and is itself a Lie group by Freudenthal’s Continuity Theorem
[Freu1], see also [BoTi] or [Kr6]. If S is a complex Lie group, then its abstract
automorphism group Aut(S) is a semidirect product of AutC(Lie(S)) and Aut(C),
see [BoTi] or [Kr6]. From the description of the building through the flag varieties
of S it is clear that the group Aut(C) acts indeed on Δ, and that the action is
continuous if and only if the field automorphism is continuous. See also Chap. 5 in
[Ti1] for more details about the automorphism group of a spherical building over
an arbitrary field.

For the last claim, suppose that the abstract automorphism g is continuous on
some panel. Since S acts transitively on the chambers, we may assume that g
fixes a chamber γ, and that g is continuous on a panel of cotype i containing γ.
Let i 	= j be another cotype, and let α ⊆ γ be of cotype {i, j}. If Mα = 3, 4, 6,
then there is a continuous bijection between the two panels which commutes with
g. This is a special property of the complex algebraic generalized polygons: there
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exit so-called projective points, see [Kr2, 2.10]. Therefore g is also continuous on
the panel of cotype j. Since the Coxeter diagram of M is connected, we see that
g is continuous on E1(Δ, γ), and hence everywhere, see [GKVW, 6.16] (or the
arguments in [BuSp, 5.1]). �

The previous theorem says in particular that we have a good class of objects in
our category HCG(M). The next result shows that the continuity of 2-coverings
is almost automatic if the covering geometry is a building. In the proof we require
the following lemma.

Lemma 2.21. Let S be a noncompact simple centerless Lie group. Then S is
absolutely simple if and only if Lie(S) has a simple rank 1 Levi factor which is not
of type sl2C.

Proof. This is Lemma 10 in [Kr6]. It follows also from the classification of the real
simple Lie algebras and a case-by-case inspection of their root groups, see Chap. X,
Table VI in [Hel]. �

We note that PSL2C is the only connected Lie group acting 2-transitively on
S2, see [Kr5]. Therefore a simple centerless Lie group is complex if and only if all
its root groups are of real dimension 2.

Theorem 2.22. Suppose that (G,Δ) is a homogeneous compact geometry in the
category HCG(M) and that the diagram M is spherical and without isolated nodes.

Assume that Δ̃ is a building and that ρ : Δ̃ → Δ is an abstract 2-covering. Then
Δ̃ is the Moufang building associated to a semisimple Lie group S of noncompact
type. Moreover, there exists a compact chamber-transitive subgroup K ⊆ S and an
abstract automorphism ϕ of Δ̃ such that ρ ◦ ϕ : (K, Δ̃) → (G,Δ) is a morphism
in HCG(M), i.e., an equivariant continuous 2-covering.

Proof. Suppose that β ∈ Δ̃ is a simplex of corank 2, with Mβ > 2. Then
lk

˜Δ(β)
∼= lkΔ(ρ(β)) is by 2.6 a Moufang generalized Mβ-gon associated to a simple

noncompact Lie group. Since we excluded factors of type A1, the irreducible fac-
tors of the building Δ̃ are Moufang buildings associated to real simple Lie groups.
This holds because the panels encode the defining field(s) of an irreducible spherical
Moufang building, see Tits–Weiss [TW, 40.22].

We now fix a chamber γ ∈ Δ̃, with corank 1 faces α1, . . . , αt. For i 	= j we put
αi,j = αi ∩ αj .

Claim. There exists an automorphism ϕ of Δ̃ fixing γ such that

E2(Δ̃, γ)
ρ◦ϕ−−→ E2(Δ, ρ(ϕ(γ)))

is a homeomorphism in the coarse topology.

Suppose first that S is absolutely simple. If Mαi,j > 2, then lk
˜Δ(αi,j)

ρ−→
lkΔ(ρ(αi,j)) is a homeomorphism by 2.20. Since the Coxeter diagram is irreducible

and of rank at least 2, E2(Δ̃, γ)
ρ−→ E2(Δ, ρ(γ)) is a homeomorphism.

Suppose next that S is a complex simple Lie group and that Mαi,j > 2. By

2.20 we find a field automorphism ϕ of C such that ϕ acts on Δ̃, fixes γ, and such
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that lk
˜Δ(αi,j)

ρ◦ϕ−−→ lkΔ(ρ(αi,j)) is a homeomorphism. It follows from 2.20 that

lk
˜Δ(αi,k)

ρ◦ϕ−−→ lkΔ(ρ(αi,k)) is a homeomorphism whenever Mαi,k
> 2. An easy

induction shows now that E2(Δ̃, γ)
ρ−→ E2(Δ, ρ(γ)) is a homeomorphism.

Finally, suppose that S has several simple factors. Then the Coxeter diagram
of M has several components and both Δ̃ and Δ factor as joins. This factorization
is compatible with ρ and we may apply the previous arguments to the irreducible
factors. This finishes the proof of the claim.

Replacing ρ by ρ ◦ ϕ, we assume from now on that E2(Δ̃, γ)
ρ−→ E2(Δ, ρ(γ)) is a

homeomorphism. We let K ⊆ Aut(Δ̃) denote the collection all lifts of the elements
of G, see 1.13. It remains to prove that K acts continuously and is compact. To
this end we now consider an arbitrary corank 1 face α = αi ⊆ γ.

Claim. The stabilizer Kα acts faithfully and continuously on E2(Δ̃, α).

We have

E1(Δ̃, γ) ⊆ E2(Δ̃, α) ⊆ E2(Δ̃, γ).

Suppose that g ∈ Kα acts trivially on E2(Δ̃, α). Then g fixes γ and acts trivially
on E1(Δ, ρ(γ)), hence g is a lift of the identity fixing a chamber. By 1.12, the deck
transformation g is the identity. From the ρ-equivariance we see that Kα acts
continuously on E2(Δ̃, α) ∼= E2(Δ, ρ(α)).

Claim. The stabilizer Kα fixes a simplex α′ opposite α.

Let β ⊆ α be a corank 2 simplex. Then Kα acts on the generalized polygon
Γ = lk

˜Δ(β). In this action, it centralizes a Cartan involution of Aut(Γ), because
it acts in the same way as the compact group Gρ(α) on Γ. Therefore it fixes a

vertex opposite α− β in Γ. Thus Kα fixes a corank 1 face in Δ̃ having a corank 2
face in common with α. Continuing in this way, we obtain a geodesic gallery-like
sequence of corank 1 faces fixed by Kα. Eventually, this sequence reaches a corank
1 face opposite α.

Claim. The group Kα acts continuously on Δ̃ and is compact.

We noticed already that Kα acts continuously on E2(Δ̃, α). Since E1(Δ̃, γ) ⊆
E2(Δ̃, α), this implies by [GKVW, 6.16] thatKα acts continuously on Δ̃. We noted

above that Kα fixes a simplex α′ opposite α. Let L = AutTop(Δ̃)α,α′ denote the

stabilizer of α, α′. The group L acts faithfully on the set B = E2(Δ̃, α), and B is
compact in the coarse topology. The identity map from L with the Lie topology to
L with the compact-open topology with respect to the L-action on B is continuous,
and Kα ⊆ L has a compact image in the latter. Thus Kα ⊆ L is closed in the
Lie topology and therefore a second countable Lie group. It follows from the open
mapping theorem that Kα is compact in the Lie topology.

The claim of the theorem follows now. From 1.8 we see thatK and all stabilizers
in K are compact. Let s denote the length of the longest word in the Coxeter group

811



L. KRAMER, A. LYTCHAK

of M . We have by 1.8 a commutative diagram(
Kα1 × · · · ×Kαt

)s closed ��

homeomorphism

��

K

��(
Gρ(α1) × · · · ×Gρ(αt)

)s continuous �� G.

Therefore the dotted homomorphism is continuous. �
Remark 2.23. The proof of 2.22 above relies on properties of Moufang buildings
and Lie groups. There is a completely different proof which constructs the topology
on the abstract building Δ̃ from the topology of Δ, without using the group, see
Lytchak [Lyt] and Fang–Grove–Thorbergsson [FGTh].

Under the assumptions of the previous Theorem 2.22, G = K/F where F ⊆ K
is, by 1.13, a closed normal subgroup which intersects the stabilizers of corank k
simplices trivially (where k ≥ 2 is the largest integer such that ρ is a k-covering).
Since we know the possibilities for the compact groupK (at least for the irreducible
case) from [EH2], a great deal can be said about the possibilities for F . We indicate
for a few examples how such a classification works.

Proposition 2.24. Assume that (G,Δ) is a homogeneous compact geometry in
HCG(M) and that the Coxeter diagram of M is irreducible. In the following
three situations, Δ is necessarily the building associated to a simple Lie group S,
and G◦ is a maximal compact subgroup of S.

(1) The diagram M is of type An.
(2) All panels have dimension 2.
(3) The diagram M is of type E6.

Proof. A geometry of type An is always a building by [Ti2, 6.1.5]. By the previous
theorem, Δ is the building associated to a simple Lie group S (for n ≥ 3 this is
due to Kolmogoroff [Kolm]). From [EH2] we see that G◦ is a maximal compact
subgroup of S. Thus we have the result (1).

Assume now that all panels have dimension 2. By 4.1 below, a C3 geometry
with 2-dimensional panels is 2-covered by a building. From 1.16 we see that Δ is 2-
covered by a building Δ̃. By 2.22, the building corresponds to a simple centerless
Lie group S. By the remark following 2.21, the Lie group S is complex. Thus
a maximal compact subgroup K ⊆ S is centerless simple. By [EH2], K has no
chamber-transitive proper closed subgroups, hence K = G◦.

For (3) we note that all panels are either 1- or 2-dimensional, and the 2-
dimensional case is covered by (2). In the 1-dimensional case, we haveG◦ = PSp(4)
by [EH2], and this group is simple. �

For the buildings of type E7 and E8 with 1-dimensional panels, the Lie algebra
of G◦ is simple, but G◦ has nontrivial finite center.

In order to proceed with the classification of homogeneous compact geometries,
we need a substitute for the building, i.e., a good universal object in the class of
homogeneous compact geometries. The remainder of this section will be devoted
to the construction of this compact universal geometry.
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2.25. Simple complexes of groups in HCG(M). Let M be a Coxeter matrix
of spherical type over the index set I. Let G be a simple complex of compact groups
and continuous homomorphisms, indexed by the poset of nonempty subsets of I,
i.e., G = {GJ | ∅ 	= J ⊆ I}.

We consider the following category HCGG(M). Its objects are quadruples
(G,Δ, γ, ψ), where (G,Δ) is a geometry in HCG(M) and γ is a chamber of Δ,
and ψ is an isomorphism between G and the simple complex of groups {Gα | ∅ 	=
α ⊆ γ}. We assume that for each group GJ ∈ G we have ψ(GJ ) = Gα, where α is
the unique face of type J of γ.

A morphism in HCGG(M) is an equivariant morphism between the geometries
in HCG(M) which preserves the preferred chambers and which commutes with
the isomorphisms between G and the stabilizer complex. We remark that such a
morphism is unique.

Our aim is to show that there is a universal object in this category. The main
ingredient is the following construction.

2.26. The basic coset construction. Let (G,Δ) be a homogeneous compact
geometry in HCG(M). Let γ ∈ Δ be a chamber and let G denote the simple
complex of groups formed by the stabilizers Gα, for ∅ 	= α ⊆ γ, see 1.9. Suppose
that H is a topological group and that ψ : G → H is a continuous simple homo-
morphism (i.e., that each homomorphism ψ : Gα → H is continuous and that all
triangles commute). In this situation we construct a new homogeneous compact
geometry (G′,Δ′) in HCG(M) and a covering

ρ : (G′,Δ′) → (G,Δ)

as follows.
For g ∈ Gα put ψ′(g) = (ψ(g), g) ∈ H × G. This defines a continuous and

injective simple homomorphism ψ′ : G → H ×G. We put G′
α′ = ψ′(Gα) ⊆ H ×G

and we let G′ ⊆ H ×G denote the group which is algebraically generated by the
G′

α′ . In order to construct Δ′, we use the following standard method, see Tits
[Ti1, 1.4] and Bridson–Haefliger [BrHa, II.12.18–22].

Let v1, . . . , vt denote the vertices of the chamber γ. The set of cosets G′/G′
v′
1
∪

· · · ∪G′/G′
v′
t
covers G′. We let Δ′ denote the nerve of this cover. It is easy to see

that the simplices of Δ′ correspond bijectively to the cosets gG′
α′ , for ∅ 	= α ⊆ γ

and g ∈ G′. The inclusion of simplices corresponds to the reversed inclusion of
cosets. In particular we see that Δ′ is a pure simplicial complex. The residue
Δ′

≥G′
α′

of the simplex G′
α′ consists of all cosets gG′

β′ with g ∈ G′
α′ and β ⊇ α.

Moreover, there is a well-defined type function on Δ′ which maps gG′
v′
i
to the type

t(vi). We note also that the projection pr2 : H × G → G induces a continuous
surjective homomorphism p : G′ → G, and a regular simplicial map p : Δ′ → Δ
which maps gG′

α′ to pr2(g)(α).

Claim. Δ′ is a thick chamber complex.

Every element g ∈ G′ can be written as a product g = g1 · · · gr, where gk is in
the stabilizer of a corank 1 face of γ. This gives a gallery from G′

γ′ to gG′
γ′ . The

panels of Δ′ have the same cardinalities as the panels of Δ, hence Δ′ is thick.
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Claim. Δ′ is a geometry over I, of the same type M , and p : Δ′ → Δ is a
covering.

From the description of the residues above we see that the link of a nonempty
simplex in Δ′ maps isomorphically onto a link in Δ. Thus p is a covering. In
particular, Δ′ is a flag complex.

Claim. (G′,Δ′) is a homogeneous compact geometry. The group G′ is compact
and acts faithfully.

Obviously, Δ′ is a homogeneous geometry. The groups G′
α′ are by construction

compact. From the bounded generation 1.8 we see that G′ is also compact. Sup-
pose that (h, g) ∈ G′

γ acts trivially on Δ′. Then g = idΔ. Since (h, g) ∈ G′
γ′ , we

have h = 1.

We record a few more useful facts about (G′,Δ′).

Fact. The subgroup of H generated by the ψ(Gα) is compact.

This group is the image of the compact group G′ under pr1 : H ×G → H .

Fact. Let F ⊆ G′ denote the kernel of G′ p−→ G. Then F intersects every sim-
plex stabilizer trivially, i.e., F acts freely on Δ′. The G′-stabilizer of α ∈ Δ is a
semidirect product G′

α = G′
α′F .

Consider an element (h, idΔ) ∈ F ∩G′
α′ . Since Gα

ψ′
−→ G′

α′ is bijective, we have
h = 1. Suppose now that the group element (h, g) ∈ G′ fixes the simplex α. Then
we have g ∈ Gα. Let h1 = ψ(g). Then we have ψ′(g−1) = (h−1

1 , g−1) ∈ G′
α′ and

(h, g)(h−1
1 , g−1) = (hh−1

1 , idΔ) ∈ F .

We now use the Basic Coset Construction 2.26 in order to construct a universal
object in HCGG(M).

Theorem 2.27. Suppose that M is spherical without isolated nodes over the in-
dex set I, that G is a simple complex of compact groups and continuous homomor-
phisms over the collection of the nonempty subsets J ⊆ I and that HCGG(M)

is not empty. Then there exists a homogeneous compact geometry (Ĝ, Δ̂, γ̂, ψ̂) in
HCGG(M) which has a unique morphism ρ to every (G,Δ, γ, ψ) in HCGG(M).

Proof. We choose a ‘transversal’ in HCGG(M), i.e., a family (Gν ,Δν , γν , ψν)ν∈N

of objects in HCGG(M) which contains one member of each isomorphism class.
Such a family exists since there are only countably many isomorphism classes of
compact Lie groups (every compact Lie group can be realized as an algebraic
matrix group). The cardinality of the index set N is not important here; we need
only the fact that such a set exists. The ψν fit together to a continuous simple
homomorphism ψ : G → ∏

ν∈N Gν . Let Ĝ ⊆ ∏
ν∈N Gν denote the group generated

algebraically by the groups ψ(GJ ). The basic coset construction 2.26 gives us a

homogeneous compact geometry (Ĝ, Δ̂) and for each ν a continuous equivariant

covering ρν : (Ĝ, Δ̂) → (Gν ,Δν). This morphism is unique, as we remarked above.
�
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Definition 2.28. We call the pair (Ĝ, Δ̂) constructed in 2.27 a universal homoge-
neous compact geometry for the pair (G,M) (obviously this homogeneous compact
geometry is unique up to isomorphism). If an element of the class HCGG(M)

can be covered by a building Δ̃, then this building is the universal homogeneous
compact geometry by Tits’ result 1.15 and by 2.22.

The group Ĝ has the following universal property.

Proposition 2.29. Suppose that (Ĝ, Δ̂) is a universal homogeneous compact ge-
ometry for the pair (G,M). Suppose that H is a topological group and that ϕ :
G → H is a simple continuous homomorphism. Then there is a unique continuous
homomorphism ψ : Ĝ → H such that the diagram

G

ϕ

���
��

��
��

��
��

�� Ĝ

ψ

��
H

commutes.

Proof. The Basic Coset Construction 2.26 applied to G → H × Ĝ gives us a geom-
etry (G′,Δ′) and a map G′ → H . From the universal property of (Ĝ, Δ̂) we have

a homomorphism Ĝ → G′ → H . The uniqueness is clear. �
Finally, we note that we can pass to a minimal universal homogeneous compact

geometry.

Proposition 2.30. Suppose that M is of spherical type and without isolated no-
des. Suppose that G is a simple complex of compact groups and that HCGG(M)
is nonempty. Then there exists a simple complex of compact groups K formed
by subgroups KJ ⊆ GJ such that HCGK(M) is nonempty, with the following
properties.

(1) The universal homogeneous compact geometry (K̂, Δ̂) in HCGK(M) is
minimal.

(2) For every geometry (G,Δ) in HCGG(M) there is an equivariant covering

(K̂, Δ̂) → (G,Δ).

Proof. We construct a sequence of equivariant coverings

· · · → (Gk+1,Δk+1) → (Gk,Δk) → · · · → (G0,Δ0)

and simple complexes of compact groups Gk as follows. Let G0 = G and let
(G0,Δ0) denote the corresponding universal homogeneous compact geometry in
HCGG0(M). Given Gk and (Gk,Δk), we choose a closed chamber transitive sub-
group H ⊆ Gk such that (H,Δk) is minimal. Let Gk+1 denote the simple complex
of groups formed by the simplex stabilizers of H , and let (Gk+1,Δk+1) denote
the corresponding universal homogeneous compact geometry in HCGGk+1

(M). If
Gk+1 	= Gk, then the stabilizers have become strictly smaller. Since there are no
infinite descending sequences of closed compact Lie groups, this process becomes
stationary in finite time k, and we may put K = Gk. �
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We remark that a completely analogous construction works for the class of finite
homogeneous geometries.

3. Homogeneous compact geometries of type C3

In this section we review the known examples of universal homogeneous compact
geometries (G,Δ) of type C3. In Section 4 we will show that this list of examples
is complete: such a geometry is either a building (a polar space of rank 3), or
the exceptional geometry discovered by Podestà–Thorbergsson [PoTh], which we
describe in Section 3B. Some of the results in the present section will be used in
the classification. We begin with the classical geometries, the buildings of type C3.

3A. Projective and polar spaces and their Veronese representations

Almost all buildings of type C3 arise from hermitian forms. We review the relevant
linear algebra, since we will use it in our classification in Section 4. Buildings of
type Cn are also called polar spaces of rank n. Buildings of type C2 are called
generalized quadrangles.

3.1. Polar spaces. Let F = R,C,H and let σ be an involution on F, i.e., an
additive map with aσ

2

= a and (ab)σ = bσaσ, for all a, b ∈ F. The involution σ
extends in a natural way to matrices, acting by matrix transposition combined with
entry-wise application of σ. Let V be a finite dimensional right F-module and let
ε = ±1. A nondegenerate (ε, σ)-hermitian form is a biadditive map h : V ×V → F
with the properties

h(v, w) = εh(w, v)σ h(va, wb) = aσh(v, w)b h(V,w) = 0 ⇒ w = 0.

The relevant examples are

symmetric bilinear forms with (ε, σ) = (1, id) and F = R,C,

symplectic forms with (ε, σ) = (−1, id) and F = R,C, and

(ε, σ)-hermitian forms with aσ = ā and F = C,H.

A nonzero subspace W ⊆ V is called totally isotropic if W ⊆ W⊥h . The form h is
called isotropic if there exist totally isotropic subspaces. The maximal dimension k
of a totally isotropic subspace is the Witt index of h. The corresponding geometry
Δ has as its vertices the collection of all isotropic subspaces. The simplices in
Δ are the ascending chains of isotropic subspaces. This simplicial complex is a
building of type Ck, unless dim(V ) = 2k and (ε, σ) = (1, id). In the latter case, a
slightly modified simplicial complex is a building of type Dk, see [Ti1, 7.12]. We
refer to [Ti1, Chap. 7, 8] for more details.

The automorphism group of this building is (an extension of) the projective
unitary group of the form h. Its identity component S is a noncompact simple
Lie group of classical type and (S,Δ) is a homogeneous compact geometry. If
G ⊆ S is a maximal compact subgroup, then also (G,Δ) is a compact homogeneous
geometry.

For each of these polar spaces mentioned above, it is possible to describe the
associated polar representation in terms of certain tensors and geometric algebra.
We first recall the definition of a polar representation.
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3.2. Polar representations. An orthogonal representation of a compact Lie
group is called polar if there exists a linear subspace that meets every orbit or-
thogonally. Polar representations were classified up to orbit equivalence by Hsiang–
Lawson [HsLa] and Dadok [Dad]. See Eschenburg–Heintze [EH1, EH2] for a mod-
ern account. The result is that every polar representation is orbit equivalent to an
s-representation. An s-representation is defined as follows. Let S be a semisimple
centerless Lie group of noncompact type, let G ⊆ S be a maximal compact sub-
group and let Lie(S) = Lie(G) ⊕P be the corresponding Cartan decomposition.
The adjoint representation of G onP is the associated s-representation. It is polar,
and if Δ is the associated building, then |Δ|K is G-equivariantly homeomorphic
to the unit sphere S(P) ⊆ P.

3.3. Polar representations for certain polar spaces. Suppose that ε = 1 and
aσ = ā, for F = R,C,H. Let fk denote the standard positive definite hermitian
form on Fk, i.e.,

fk(v, w) =
k∑

j=1

v̄jwj .

Let UkF denote the corresponding unitary group,

UkF = {g ∈ Fk×k | gσg = 1}
(recall that (xi,j)

σ = (x̄j,i)). Consider the hermitian form

h = (−fk)⊕ f


on V = Fk+
, with k ≤ � (resp. k < � for F = R). The Witt index of h is k and
U(k)×U(�) is a maximal compact subgroup of the unitary group

U(h) = Uk,
F = {g ∈ GL(V ) | h(−,−) = h(g(−), g(−))}.
We identify the tensor product Fk ⊗F (F
)σ with the R-module Fk×
 and we note
that UkF×U
F acts in a natural way on Fk×
, via

(g1, g2, X) �−→ g1Xgσ2 .

This is the polar representation we are interested in.

There are natural projections Fk pr1←−− Fk+
 pr2−−→ F
. For every t-dimensional
totally isotropic subspace W ⊆ Fk+
 there exists a basis w1, . . . , wt such that
{u1 = pr1(w1), . . . , ut = pr1(wt)} ⊆ Fk and {v1 = pr2(w1), . . . , vt = pr2(wt)} ⊆ F


are orthonormal. The map which sends the subspace W to (1/
√
t)
(
u1 ⊗ vσ1 +

· · ·+ ut ⊗ vσt
) ∈ Fk ⊗F (F
)σ is well-defined and UkF×U
F-equivariant. This map

extends to a mapping

|Δ| → S(Fk ⊗F (F
)σ) = Sk·
·dimR F−1

which is a homeomorphism in the coarse topology. This map is called the Veronese
representation of Δ. The Veronese representation of Δ lends itself to computations
of vertex stabilizers in UkF×U
F.
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Finally, we note that for F = R,C and k < � the groups SO(k) × SO(�) and
SU(k)×SU(�) act transitively on the chambers. According to Eschenburg–Heintze
[EH2] and [GKK2] these are the smallest compact chamber-transitive groups K,
unless we are in one of the following exceptional cases:

(k, �) = (2, 7) and K = SO(2) ·G2,
(k, �) = (2, 8) and K = SO(2) · Spin(7),
(k, �) = (3, 8) and K = SO(3) · Spin(7).
We remark that for the other types of (ε, σ)-hermitian forms, similar models

for Veronese representations can be worked out in terms of tensor products and
exterior products. These will not be needed here. However, we need also polar
representations for the classical projective geometries over R, C, H and the Cayley
algebra O.

3.4. Polar representations for projective geometries. Let F = R,C,H and
V = Fn+1, endowed with the standard hermitian form fn+1. The projective ge-
ometry over F (of type An) is the simplicial complex Δ whose vertices are the
proper nonzero subspaces of V . The simplices are the partial flags. The non-
compact Lie group GL(V ) = GLn+1F acts transitively on the chambers of Δ. A
maximal compact subgroup is the unitary group Un+1F. Suppose that W ⊆ V is
a t-dimensional subspace, with an orthonormal basis w1, . . . , wt. The map which
sends W to the traceless hermitian matrix

(
w1 ⊗ wσ

1 + · · · + wt ⊗ wσ
t

) − t1 is
well-defined and Un+1F-equivariant. It extends to a map

|Δ| → S
,

where � = n(n + 1) dimR(F)/2 + n − 1. One can check that this map induces a
homeomorphism |Δ|K → S
. This is the Veronese representation of Δ. Again, the
computation of vertex stabilizers in Un+1F is easily done in this representation.
We note that for n = 2, the minimal transitive faithful compact groups are SO(3),
PSU(3) and PSp(3).

The projective Cayley plane has no simple description in terms of O3, since this
is not a module over the Cayley algebra O. Nevertheless, the right-hand side of the
Veronese representation in terms of traceless hermitian 3×3-matrices overOmakes
sense and leads to a Veronese representation of this geometry, The compact group
in question is the centerless simple compact Lie group F4, with vertex stabilizers
Spin(9) and chamber stabilizer Spin(8). We refer to Freudenthal [Freu2], Salzmann
et al. [CPP, Chap. 1], and to Section 3B below.

3.5. The nonembeddable polar space. Over the reals, there is one polar space
Δ of type C3 which is not associated to a hermitian form, see [Ti1, Chap. 9]. In-
stead, it is related to the Cayley algebra. The corresponding simple noncompact
Lie group is of type E7(−25) and its maximal compact subgroup is G = E6 · SO(2).
(In Cartan’s classification, this is the noncompact case EVII, see Helgason [Hel,
Chap. X, Table V].) Its Veronese representation |Δ| → S53 arises from the cor-
responding s-representation as in 3.2. The panels have dimensions 8 and 1 and
the links of the vertices are projective Cayley planes and generalized quadrangles
belonging to the symmetric bilinear form h = (−f2) ⊕ f10 on R2+10. Apparently,
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no ‘simple model’ for Δ and its Veronese representation is known; the abstract
construction is purely Lie-theoretic.

3B. The exceptional C3 geometry

We now construct the exceptional geometry of type C3 that was found by Podestà–
Thorbergsson [PoTh, 2B.3]. We use the Veronese representation of the Cayley
plane as a focal manifold of an isoparametric foliation in S25, corresponding to
the s-representation of the symmetric space for (e6(−26), f4). For the description
of the Cayley plane which we use, see also Cartan [Cart], Console–Olmos [CoOl],
Freudenthal [Freu2], Karcher [Kar], Knarr–Kramer [KnKr] and Salzmann et al.
[CPP, Chap. 1].

3.6. The action of SU(3) on O. We first recall some algebraic facts. The
real Cayley division algebra O is bi-associative (any two elements generate an
associative subalgebra) and therefore in a natural way a (right) complex vector
space, see [CPP, 11.13]. The norm of O is a quadratic form which induces a
positive definite complex hermitian form on O. As a unitary C-basis of O we fix
the elements 1, j, �, j� ∈ O, see [CPP, 11.34]. The Aut(O)-stabilizer of i ∈ C acts
C-linearly and can be identified with the matrix group

AutC(O) ∼= SU(3).

In order to specify such an isomorphism with the matrix group, we use the ordered
C-basis (j, �, j�) of C⊥ ⊆ O. Every element of u ∈ O has a unique expression as

u = u0 + ju1 + �u2 + (j�)u3 with u0, u1, u2, u3 ∈ C.

We define an isomorphism C⊥ ∼=−→ C3 via

ju1 + �u2 + (j�)u3 �→ (u1, u2, u3).

For z ∈ C and u ∈ C⊥ we have zu = uz̄. In what follows, we will use this identity
frequently. The C-component of a product

uv = (u0 + ju1 + �u2 + (j�)u3)(v0 + jv1 + �v2 + (j�)v3)

is therefore u0v0−(ū1v1+ū2v2+ū3v3). The group AutC(O) preserves this quantity
and fixes u0v0. Hence AutC(O) preserves the hermitian form ū1v1+ ū2v2+ ū3v3 on
C⊥ ∼= C3. It follows that AutC(O) ∼= SU(3) acts via standard matrix multiplication
from the left on C3 ∼= C⊥.

3.7. The model of OP2. We view the Cayley plane OP2 as the set of all idempo-
tent hermitian 3× 3-matrices over O with trace 1 (the rank 1 projectors). This is
slightly different from 3.4 above, where we considered traceless hermitian matrices.
The change of the trace simplifies matrices without changing the stabilizers. The
euclidean inner product of two O-hermitian 3× 3-matrices is defined as

〈X,Y 〉 = trace(XY ) =

3∑
i=1

Xi,iYi,i + 2
∑

1≤i<j≤3

Re(Xi,j Ȳi,j).
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The euclidean distance between two elements ξ, ξ′ ∈ OP2 is given by

||ξ − ξ′||2 = 2− 2〈ξ, ξ′〉,

because ||ξ||2 = ||ξ′||2 = 1. The Cayley plane OP2 is in particular a Riemannian
submanifold of the 26-dimensional euclidean space of O-hermitian 3× 3-matrices
with trace 1, and the compact group F4 acts transitively and isometrically on OP2.
A point with affine coordinates (x, y) ∈ O× O is identified with the projector

1

xx̄ + yȳ + 1

⎛⎝x
y
1

⎞⎠ (x̄ ȳ 1) =
1

xx̄ + yȳ + 1

⎛⎝xx̄ xȳ x
yx̄ yȳ y
x̄ ȳ 1

⎞⎠ ,

see [CPP, p. 84]. By means of this coordinate chart we view the affine Cayley plane
O ×O as an open dense subset of OP2. We note that under this chart the image
of a real line in O× O passing through the origin is a geodesic in OP2. Also, the
chart is conformal at the origin (x, y) = (0, 0), as is easily seen by differentiating.
The complement of the range of the chart is the cut locus L of the point (0, 0)
in OP2, or, in terms of projective geometry, the projective line at infinity of the
affine Cayley plane O×O, an 8-sphere.

3.8. The action of SU(3) × SU(3) on OP2. The group SU(3) acts in the
standard way isometrically on the set of all hermitian 3× 3-matrices over O with
trace 1, preserving OP2, and with CP2 as one orbit, via

g(X) = gXg−1.

Due to the bi-associativity of O, this matrix product is well-defined. The action is
faithful, since O is not commutative. On the other hand, SU(3) = AutC(O) acts
as in 3.6 entry-wise on the O-hermitian matrices. In this way, the compact group

K = AutC(O)× SU(3) = SU(3)× SU(3)

acts isometrically on OP2. Our aim is to understand the orbit structure of this
action. We begin with the point

q = (0, 0) ∈ O×O.

3.9. The CP2-orbit and its normal isotropy representation. The affine
coordinates (0, 0) are complex and therefore the K-orbit of q is K(q) = CP2 ⊆
OP2. Since AutC(O) acts trivially on CP2, the K-stabilizer of q is isomorphic to

AutC(O)×U(2). The projector corresponding to q = (0, 0) is
(

0 0 0
0 0 0
0 0 1

)
and thus Kq

consists of the block matrices of the form

Y1 ×
(
Y2 0
0 y

)
∈ SU(3)× SU(3),

with Y1 ∈ SU(3) and Y2 ∈ U(2), and y = det(Y2). The group Kq stabilizes the
polar line (the cut locus) L of q in OP2 and acts on the affine Cayley plane O×O.
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In this way we are reduced to a linear action. The representation of Kq on O×O
splits off a representation of (real) dimension 4 on C × C, with AutC(O) acting
trivially and U(2) acting via matrix multiplication from the left by det(Y2)Y2 on
C2.

On the complement C⊥×C⊥ ∼= C2×3 we have the following representation. We
represent a point with affine coordinates

(u, v) = (ju1 + �u2 + (j�)u3, jv1 + �v2 + (j�)v3) ∈ C⊥ × C⊥

as ⎛⎝u1 v1
u2 v2
u3 v3

⎞⎠ ∈ C2×3

Then AutC(O) ∼= SU(3) acts in the standard way from the left on C2×3. We put

Y2 =

(
c −as̄
s ac̄

)
,

where c, s, a are complex numbers with cc̄+ ss̄ = aā = 1, and y = ā. Then
(
Y2 0
0 y

)
maps the point (u, v) ∈ C⊥ × C⊥ to

(cua− as̄va, sua+ ac̄va) = (uc̄a− vs, us̄a+ vc)

= (u, v)

(
c̄a s̄a
−s c

)
= (u, v)

(
c̄ s̄

−sā cā

)
a.

Hence Y2 acts on C2×3 through matrix multiplication from the right by Y ∗
2 ȳ, where

Y ∗
2 = Ȳ T

2 and ȳ = det(Y2). Summing this up, we have the Kq-action

Y1 ×
(
Y2 0
0 y

)
:

⎛⎝u1 v1
u2 v2
u3 v3

⎞⎠ �→ Y1

⎛⎝u1 v1
u2 v2
u3 v3

⎞⎠Y ∗
2 ȳ.

In particular, the action of Kq on C2×3 is orbit equivalent with the polar action
described in 3.3. Since the tangent space TqOP2 splits also Kq-equivariantly as
TqOP2 = TqCP

2 ⊕ ⊥qCP
2, this gives us at the same time the normal isotropy

representation of Kq. In particular, the normal isotropy representation of Kq on
⊥qCP

2 ⊆ TqOP2 is polar.
We put

d = (0, j) and p = (−�, j).

Suppose that λ, μ are nonnegative reals and consider the point

o = oλ,μ = pλ+ dμ = (−λ�, (λ+ μ)j) ∈ C⊥ × C⊥.

The corresponding point in C2×3 is

(
0 λ+μ

−λ 0
0 0

)
. Since the action of Kq on ⊥qCP

2

is polar, every Kq-orbit in ⊥qCP
2 contains exactly one such point oλ,μ. The Kq-

stabilizer of oλ,μ can easily be computed. For λ, μ > 0, it consists of the matrices⎛⎝z̄
zy

ȳ

⎞⎠×
⎛⎝z

zy
y

⎞⎠ ∈ SU(3)× SU(3),

821



L. KRAMER, A. LYTCHAK

with y, z ∈ U(1). For λ = 0 < μ, it consists of the matrices(
z̄

Z2

)
×
⎛⎝z

yz
y

⎞⎠ ∈ SU(3)× SU(3),

with Z2 ∈ U(2). For μ = 0 < λ it consists of matrices of the form(
Ȳ2

ȳ

)
×
(
Y2

y

)
∈ SU(3)× SU(3),

with Y2 ∈ U(2).

3.10. Euclidean distances between orbits. The projector ξλ,μ ∈ OP2 corre-
sponding to oλ,μ is

ξ = ξλ,μ =
1

λ2 + (λ+ μ)2 + 1

⎛⎝ λ2 −λ(λ+ μ)j� −λ�
λ(λ + μ)j� (λ+ μ)2 (λ+ μ)j

λ� −(λ+ μ)j 1.

⎞⎠
We note that the off-diagonal entries of this matrix are all Cayley numbers which
are perpendicular to C. We denote the euclidean distance between ξ and CP2 by

δ(ξ) = min{||ζ − ξ|| | ζ ∈ CP2}.
In order to compute this distance, we note that every point in CP2 ⊆ OP2 is of
the form

ζ =

⎛⎝|u|2 uv̄ uw̄
vū |v|2 vw̄
wū wv̄ |w|2

⎞⎠ ,

where u, v, w are complex numbers with |u|2 + |v|2 + |w|2 = 1. The point q
corresponds to (u, v, w) = (0, 0, 1). The euclidean inner product between ξ = ξλ,μ
and ζ is given by

〈ξ, ζ〉 = λ2|u|2 + (λ + μ)2|v|2 + |w|2
λ2 + (λ+ μ)2 + 1

,

because the off-diagonal entries of ξ are perpendicular to C. From this formula we
see the following. We have

δ(ξ) = ||q − ξ|| if and only if λ ≤ 1 and λ+ μ ≤ 1.

This condition defines a linear simplex (recall that λ, μ ≥ 0). From the formula
for 〈ξ, ζ〉, the following is immediate:

(1) If λ + μ < 1, then q is the unique point in CP2 at distance δ(ξλ,μ) from
ξλ,μ. In particular, Kξλ,μ

⊆ Kq.
(2) If λ+ μ = 1 	= λ, then every point with complex coordinates (u, v, w) ∈ S5

and u = 0 realizes the distance δ. This condition defines a complex pro-
jective line in CP2. Also, the point q̃ with complex coordinates (u, v, w) =
(1, 0, 0) is in this case the unique point in CP2 at maximal distance from
ξλ,μ, hence Kξλ,μ

⊆ Kq̃.

(3) If λ+ μ = 1 = λ, then every point ζ in CP2 has distance δ(ξλ,μ) from ξλ,μ.
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Lemma 3.11. Every K-orbit contains a unique point ξλ,μ with 0 ≤ λ, μ and λ+
μ ≤ 1.

Proof. Let η ∈ OP2 and let ζ ∈ CP2 be a point that has minimal euclidean
distance from η. There exists g ∈ K with g(ζ) = q. Then g(η) is not in the cut
locus L of q, since L ∩ CP2 contains points which are strictly closer to any given
point in L than q (we omit this short calculation). Hence g(η) 	∈ L. If one of the
off-diagonal entries of the projector g(η) is not perpendicular to C, then the inner
product shows that q is not the closest point to g(η) on CP2. Thus g(η) is, as
a point in O × O, perpendicular to C × C. Since we have a polar action on the
normal space of q, there exists h ∈ Kq such that hg(η) = ξλ,μ, for some λ, μ ≥ 0.
By the observations above, we have λ+ μ ≤ 1.

It remains to show the uniqueness. Let ξλ,μ be a point in the simplex. If
λ+ μ < 1 and if g(ξλ,μ) = ξλ′,μ′ is in the simplex, then g(q) = q, because q is the
unique nearest point to ξλ,μ. Therefore (λ, μ) = (λ′, μ′), because the action of Kq

on the normal space is polar. If λ + μ = 1 	= λ and if g(ξλ,μ) = ξλ′,μ′ , then we
see from the geometric description above that λ′ + μ′ = 1 	= λ′. The number λ is
determined by the distance of ξλ,μ from CP2, hence (λ, μ) = (λ′, μ′). Finally, p is
the unique point in the simplex that has constant distance from CP2. �

The uniqueness statement of the previous lemma follows also from the fact that
the K-action is polar, which we prove below. Also, we have worked with the
euclidean distance, rather than with the inner metric of the Riemannian manifold
OP2. We will come back to this. But first we determine the stabilizers of the ξλ,μ,
where λ+ μ = 1.

3.12. The remaining orbit types. Suppose that λ+μ = 1 	= λ. Then the point
q̃ with complex coordinates (u, v, w) = (1, 0, 0) uniquely maximizes the euclidean
distance from ξλ,μ, as we noticed above. Thus Kξλ,μ

⊆ Kq̃. The involution h =(
1−1

1

)
×
(

1−1
1

)
∈ SU(3)× SU(3) interchanges q and q̃.

For λ 	= 0, it maps pλ + dμ = (−λ�, j) to
( − 1

λ�,− 1
λj

)
. The K-stabilizer of

pλ+ dμ consists then of the matrices(
z̄

Z̄1

)
×
(
z

Z1

)
∈ SU(3)× SU(3),

with Z1 ∈ U(2). By continuity, these matrices also fix p and d.
Suppose that λ = 0. The involution maps the projector coresponding to d =

(0, j) to

θ = 1
2

⎛⎝ 1
−j�

0

⎞⎠ (1 j� 0) = 1
2

⎛⎝ 1 j� 0

j� 1 0
0 0 0

⎞⎠ .

The element id ×
(

c −as̄
s ac̄

ā

)
∈ AutC(O) × SU(3) maps θ to 1

2

(
1 j�a 0

j�a 1 0
0 0 0

)
and

therefore Kd consists of the matrices of the form(
z̄

Z2

)
×
(
z

Z1

)
∈ SU(3)× SU(3),

with Z1, Z2 ∈ U(2).
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Lemma 3.13. We have Kp =
{
X̄ ×X

∣∣X ∈ SU(3)
}
.

Proof. Let H =
{
X̄ ×X

∣∣X ∈ SU(3)
}
. The block matrices

(
Ȳ

1

) × ( Y 1 ) and(
1
Ȳ

) × ( 1 Y ) with Y ∈ SU(2) fix p and generate H , hence H fixes p. The Lie
algebra ofH is maximal in su(3)⊕su(3), because su(3) is simple. Thus H = (Kp)

◦.
If 1 × A is in the kernel of pr1 : Kp → SU(3), then A ∈ Cen(SU(3)). Such an
element fixes p only if A = 1. Similarly, if A × 1 fixes p, then A = 1. It follows
that H = Kp. �
3.14. The corresponding complex of groups. The kernel of the K-action is
the group Z = Kp,d,q∩Cen(SU(3)×SU(3)) ∼= Z/3 and we put G = K/Z. The sim-
ple complex of groups in K formed by the seven types of stabilizers, corresponding
to the faces of the simplex

d q

p

��������

looks as follows:(
z̄
Z2

)× ( z
Z1

) (
z̄
Z2

)× ( z
yz

y

)
�� �� Y1 ×

(
Y2

y

)
( z̄

Z̄1

)× ( z
Z1

)��

��

( z̄
yz

ȳ

)
×
( z

yz
y

)
��

��

��
(
Ȳ2

ȳ

)× (
Y2

y

) ����������

		�����
�����

����
����

�����
����

����
�

X̄ ×X,

with Y2, Z1, Z2 ∈ U(2) and Y1, X ∈ SU(3). The corresponding simple complex of
groups in G is obtained by taking matrices mod Z.

An isometric action of a Lie group G on a complete Riemannian manifold M
is called polar if there exists a complete submanifold Σ ⊆ M which meets every
orbit orthogonally, i.e.,

G(Σ) = M and TσΣ ⊥ TσG(σ) holds for every σ ∈ Σ.

This is the case for our action. We define an immersion σ : S2 → OP2 by putting

σ(x, y, z) =

⎛⎝ x2 −j�xy −�zx
j�xy y2 jyz
�zx −jyz z2

⎞⎠ ∈ OP2

and we put Σ = σ(S2). The surface Σ is isometric to RP2. The following is proved
in [PoTh].

Theorem 3.15 (Podestà–Thorbergsson). The action of G = (SU(3)× SU(3))/Z
on OP2 is polar and Σ is a section.
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Proof. The simplex which we considered above is contained in Σ, hence G(Σ) =
OP2 by 3.11. Let ξ = σ(x, y, z) ∈ Σ. We claim that TξΣ ⊥ TξG(ξ).

Let ġ ∈ su(3). We view ġ as an element of su(3)⊕0 ⊆ Lie(SU(3)×SU(3)). Then
ġ acts via ordinary 3 × 3-matrix multiplication as ξ �−→ ġξ − ξġ ∈ TξG(ξ). Now

let ξ̇ ∈ TξΣ. A short and elementary calculation shows that the matrix product

ξξ̇ is a matrix whose off-diagonal entries are Cayley numbers perpendicular to C,
while the entries on the diagonal are real. The same holds for ξ̇ξ. We denote the
real part of a Cayley number a by Re(a) and extend this entry-wise to matrices.
Then we have

〈ġξ − ξġ, ξ̇〉 = trace((ġξ − ξġ)ξ̇)

= Re(trace(ġξξ̇)− trace(ξġξ̇))

= Re(trace(ġξξ̇))− Re(trace(ξġξ̇))

= trace(Re(ġξξ̇))− trace(Re(ġξ̇ξ))

= 0.

Now let ḣ be an element of Lie(AutC(O)) = su(3). Because ḣ has imaginary entries
on its diagonal, we have 〈ḣ(j), j〉 = 〈ḣ(�), �〉 = 〈ḣ(j�), j�〉 = 0. On the three real
diagonal entries of ξ, the infinitesimal automorphism ḣ acts as multiplication by
0. Therefore 〈ξ̇, ḣ(ξ)〉 = 0.

This shows that TξΣ ⊥ TξG(ξ). �
3.16. The Riemannian metric. The linear simplex which we considered in
O×O is contained in Σ and has geodesic edges (and constant curvature) in OP2.
The quotient G\OP2 is isometric to a spherical simplex of shape C3.

The previous results give us a geometric description of the orbits G(d) and G(p).
The orbit G(p) consists of all points in OP2 having maximal (inner or euclidean)
distance from CP2. The orbit G(d) consists of all points which have the property
that a (euclidean or inner-metric) ball around them touches CP2 in a 2-sphere,
and which have maximal distance from CP2 with respect to this property. We
remark that the embedding of CP2 is tight : every euclidean ball that touches CP2

does this either in a unique point, along a 2-sphere, or everywhere.

Proposition 3.17. Let Δ denote the simplicial complex whose nerve is the cov-
ering of G by the cosets of Gp, Gd and Gq, as defined in 3.14. Then (G,Δ)
is a homogeneous compact geometry of type C3 which is not a building. We have
|Δ|K = OP2.

Proof. We can identify the nonempty simplices with the cosets of the various Gα,
for ∅ 	= α ⊆ {p, d, q}. From the diagram in 3.14 above it is clear that the link of
Gp is isomorphic to the 2-dimensional complex projective geometry. From 3.3 we
see that the link of Gq is isomorphic to the generalized quadrangle corresponding
to the hermitian form h = (−f2)⊕f3 on C2+3. The link of Gd is isomorphic to the
generalized digon S2 ← S2 × S3 → S3. In particular, lk(d) is a complete bipartite
graph. It follows that every triangle in the 1-skeleton Δ(1) which contains d is
filled by a 2-simplex. From the transitive action of G we conclude that Δ is a flag
complex. From the diagram 3.14 we see that G = GpGq. Thus Δ is (gallery-)
connected and by 1.4 a geometry of type C3.
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Since G = GpGq, the plane stabilizer Gp acts transitively on the set of points
G/Gq. In other words, a point and a plane in Δ are always incident (such geome-
tries are called flat in [Pas]). This cannot hold in a polar space.

Finally we note that we have a G-equivariant bijective map |Δ|K → OP2 which
sends g(Gp · λ+Gd · μ+Gq · ν) ∈ |Δ| to g(ξλ,μ,ν) ∈ OP2. �

Theorem 3.18. Let G denote the simple complex of groups from 3.14. Up to iso-
morphism, there is exactly one homogeneous compact geometry (G,Δ) of type C3

belonging to this complex of groups.

Proof. Let (Ĝ, Δ̂) denote the universal homogeneous compact geometry for (G,Δ),

as in 2.27. We denote the vertex stabilizers corresponding to G → Ĝ by Ĝα, for α ⊆
{p, d, q}. We have by 2.26 a surjective equivariant map (Ĝ, Δ̂) → (G,Δ). Let F ⊆
Ĝ denote its kernel. Thus Lie(Ĝ) ∼= Lie(G) ⊕ Lie(F ). Let pr2 : Lie(Ĝ) → Lie(F )
denote the projection onto the second summand and suppose that Lie(F ) 	= 0.

Since Ĝ is generated by Ĝp∪Ĝq, see 1.8, either pr2(Lie(Ĝp)) 	= 0 or pr2(Lie(Ĝq)) 	=
0. Moreover, we have dim(F ) ≤ 7 by 2.13. Since su(3) is simple and 8-dimensional,

we have pr2(Lie(Ĝp)) = 0 and pr2 : Lie(Ĝq) → Lie(F ) annihilates the su(3)-

summand. From the diagram above and the fact that the pr2-image of Lie(Ĝq)

is nontrivial, we see that pr2 is not trivial on Lie(Ĝp,q). This is a contradiction,

since Lie(Ĝp,q) ⊆ Lie(Ĝp). Thus Lie(F ) = 0 and F is finite. Since F acts freely
by 2.26, F ⊆ π1(|Δ|K) = π1(OP2) = 1. This shows that (G,Δ) is universal.

Finally, we note that the Z/2-Lefschetz number of every self-homeomorphism
ϕ of OP2 is 1, hence ϕ has a fixed point. Therefore |Δ|K admits no continuous
free action and in particular no quotients, see, e.g., Brown [Brow, p. 42] or [CPP,
55.19]. �

The following result is a consequence of our classification in Section 4.

Proposition 3.19. Suppose that (G,Δ) is the exceptional compact homogeneous
C3 geometry from 3.17 and suppose that a compact connected group H acts con-
tinuously, faithfully and transitively on the chambers. Then H is conjugate to the
group G in the group of topological automorphisms of Δ.

Proof. The group H is a compact connected Lie group by 2.10. We consider the
chamber γ = {p, d, q}. The fundamental group of the set of chambers G/Gγ is
finite. Therefore the semisimple commutator group K = [H,H ] acts transitively
on the chambers, see [Oni, p. 94]. From the long exact homotopy sequence for
the transitive action of K on K/Kp

∼= SU(3) we see that Kp is connected and
semisimple. Similarly, we see from the transitive action of K on K/Kq

∼= CP2

that Kq has a 1-dimensional center. This is all that is needed in 4.24 in order
to determine the possibilities for the simple complex of groups K formed by the
stabilizers. Thus there are at most two possibilities for K, and the corresponding
universal homogeneous compact geometries are by 4.1 either a polar space or the
exceptional geometry. Since Δ is not covered by a building, the compact universal
covering is (G,Δ). Therefore we have a continuous isomorphism (G,Δ) → (K,Δ).
Finally, we have H = K because the connected K-normalizer of Kp is Kp, see
2.18. �
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Remark 3.20. There is another way to approach the exceptional geometry. Start-
ing from the fact that the G-action on OP2 is polar and has a spherical simplex as
its metric orbit space, one may consider the simple complex of groups formed by
the stabilizers corresponding to the faces of the simplex. The horizontal simpli-
cial complex corresponding to the action can be shown to be a compact geometry
of type C3, whose coarse realization is homeomorphic to OP2, see Lytchak [Lyt]
and Fang–Grove–Thorbergsson [FGTh]. The proof of the main theorem in [Lyt]
shows that this geometry cannot be covered by a building. The classification in
the following sections shows that there is at most one candidate for such a simple
complex of groups. Therefore, this candidate must describe our geometry. This
very implicit way can be used to obtain the stabilizer of our action without explicit
computations. The proof that this action is polar with a nice quotient, however,
seems to require some calculations, as in [PoTh, p. 151–154].

4. The classification of the universal homogeneous
compact geometries of type C3

Our aim in this section is the classification of the universal homogeneous com-
pact geometries of type C3. The main result of this section is as follows.

Theorem 4.1. Let (G,Δ) be a homogeneous compact geometry of type C3 with

connected panels. Assume that G is compact and acts faithfully, and let (Ĝ, Δ̂)
denote the corresponding universal compact homogeneous geometry, as in 2.27.
Then Δ̂ is either a building or the exceptional geometry described in Section 3B.

In order to prove this theorem, we classify the possibilities for the simple com-
plex of groups G. In view of 2.30 we assume that the homogeneous geometry (G,Δ)
is both minimal and universal. The proof will be given at the end of Section 4.

4.2. Notation. We fix some notation that will be used throughout Section 4. We
assume that (G,Δ) is a homogeneous compact geometry of type C3 with connected
panels. The Lie group G is compact and connected and acts faithfully. In the
geometry Δ we have three types of vertices, called points, lines and planes :

◦
point

◦
line

◦
plane

We fix a chamber γ = {p, d, q}, where p is a plane, d is a line and q is a point (so
lk(p) is a projective plane, lk(d) is a generalized digon and lk(q) is a generalized
quadrangle). The simple complex of groups G looks like this:

Gd Gd,q
�� �� Gq

Gp,d

��

��

Gp,d,q

��

�� �� Gp,q

����������������



�����
�����

�����
����

Gp.

We note also that

G = 〈Gp ∪Gq〉 = 〈Gp ∪Gd〉 = 〈Gq ∪Gd〉,
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because G = 〈Gp,d∪Gd,q∪Gq,p〉. The link lk(p) is one of the four compact Moufang
planes over R,C,H or O. Accordingly, the panels lk({p, d}) and lk({p, q}) are, in
the coarse topology, spheres of dimensionm = 1, 2, 4, 8. The link lk(q) is a compact
connected Moufang quadrangle, the panel lk({d, q}) is an n-sphere, and the link
lk(d) is a generalized digon. It is given by the two Gd-equivariant maps

Sm ← Sm × Sn → Sn

as in 2.5. We have
dim(G/Gγ) ≤ 6m+ 3n

by 2.13. If m,n ≥ 2, then G is semisimple by 2.7.

4.3. Homotopy properties of G. Recall that a continuous map is called a
k-equivalence if it induces an isomorphism on the homotopy groups in degrees
less than k and an epimorphism in degree k. The following diagram shows the
low-dimensional homotopy properties of the maps in G:

Gd Gd,q
(m−1)-equiv.

��
(m−1)-equiv.

�� Gq

Gp,d

(m−1)-equiv.

��

(n−1)-equiv.

��

Gp,d,q

(n−1)-equiv.

��

(m−1)-equiv.�� (m−1)-equiv. �� Gp,q

(n−1)-equiv.

�������������������������

(m−1)-equiv.


�����

�����
�����

�����
�����

���

Gp.

They follow from the fact that the quotients of the various isotropy groups are
spheres, products of spheres or compact generalized polygons. For example,
Gq/Gd,q is the point space of a compact generalized quadrangle with topolog-
ical parameters (m,n) and admits therefore a CW decomposition Gq/Gd,q =
e0 ∪ em ∪ em+n ∪ em+n+m, see [Kr1, 3.4]. The long exact homotopy sequence
of the fibration Gd,q → Gq → Gq/Gd,q yields the (m − 1)-connectivity of the ho-
momorphism Gd,q → Gq. The reasoning for the other homomorphisms is similar,
using the results in loc.cit.

We now consider the homotopy groups π0 and π1. A compact connected Lie
group is divisible (because tori are divisible and every element is contained in some
torus, see, e.g., [HoMo, 6.30 or 9.35]). This implies the following. IfH is a compact
Lie group and if ϕ : H → F is a homomorphism to a finite group F , then ϕ factors
through π0(H) = H/H◦. In particular, ϕ is automatically continuous.

Lemma 4.4. If m,n > 1, then all seven isotropy groups appearing in G are con-
nected.

If m > n = 1, then π0(Gd) = π0(Gd,q) = π0(Gq) = 1.
If n > m = 1, then π0(Gp) = 1.

Proof. If m,n > 1, then all maps in G are 1-equivalences and induce therefore
isomorphisms on π0. By the universal property 2.29 ofG, there is a homomorphism
G → π0(Gp,d,q) which is surjective, because the natural map Gp,q,z → π0(Gp,d,q) is
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surjective. The group G is connected and therefore π0(Gp,d,q) = 1. If m > n = 1,
then 4.3 shows similarly that π0(Gd) = π0(Gd,q) = π0(Gq) = 1. The case n > m =
1 is analogous. �

We need a similar result for the fundamental groups in order to control the
torus factors of the stabilizers. This requires some low-dimensional cohomology.

Lemma 4.5. Let K be a compact connected Lie group. There are natural isomor-
phisms

Hom(K, S1)
∼= � � H1(K)

∼= �� Hom(π1(K),Z)

Hom(K/[K,K], S1)

∼=
��

∼= �� H1(K/[K,K])

∼=
��

∼= �� Hom(π1(K/[K,K]),Z),

∼=
��

where H1 denotes 1-dimensional singular cohomology and Hom(K, S1) denotes the
group of continuous homomorphisms K → S1.

Proof. For every path-connected space X we have by the Universal Coefficient
Theorem

H1(X) ∼= Hom(H1(X),Z) ∼= Hom(π1(X),Z),

see, e.g., [Mas, XII.4.6 and VIII.7.1]. We note that K/[K,K] is a torus, hence
π1(K/[K,K]) is free abelian. The fundamental group of the semisimple group
[K,K] is finite, see [HoMo, 5.76]. From the split short exact sequence

1 → π1([K,K]) → π1(K) → π1(K/[K,K]) → 1

we have therefore an isomorphism

Hom(π1(K),Z)
∼=←− Hom(π1(K/[K,K]),Z).

Since S1 is abelian, we also have a natural isomorphism

Hom(K, S1)
∼=←− Hom(K/[K,K], S1).

Since S1 � K(Z, 1) is an Eilenberg–MacLane space representing 1-dimensional
cohomology with integral coefficients, see, e.g., [Whi, V.7.5 and 7.14], we have for
every connected Lie group H a natural map

Hom(H, S1)→[H, S1]0 ∼= H1(H).

For the torus H = K/[K,K] this map is an isomorphism, see [HoMo, 8.57(ii)].
�
Corollary 4.6. Let ϕ : H → K be a continuous homomorphism between compact
connected Lie groups. If ϕ∗ : π1(H) → π1(K) is bijective (surjective), then the
abelianization H/[H,H ] → K/[K,K] is bijective (surjective).
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Proof. If ϕ∗ is bijective/surjective on the fundamental groups, then the map in
1-dimensional cohomology is bijective/injective by duality and 4.5. Thus

Hom(H/[H,H ], S1) ← Hom(K/[K,K], S1)

is bijective/injective. Dualizing again, we obtain the claim by (Pontrjagin) duality.
�

We now apply this result to G in order to control the torus factors. Recall that
G is semisimple if m,n ≥ 2.

Proposition 4.7. If m = 2 < n, then Gp is semisimple and Gq and Gd have
1-dimensional centers, and Gp,d,q has a 2-dimensional center. If m,n ≥ 3, then
all groups appearing in G are semisimple.

Proof. A compact connected Lie group is perfect if and only if it is semisimple, see
[HoMo, 6.16]. By 4.4 all groups Gα are connected. We consider the abelianizations
Hα = Gα/[Gα, Gα]. Let H denote the diagram formed by these seven abelian
groups Hα. Suppose that this diagram has a continuous homomorphism to some
abelian topological group H . By the universal property of G, there is a unique
homomorphism G → H commuting with the maps Gα → Hα → H . Since G is
perfect, each composite map Gα → G → H is constant. It follows that the seven
maps Hα → H are also constant.

If m,n ≥ 3, then all maps in H are isomorphisms by 4.6. From the previous
paragraph we conclude that all groups in H are trivial. If m = 2 < n, then all
groups in H surject naturally onto Hp. Again by the previous paragraph, Hp = 1.
For α = {p, d}, {p, q} we have Gp/Gα

∼= CP2 and Gα/Gp,d,q
∼= S2 and therefore

short exact sequences

0 → Z → π1(Gα) → π1(Gp) → 0,

0 → Z → π1(Gp,d,q) → π1(Gα) → 0.

Thus dimHα = 1 and dimHp,d,q = 2 by 4.5. �
4.8. The Lie algebra diagram Lie(G). Passing to the Lie algebras of the
groups in G, we obtain a commutative diagram of Lie algebra inclusions which we
denote by Lie(G). The next proposition reduces in many cases the classification of
the possible complexes G to the much simpler classification of the complexes of Lie
algebras Lie(G). For ∅ 	= α ⊆ γ, we denote by G̃α the simply connected group with
Lie algebra Lie(Gα). In this way we obtain from Lie(G) a commutative diagram

of simply connected Lie groups which we denote by G̃. We note that Lie(G) and

G̃ encode exactly the same information, see, e.g., [HoMo, 5.42 and A2.26].

The group G̃α is the universal covering of (Gα)
◦ and we have a central extension

1 → π1(Gα) → G̃α → (Gα)
◦ → 1.

The identification of π1(Gα) with the kernel of this map is compatible with the
maps on the fundamental groups in G.
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Proposition 4.9. If m,n ≥ 2, then G is uniquely determined by Lie(G).
Proof. We begin with a small observation. Let z ∈ Gp,d,q. If z is central in Gp

and in Gq, then z ∈ Cen(G), because G = 〈Gp ∪Gq〉. It follows that z = 1, since
G acts faithfully.

By Lemma 4.4, all groups Gα in G are connected. Therefore G̃ consists of the
universal coverings of the Gα. We let π1

∼= π1(Gp,d,q) denote the kernel of the map

G̃p,d,q → Gp,d,q. From 4.3 we see that for each ∅ 	= α ⊆ γ, the group π1 maps

onto the kernel of G̃α → Gα.

The group π1 can now be characterized as follows. It consists of all elements

z ∈ G̃p,d,q whose images are central in each G̃α. Indeed, every z ∈ π1 has this

property. Conversely, if z ∈ G̃p,d,q has this property, then its image in every Gα is
central and thus its image in Gp,d,q is trivial by the small observation above. Thus

π1 is determined by G̃. It follows that G is determined by Lie(G). �

4.10. Kernels. We introduce some more notation. We denote by A, B and C
the kernels of the actions of Gp, Gq and Gd on lk(p), lk(q) and lk(d), respectively.
Their respective Lie algebras are denoted by a, b and c. We choose supplements
p, d and q, such that

Lie(Gp) = gp = p⊕ a, Lie(Gq) = gq = q⊕ b, Lie(Gd) = gd = d⊕ c,

Lie(Gp/A) ∼= p, Lie(Gq/B) ∼= q, Lie(Gd/C) ∼= d,

see, e.g., [HoMo, 5.78]. By 2.8 we have

A ∩B = B ∩ C = C ∩A = 1 and a ∩ b = b ∩ c = c ∩ a = 0.

Moreover, A is contained in Gp,d,q and acts by 2.8 faithfully and as a subgroup of
O(n) on |lk({d, q})|K ∼= Sn. Similarly, B acts faithfully as a subgroup of O(m) on
|lk({p, d})|K ∼= Sm, and C acts faithfully as a subgroup of O(m) on |lk({p, q})|K ∼=
Sm.

Lemma 4.11. If m > n = 1, then A = 1.

Proof. By 4.4, the group Gd,q is connected. Therefore it induces the group SO(2)
on the 1-sphere lk({d, q}). The group Gp,d,q acts thus trivially on lk({d, q}). In
particular, A acts trivially on E1({p, d, q}), hence A = 1 by 2.8. �

Lemma 4.12. Suppose that m > n = 1 and that Gp is connected. Then G is
determined by Lie(G) and the subdiagram

Gp,d

��

Gp,d,q
�� �� Gp,q

������
����

����
����

��

Gp.
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Proof. The proof is similar to the proof of 4.9 above. From our assumptions and
4.4 we see that all seven groups in G are connected. We define the diagram G̃ as
in 4.8. The groups G̃α are thus the universal covering groups of the Gα. In G̃ we

consider the two maps G̃d
ϕ←− G̃d,q

ψ−→ G̃q. Since both Gq/Gd,q and Gd/Gd,q are
1-connected, we have

G̃d/ϕ(G̃d,q) = Gd/Gd,q and G̃q/ψ(G̃d,q) = Gq/Gd,q.

An element z ∈ G̃d,q which acts trivially on Gq/Gd,q acts trivially on lk(q). If
it acts in addition trivially on Gd/Gd,q, then it acts trivially on Gp,d/Gp,d,q and

hence on E1({p, d, q}). By 2.8, it acts then trivially on Δ. Let π1 ⊆ G̃d,q be the
subgroup consisting of these elements. Then π1 is precisely the kernel of the map
G̃d,q → Gd,q, i.e., π1 = π1(Gd,q). By 4.3, the group π1 maps onto π1(Gd) and onto

π1(Gq). Therefore G̃ determines the diagram Gd ← Gd,q → Gq completely. Since

all groups in G are connected, the maps in G̃ determine also the maps in G. �
For m = 1 we have to deal with stabilizers that are not connected. The identity
components of the stabilizers form a subdiagram of G which we denote by G◦.

Lemma 4.13. Suppose that n > m = 1. Then G◦ is determined by Lie(G) and
the subdiagram

Gp,d

��

Gp,d,q
�� �� Gp,q

������
����

����
����

��

Gp.

Proof. We argue similarly as in the proof of 4.12. For the four simplices α with
p ∈ α ⊆ {p, d, q}, we know already the kernels π1(Gα) of the central extensions

π1(Gα) → G̃α → (Gα)
◦,

since we know the groups Gα. For ∅ 	= β = α−{p} the homomorphism π1(Gα) →
π1(Gβ) is onto by 4.3, and this homomorphism, which is the restriction of G̃α →
G̃β , is in turn determined by the homomorphism Lie(Gα) → Lie(Gβ). Therefore
we know also the groups (Gβ)

◦, and, since they are connected, the maps between
them. �

The problem is then to pass from G◦ to G. This requires the following homolog-
ical fact, which allows us to determine Gα once we know (Gα)

◦ and Gα/N , where
N is the kernel of Gα on lk(α). See also Hilgert–Neeb [HiNe, 18.2] for a slightly
more special result.

Lemma 4.14. Suppose F and H are Lie groups, that F is connected and that F
p−→

H is an open and continuous homomorphism with discrete kernel D. Consider the

category C of all Lie group homomorphisms F
i−→ E

q−→ H, where q is a surjective
covering map and i is an open inclusion, such that q ◦ i = p:

F
i ��

p

��

E

q

��
H◦ � � �� H.
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If the category C is nonempty, then its isomorphism classes are parametrized by
the cohomology group H2(π0(H), D). The group π0(H) acts on D by conjugation,
and the cohomology is taken with respect to this action.

Proof. Suppose that F
i−→ E

q−→ H is in C. We view π0(H) as the group of
path components of H . If X is a path component of H , then EX → X is, as a
bundle map, isomorphic to the bundle map F → H◦. Hence every other Lie group
solution F → E′ → H is isomorphic to one living on the same covering space E,
but possibly with a different group multiplication.

We denote the given multiplication on E by a dot · and we assume that ∗ :
E×E → E is another Lie group multiplication on E, compatible with q. Suppose
that X,Y, Z ∈ π0(H) are path components with XY = Z. Then EX ∗EY = EZ =
EX ·EY , and for all x ∈ EX , y ∈ EY we have q(x ∗ y) = q(x · y). The map

c : E × E → D, (x, y) �−→ (x ∗ y) · (x · y)−1

is locally constant and factors to a map

c : π0(H)× π0(H) → D.

The associativity of ∗ implies the cocycle condition. More precisely, we have the
identities

c(U, VW ) · Uc(V,W )U−1 = c(UV,W ) · c(U, V ) and c(H◦, U) = c(U,H◦) = 1

which say that c is a normalized 2-cocycle. Conversely, if c is a locally constant
map that satisfies these two conditions, then x ∗ y = c(x, y) · x · y defines a new
Lie group multiplication on E, as is easily checked. Finally, we have the group of
deck transformations acting on these multiplications. These maps yield precisely
the coboundaries, and the claim follows. �

Note that the proof gives a method to construct all other multiplications from
a given one. The case which is interesting for us is when π0(H) ∼= Z/2 ∼= D. Then
the action of π0(H) on D is trivial and we have

H2(π0(H);D) = H2(RP∞;Z/2) ∼= Z/2.

Hence there are two multiplications in this case.

Example 4.15. Let F = SO(2), D = {±1} and H = O(2)/D. There are two Lie
groups E which fit into the diagram

SO(2) ��

��

E

��
SO(2)/D �� O(2)/D.
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One group is E = O(2), the other group is the ‘fake O(2)’, which is E ′ = U(1) ∪
jU(1) ⊆ Sp(1). For all g ∈ O(2)− SO(2) we have g2 = 1, whereas g2 = −1 holds
for all g ∈ E′ −U(1). The group E′ is formally obtained from O(2) by putting

u ∗ v =

{
uv if (det(u), det(v)) 	= (−1,−1),

−uv if (det(u), det(v)) = (−1,−1).

Now we start the actual classification. As we noted above, we can identify q
with Lie(Gq/B), etc. In this way we obtain three diagrams for the Lie algebras of
the groups acting faithfully on the links:

d dq��

dp

��

dp,q

��

��

qd �� q

qp,d

��

�� qp



													

pd

��

pd,q�� �� pq

��
















































p.

The groups belonging to these Lie algebras are known by [GKK1], [GKK2].
From this, we determine Lie(G) in the following way. We first determine the
possible isomorphisms

qp,d ⊕ b �� qp ⊕ b

pd,q ⊕ a ��

∼= ι

��

pq ⊕ a.

Once this is done, it turns out in each case that there is just one possibility for
the structure of d, and one possibility to fill in gd. These data determine Lie(G).
If m,n ≥ 2, this determines G. In the cases where 1 ∈ {m,n}, further work is
needed.

We now consider the cases m = 1, 2, 4, 8 separately. Accordingly, (Gp/A)
◦ is

one of the groups
SO(3), PSU(3), Sp(3), or F4,

see [CPP, 63.8] and [GKK2]. Also, Gp/A is necessarily connected, unless we are
in the case m = 2, where Gp/A may have two components. We begin with the
case m = 8.

4A. The classification of G for m = 8

By 2.6, lk(p) is the projective plane over the Cayley algebra. The subalgebras
pd, pd,q, pq ⊆ p form the following diagram, with the standard inclusions corre-
sponding to the Cayley plane:

so(9)

� �

so(8)�� �� so(9)

������
����

����
����

��

f4.
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According to the Main Theorem in [GKK2] there is just one possibility for q, with
n = 1. The corresponding part of the diagram for the subalgebras qd, qp, qp,d ⊆ q
is as follows:

so(8)⊕ R � � so(10)⊕ R

so(8)

��

�� so(9).

������������

From 4.10 we see that a = b = 0. Up to inner automorphism, there is a unique
possibility for the isomorphism ι. By 4.4, the group Gd is connected, and by
2.5 it induces SO(9) × SO(2) on lk(d), in its standard action on S8 × S1. Up
to inner automorphism, the isomorphisms which identify qp,d → qd and dp,q →
dq are parametrized by a nonzero real number r (acting on the R-summand).
This determines the diagram Lie(G). The diagrams for different values of r are
isomorphic. Thus, there is a unique possibility for Lie(G).

We have A = 1 by 4.11. All automorphisms of f4 are inner and the correspond-
ing compact Lie group F4 is both centerless and simply connected, see, e.g., [CPP,
94.33]. In particular, Gp

∼= F4 is connected and we have determined the subdia-
gram

Gp,d

� �

Gp,d,q
�� �� Gd,q

������
����

����
����

��

Gp.

By 4.12, this diagram together with Lie(G) determines G uniquely.

Proposition 4.16. If m = 8, then there is up to isomorphism a unique possibility
for the diagram G. �

This unique possibility for G is realized by the nonembeddable polar space, see
3.5. The minimal universal group is Ĝ = E6 · S1, see [Hel, Chap. X, Table V] and
[EH2].

4B. The classification of G for m = 4

By 2.6, lk(p) is the projective plane over the quaternions. The subalgebras pq, pd,
pd,q form the following diagram, with the ‘obvious’ inclusions. We decorate the
arrows by the kernels of actions on the respective spheres:

sp(1)⊕ sp(2)

��

sp(1)⊕ sp(1)⊕ sp(1)
sp(1)⊕0⊕0�� 0⊕0⊕sp(1) �� sp(2)⊕ sp(1)

����������
�������

�������
�������

��������
������

sp(3).

According to the Main Theorem in [GKK2] there are the following possibilities for
q, with n ∈ {1, 5} ∪ (3 + 4N).
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4.17. (n = 4�+3, for � ≥ 2). There is one possibility for q, which is as follows:

sp(1)⊕ sp(1)⊕ sp(�+ 1) �� sp(2)⊕ sp(�+ 2)

sp(1)⊕ sp(1)⊕ sp(�)

sp(1)⊕0⊕0

��

0⊕0⊕sp(
)
�� sp(2)⊕ sp(�).

����������������

Thus a = sp(�) and b = sp(1). Up to inner automorphisms, there is a unique
identification between pd,q ⊕ a → pq ⊕ a and qp,d ⊕ b → qp ⊕ b which is compatible
with the action on S4. From 2.5 we see that Gd induces the group SO(5) ×
(Sp(� + 1) · Sp(1)) on S4 × S4
+3. This determines gd ∼= sp(2)⊕ sp(� + 1)⊕ sp(1)
and the remaining homomorphisms in Lie(G). By 4.9, G is determined by Lie(G).
�
4.18. (n = 7). There is one possibility for q, which is as follows:

sp(1)⊕ sp(1)⊕ sp(2) �� sp(2)⊕ sp(3)

sp(1)⊕ sp(1)⊕ sp(1)

sp(1)⊕0⊕0

��

0⊕0⊕sp(1)
�� sp(2)⊕ sp(1).

����������������

From this and 2.5 we see that Gd induces the group SO(5)× (Sp(2) · Sp(1)) in its
standard action on S4×S7. In particular, gp,d,q contains sp(1)⊕sp(1)⊕sp(1)⊕sp(1).
From this we see that a = sp(1) and b = sp(1). The isomorphism ι is unique up to
inner automorphisms. We end up with a unique diagram Lie(G) as in 4.17, with
� = 1. This diagram determines G by 4.9. �
4.19. (n = 3). There is one possibility for q, which is as follows:

sp(1)⊕ sp(1)⊕ sp(1) �� sp(2)⊕ sp(2)

sp(1)⊕ sp(1)

sp(1)⊕0

��

0⊕0
�� sp(2).

��











From this and 2.5 we see that Gd induces the group SO(5) × SO(4) on S4 × S3.
Thus we have b = sp(1) and a = 0. The isomorphism ι is unique up to inner
automorphisms and Lie(G) is uniquely determined. This determines G by 4.9.
�
4.20. (n = 5). There is one generalized quadrangle, but two transitive connected
groups, of type su(5) and su(5)⊕R, respectively. By 2.7 and 4.7, the group Gq is
semisimple, hence the ideal q is also semisimple. The possibility for q is thus as
follows:

su(3)⊕ su(2) �� su(5)

su(2)⊕ su(2)

0⊕su(2)

��

0⊕0
�� so(5).

����������
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From this and 2.5 we see that the group induced by Gd on S4×S5 is SO(5)×SU(3).
It follows that b = sp(1) and a = 0. The isomorphism ι is unique up to inner
automorphisms and the diagram Lie(G) is uniquely determined. This determines
G by 4.9. �
4.21. (n = 1). There is a unique possibility for q, which is as follows:

R⊕ so(4) �� R⊕ so(6)

so(4)
0

��

0

��

so(5).

�����������

By 4.4, the group Gd is connected. From this and 2.5 we see that the group
induced by Gd on S4 × S1 is SO(5) × SO(2). Also, we have b = sp(1) and a = 0.
The isomorphism ι is unique up to inner automorphisms and the diagram Lie(G)
is uniquely determined by this. We have A = 1 by 4.11, hence Gp = PSp(3). From
4.12 we see that G is uniquely determined. �

These are all possibilities for m = 4. In each case, there exists a building Δ
corresponding to G. The possibilities for G are given by [Hel, Chap. X, Table V]
and [EH2]. They are as follows.

4.22. If n = 4� + 3, with � ≥ 0, then Δ is the polar space associated to the
quaternionic (1, [a �→ ā])-hermitian form

h = (−f3)⊕ f3+


on H3+(3+
). In this case G =
(
Sp(3)× Sp(3 + �)

)
/〈(−1,−1)〉.

If n = 1, 5, then Δ is the polar space associated to the (unique) quaternionic
(−1, [a �→ ā])-hermitian form on H6 or H7. Either G = U(6)/〈−1〉, with n = 1, or
G = SU(7),U(7)/〈−1〉, with n = 5.

4C. The classification of G for m = 2

By 2.6, lk(p) is the projective plane over C. The subalgebras pq, pd, pd,q form the
following diagram, with the ‘obvious’ inclusions. We decorate the arrows by the
kernels of actions on the respective spheres:

R⊕ su(2)

��

R⊕ R
R⊕0

��
0⊕R

�� su(2)⊕ R

		����
����

����
����

���

su(3).

This case m = 2 is more complicated since we have to deal with reductive Lie
algebras, where the complement of an ideal is not necessarily unique. We fix some
more notation. We identify the Lie algebra su(3) with the algebra of complex
traceless skew-hermitian 3 × 3 matrices, and the upper line in the diagram above
with the following inclusions in su(3):

pd pd,q� � �� pq( ∗ ∗ ∗∗ ∗

) ( ∗ ∗ ∗

)
����
( ∗ ∗∗ ∗ ∗

)
.
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We have the following four 1-dimensional subalgebras of pd,q ∼= R2. Each pair of
them spans pd,q, and we use them below.

zd = Cen(pd) =
{(−2si

si
si

)∣∣∣ s ∈ R
}
, td = pd,q ∩ [pd, pd] =

{(
0
si

−si

)∣∣∣ s ∈ R
}
,

zq = Cen(pq) =
{(

si
si

−2si

)∣∣∣ s ∈ R
}
, tq = pd,q ∩ [pq, pq] =

{(
si

−si
0

)∣∣∣ s ∈ R
}
.

According to [GKK1, GKK2], we have n ∈ {2} ∪ (2N + 1), and there are the
following possibilities for q.

4.23. (n = 2�+ 1 and � ≥ 2). By 4.7, the group Gp is semisimple and Gd and
Gq have 1-dimensional centers. The Lie algebra a is then also semisimple. We let
L = Gq/B denote the group induced by Gq on lk(q), with q ∼= Lie(L). From the
Main Theorem in [GKK2] we see that there are two possibilities for L, both acting
on the same generalized quadrangle. These actions can be understood from the
two orbit equivalent polar representations of SU(2)×SU(�+2) and U(2)×SU(�+2)
on C2×(
+2), as described in 3.3. The semisimple commutator group [L,L] acts
transitively on lk(q). We denote its Lie algebra by q′ = [q, q]. The diagram for q′

looks as follows:

R⊕ su(� + 1) �� su(2)⊕ su(�+ 2)

R⊕ su(�)

0⊕0

��

0⊕su(
)
�� su(2)⊕ su(�).

���������������

If q is not semisimple (and we will see shortly that this is indeed the case), then
qα = q′α ⊕ R in the diagram above. We note also that su(�) ⊆ a. From the polar
representation we see that the group induced by [L,L]d on lk({d, q}) ∼= S2
+1 is
U(� + 1). From this and 2.5 we see that the group induced by Gd on lk(d) is
SO(3) × U(� + 1), in its natural action on S2 × S2
+1. Now we determine the
isomorphism ι

qp,d ⊕ b �� qp ⊕ b

td ⊕ tq ⊕ a ��

∼= ι

��

zq ⊕ [pq, pq]⊕ a.

Since gp is semisimple, we have a = su(�). The pair tq ⊆ [pq, pq] ∼= su(2) is
identified with the pair R ⊆ su(2) ⊆ q′p, and ι is unique up to inner automor-
phisms on this part. The group corresponding to the algebra td acts trivially on
|lk({d, q})|K ∼= Sn, because we have a product action on lk(d). It acts, however,
nontrivially on |lk({p, q})|K ∼= Sm. There is a unique homomorphism td → q cor-
responding to such an action. It follows that q = q′ ⊕ R is not semisimple, that
b = 0, and now we have determined the isomorphism ι : pd⊕a → qp. The structure
of lk(d) was already determined above. Thus Lie(G) is uniquely determined, and
so is G by 4.9. �

Now we get to the interesting case where the exceptional geometry occurs.
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4.24. (n = 3). By 4.7, the group Gp is semisimple, and so is a. From 4.3 and 4.6
we see again that gq has a 1-dimensional center. We use the same notation as in
4.23. The diagram for q′ is as follows:

R⊕ su(2) �� su(2)⊕ su(3)

R

��

�� su(2).

������������

If q is not semisimple, then we have again qα = q′α ⊕ R in the diagram above. In
either case, a = 0 (because it is semisimple), hence gp,d,q ∼= R2. Let L = Gq/B.
The group induced by [L,L]d on lk({d, q}) ∼= S3 is U(2). The isomorphism ι
identifies the pair tq→[pq, pq] with the pair R → su(2) in the diagram above,
uniquely up to inner automorphisms. So far, everything is completely analogous
to 4.23.

By 2.5, we have two possibilities for the group induced on lk(d) by Gd. It is
either the product action of SO(3)×U(2) on S2 × S3 or the exceptional action of
SO(4) on S2 × S3 described after 2.5.

(1) Assume that we are in the case of the product action. Then td acts trivially
on lk({d, q}), but nontrivially on lk({p, q}). As in the case � ≥ 1 before, there is
a unique homomorphism td → q corresponding to this action, and we find that
q = q′ ⊕ R is not semisimple. Thus ι is uniquely determined on pd = [pq, pq] + td,
and b = 0. This determines also gd and thus Lie(G). By 4.9, the complex G is
uniquely determined. This case corresponds to the building.

(2) Suppose that Gd induces SO(4) in the exceptional action on S2 × S3. Let
C denote the kernel of the action of Gd on lk(d), with Lie algebra c. We have
gd = c ⊕ d, and d ∼= so(4). Since td ⊆ [pd, pd], we see that dp,q = td. The
group C ⊆ Gp,d,q, on the other hand, acts trivially on lk({p, d}). There is a unique
subalgebra in pd,q = gp,d,q with this property, namely zd. Thus zd = c acts trivially
on lk({d, q}). This determines a unique homomorphism zd → q. Thus ι : pq → qp
is uniquely determined. Also, gd is now uniquely determined, hence the same is
true for Lie(G) and, by 4.9, for G. This case does not correspond to a building,
but to the exceptional polar action of PSU(3) × SU(3) on the Cayley plane, as
described in Section 3B. �

4.25. (n = 2). By 2.7, the group G is semisimple. By [GKK2], there are two
non-isomorphic possibilities for q ∼= sp(2) ∼= so(5), both of which are given by the
following diagram, with different homomorphisms. One arrow corresponds to the
natural inclusion u(2) ⊆ so(5) (or sp(1) ⊕ u(1) ⊆ sp(2)), the other to the natural
inclusion so(2)⊕ so(3) ⊆ so(5) (or u(2) ⊆ sp(2)):

R⊕ su(2) �� sp(2)

R⊕ R
0⊕R

��

R⊕0

��

su(2)⊕ R.

��
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From this diagram we see that either a = 0 = b or a ∼= R ∼= b. In particular,
2 ≤ dim(Gp,d,q) ≤ 3, and thus dim(G) ≤ 21. Since p is simple, there exists a
simple factor h of g such that the canonical projection prh : g → h is injective on
p. Since q is also simple and p ∩ q 	= 0, the map prh is also injective on q. Thus h
is a simple compact Lie algebra which contains copies of su(3) and so(5), and with
dim h ≤ 21. From the list of low-dimensional simple compact Lie algebras [CPP,
94.33] and the low-dimensional representations of su(3) and so(5), see, e.g., [CPP,
95.10] and [Kr3, Chap. 4], we see readily that h ∈ {su(4), so(7), sp(3)}. We consider
these three cases separately.

The case h = su(4) is not possible. Suppose to the contrary that h ∼= su(4).
We consider the natural representation C4 of su(4). All copies of prh(p)

∼= su(3)
in su(4) are conjugate and fix in this 4-dimensional representation a 1-dimensional
complex subspace pointwise. Similarly, all copies of prh(q)

∼= sp(2) in su(4) are
conjugate, with trivial su(4)-centralizers. In particular, prh(b) = 0 and therefore
prh(gp,q)

∼= su(2) ⊕ R. Since pq ∼= u(2), we see that prh(gp,q) = prh(pq) ⊆ prh(p).
Thus prh(gp,q) fixes a 1-dimensional subspace in C4 pointwise. On the other hand,
neither the subalgebra u(2) ⊆ sp(2) ⊆ su(4) nor the subalgebra sp(1) ⊕ u(1) ⊆
sp(2) ⊆ su(4) fix a 1-dimensional subspace in C4 pointwise. Therefore this case is
not possible.

The case h = so(7) is possible in a unique way. We consider the standard
representation R7 of so(7). Since dim(so(7)) = 21, we have h = g and a ∼= R ∼= b.
The inclusion gp ∼= u(3) ⊆ so(7) is unique up to conjugation and fixes a unique 1-
dimensional real subspace pointwise. This determines also how su(2) ∼= [gp,q, gp,q]
is embedded in so(7), namely as a conjugate of its standard real 4-dimensional
representation.

The inclusion gq ∼= so(2)⊕ so(5) ⊆ so(7) is also unique up to conjugation. We
fix once and for all the standard inclusion of this algebra corresponding to the
decomposition R7 = R2 ⊕R5, and we identify [gp,q, gp,q] with su(2) ⊆ so(5) acting
on C2 ⊕R = R5. Then gp,q has a unique real 1-dimensional fixed space in R7, and
this determines the subalgebra gp ∼= u(3) uniquely. This shows that there is at
most one possibility for Lie(G), and by 4.9 also for G.
The case h = sp(3) is possible in a unique way. We consider the standard
representation H3 of sp(3). Since dim(sp(3)) = 21, we have h = g and a ∼= R ∼= b.
The inclusion gp ∼= u(3) ⊆ sp(3) is unique up to conjugation. It corresponds to
the extension of scalars given by H3 = C3 ⊗C H. We identify gp,q with u(1)⊕ u(2)
in the standard inclusion coming from the splitting H⊕H2 = (C⊕C2)⊗C H. The
inclusion of gq ∼= u(1)⊕ sp(2) ⊆ sp(3) is also unique up to conjugation. From the
splitting of H3 we see that there is a unique conjugate of gq containing gp,q. Thus,
there is at most one possibility for Lie(G), and by 4.9 also for G.

Thus there are precisely two possibilities for G with m = n = 2. Both are
realized by polar spaces over the complex numbers, one corresponding to the
5-dimensional nondegenerate quadratic form over C, and the other to the 6-
dimensional symplectic form over C. �
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4.26. (n = 1). There is a unique possibility for q, which is as follows:

R⊕ R �� R⊕ so(4)

R

��

�� so(3).

��










The groups Gq, Gd,q and Gd are connected by 4.4, and A = 1. By 2.5, the group
induced by Gd onD is SO(3)×SO(2), in its natural action on S2×S1. In particular,
Gp,d induces the group SO(3) on lk({p, d}), and not the group O(3). Therefore
Gp = PSU(3), and all groups in G are connected. We now apply Lemma 4.12 and
conclude that G is uniquely determined. �

These are all possibilities for m = 2. The corresponding universal compact
geometries are as follows.

4.27. If n = 2�+ 1, with � ≥ 0 and � 	= 1, then Δ is the polar space associated to
the complex (1, [a �→ ā])-hermitian form

h = (−f3)⊕ f3+


on C3+(3+
).
If n = 3, then Δ is either the polar space associated to the complex (1, [a �−→ ā])-

hermitian form
h = (−f3)⊕ f4

on C3+4, or the exceptional geometry from Section 3B.
If n = 2, then Δ is either the polar space associated to the complex symplectic

form on C6 or the polar space associated to the complex quadratic form on C7.

The compact connected chamber-transitive groups G on the universal geometry
Δ are as follows. In the hermitian case we have G = SU(3) · U(3 + �), or G =
SU(3) · SU(3 + �) for � ≥ 1. In the symplectic case, the group is G = Sp(3)/〈−1〉,
and in the orthogonal case it is G = SO(7). This follows from [Hel, Chap. X, Table
V] and [EH2]. In the case of the exceptional C3 geometry, G = PSU(3)× SU(3).

4D. The classification of G for m = 1

By 2.6, the link lk(p) is the projective plane over R. This will again be the starting
point for our classification. The Lie algebra p is isomorphic to so(3), and Gp

induces the group
K = Gp/A ∼= SO(3)

on lk(p). We have Kd
∼= O(2) ∼= Kq and Kd,q

∼= Z/2 ⊕ Z/2. In particular, the
groups Gp,d, Gp,d,q and Gp,q are not connected. We put

M = Gd/C and L = Gq/B.

By 2.5 we have a product action of M ◦ on S1×Sn. The group M is not connected,
because Kd induces the group O(2) on the 1-sphere lk({p, d}). We note also that
both B and C inject into O(1) ∼= Z/2, whence b = c = 0.
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4.28. The structure of lk(q) and of L = Gq/B. If n ≥ 2, then the generalized
quadrangle lk(q) belongs by [GKK2] to the symmetric bilinear form (−f2)⊕ fn+2

on R2+(n+2). The action of

L = Gq/B

is given by a polar representation of L ⊆ O(2) · O(n + 2) on R2×(n+2) which is
orbit equivalent to the polar representation of O(2) · O(n + 2) described in 3.3.
The dot · indicates that the element (−1,−1) = (−idR2 ,−idRn+2) acts trivially.
By [GKK2], the identity component of L is either SO(2) ·SO(n+2), or SO(2)×G2

for n = 5, or SO(2) · Spin(7) for n = 6. These connected groups induce SO(2) on
lk({p, q}), as one can easily check in the polar representation. Since we know that
Gp,q induces the group O(2) on lk({p, q}), we see that L is not connected. We
have qp,d = so(n), or, for the two exceptional actions, qp,d = su(2) or qp,d = su(3).
In any case, the Lie algebra a = qp,d = gp,d,q is semisimple for n ≥ 3. We will see
that the group SO(2) · Spin(7) cannot occur in this setting.

If n = 1, then there are two possibilities. Either lk(q) is the generalized quad-
rangle of the symmetric bilinear form (−f2)⊕f3 on R2+3 and L◦ = SO(2)×SO(3),
or lk(d) is the generalized quadrangle associated to the standard symplectic form
on R4. The group L◦ is then U(2)/{±1} ∼= SO(2)× SO(3). These two generalized
quadrangles are dual to each other.

Lemma 4.29. We have Gp = SO(3)×A. If n ≥ 2, then A is connected.

Proof. Let P be a compact connected supplement of A◦ in (Gp)
◦, such that

(Gp)
◦ = P ·A◦. We claim that P = SU(2) is not possible. Assume to the contrary

that P = SU(2). Suppose first that n ≥ 3. We put Z = (Pd)
◦. This circle group

contains the unique nontrivial central element z of P . Since gp,d,q = a is semisim-
ple by 4.28, we have Z = Cen((Gp,d)

◦)◦. Since we have a product action of M ◦ on
lk(d) and since Z is connected, Z acts trivially on lk(d, q) under the equivariant pro-
jection S1 × Sn → Sn. In particular, z acts trivially on E1({p, d, q}). This is a con-
tradiction to 2.8, hence P = SO(3) is centerless. Suppose now that n ≤ 2 and that
P = SU(2). Then Gp,d,q contains the quaternion group Q = {±1,±i,±j,±k}.
On the other hand, Gp,d,q embeds into O(1)×O(1)×O(n). But this is impossible:
every 1- or 2-dimensional real representation of Q annihilates the element −1.

Thus P = SO(3) is centerless simple. It follows thatA∩P = 1, henceGp = P�A
is a semidirect product, and P centralizes A◦. If n ≥ 2, then Gp is connected by
4.4, whence A◦ = A. If n = 1, then A is discrete and therefore centralized by P .
�

As a consequence of the proof, we note that

Gp,d
∼= Gp,q

∼= O(2)×A

and that this product splitting is canonical, for all n.

Corollary 4.30. If n ≥ 2, then C ⊆ (Gd)
◦ and B ⊆ (Gq)

◦ and

π0(M) ∼= π0(Gd) ∼= π0(Gp,d) ∼= π0(Gp,q) ∼= π0(Gq) ∼= π0(L) ∼= Z/2.
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Proof. From 4.29 we know that π0(Gp,d) ∼= π0(Gp,q) ∼= Z/2. By 4.3, we also have
π0(Gd) ∼= π0(Gq) ∼= Z/2. The groups M and L are not connected, but they cannot
have more components than Gd and Gq have, hence π0(M) ∼= π0(L) ∼= Z/2. We
have C ⊆ Gd, and if C 	⊆ (Gd)

◦, then M would be connected. Similarly, B has to
be contained in (Gq)

◦. �
Corollary 4.31. The case n = 6 with q = R⊕ so(7) cannot occur.

Proof. Consider the 8-dimensional real irreducible representation of Spin(7). This
representation is of real type, see [CPP, p. 625]. Since the nontrivial center of
Spin(7) acts faithfully on R8, we have −idR8 ∈ Spin(7).

Assume now to the contrary that q = R⊕ so(7), with n = 6. Because Spin(7)
is self-normalizing in O(8) and L is not connected, we have necessarily

L = (O(2)× Spin(7))/〈(−1,−1)〉.
Let SU¯(3) denote the group generated by SU(3) and by complex conjugation on
C3. From the polar representation on R2×8 we see that

Lp = S(O(2)× SU¯(3))/〈(−1,−1)〉.
But Lp = S(O(2)× SU¯(3))/〈(−1,−1)〉 cannot be written as a quotient of Gp,q =
O(2) × SU(3). The reason for this is that the adjoint representation of S(O(2) ×
SU¯(3))/〈(−1,−1)〉 splits off a module su(3) with SU¯(3) acting faithfully on it,
which is not the case for O(2)× SU(3). This is a contradiction to 4.29. �
Lemma 4.32. Corresponding to each diagram

qd �� q

qp,d

��

�� qp

��

as in 4.28, there is, up to isomorphism, at most one possibility for the diagram
Lie(G).
Proof. If n 	= 2, then a is semisimple and gp,d and gp,q have 1-dimensional centers,
which must correspond to the circle groups acting on the 1-spheres lk({p, d}) and
lk({p, q}). If n = 2, then a ∼= R is not semisimple. But since we have Gp,q =
SO(2)×O(2) by 4.29, the Lie algebra of the circle group (Kq)

◦ is distinguished in
gp,q by the fact that Ad(Gp,q) acts nontrivially on it. The same applies to gp,d.
Thus, Lie(Kd) and Lie(Kq) are in any case distinguished subalgebras, and the
possible isomorphisms

dp dp,q��

Lie(Kd)⊕ a

∼=
��

a��

qp,d �� qp

a ��
∼=
��

Lie(Kq)⊕ a

are parametrized by nonzero reals. However, all choices of these parameters lead
to isomorphic diagrams for the Lie groups. All other identification maps in Lie(G)
are also unique up to automorphisms. �

Recall from 4.13 that G◦ denotes the subdiagram of G consisting of the identity
components of the stabilizers.
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Corollary 4.33. Suppose that n ≥ 2. Corresponding to each diagram

qd �� q

qp,d

��

�� qp

��

as in 4.28, there is, up to isomorphism, at most one possibility for the diagram G◦.

Proof. This follows from 4.29, 4.32 and 4.13. �
We identify Kd ← Kd,q → Kq with the matrix groups

( ∗ ∗ ∗∗ ∗

) ( ∗ ∗ ∗

)
�� ��

( ∗ ∗∗ ∗ ∗

)
in SO(3) and we put

u =

⎛⎝1
−1

−1

⎞⎠ and v =

⎛⎝−1
−1

1

⎞⎠
Proposition 4.34. Suppose that n ≥ 2. Corresponding to each diagram

qd �� q

qp,d

��

�� qp

��

as in 4.28, there is, up to isomorphism, at most one possibility for the diagram G.
Proof. There is a unique possibility for the diagram G◦ by 4.33. The group H =
(Gq)

◦ induces the group L◦ on lk(q) and acts transitively on the chambers of
this link. From 4.3 we see that Hp = (Gp,q)

◦, whence Hp,d = Hp ∩ Gp,d,q and
Hd = Hp,d(Gd,q)

◦. Thus the action of (Gq)
◦ on lk(q) is uniquely determined by

G◦, and so is the kernel B. Similarly, the action of (Gd)
◦ on lk(d) and the kernel

C are uniquely determined.
We note that, by 4.3, the group Gq is generated by H ∪ {u}. We know that u

acts on the 1-sphere lk({p, q}) as a reflection. On the other hand, u is contained
in (Gd)

◦ and therefore we know in particular how it acts on lk({d, q}). Thus, the
image of u in L is uniquely determined, and hence L is uniquely determined.

We put B = {1, z}. If z = 1, then L = Gq is uniquely determined, and so is the
image of u in L. If z 	= 1, then we apply 4.14 to the problem

(Gq)
◦

��

�� Gq

��
L◦ �� L.
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By 4.14 and the remarks following it, there are two possibilities for the multiplica-
tion on Gq. We know that u2 = 1. One of the two possible multiplications would
give us u ∗ u = (uz) ∗ (uz) = z, which is wrong. So the correct multiplication on
Gq is uniquely determined. There are two possible targets for u in Gq, differing by
z, which act in the same way on lk(q). The element u acts trivially on lk({p, d}),
while the product uz acts as a reflection on lk({p, d}), hence we know also the
correct image of u in Gq. This determines the map Kq ×A → Gq uniquely.

A completely analogous discussion shows that there is a unique possibility for
Gd and the map Kd × A → Gd. In particular, there is a unique possibility for
Gd ← Kd,q ×A → Gq. The diagram G is now uniquely determined. �
It remains to consider the case n = 1. We have seen in 4.32 that there are precisely
two possibilities for Lie(G). One is realized in the polar space associated to the
symmetric bilinear form (f−3)⊕f4 on R3+4 and the associated polar representation
of SO(3) × SO(4) on R3×4. It is analogous to the case n > 1 considered before,
and we call this the orthogonal situation.

The other possibility is associated to the polar space corresponding to the stan-
dard symplectic form on R6. The associated polar representation is U(3)/{±1}
acting on the space of complex symmetric 3×3-matrices, via (g,X) �−→ gXgT . In
this action the group Gp is the stabilizer of

(
1

1
1

)
, the group Gq is the stabilizer

of
(

1
0

0

)
, and the group Gd is the stabilizer of

(
1

1
0

)
. We call this the symplectic

situation.
The two generalized quadrangles that may appear as the link at q are dual to

each other (isomorphic under a not type-preserving simplicial isomorphism). The
connected component of L = Gq/B is

L◦ = SO(2)× SO(3).

In the orthogonal situation, (L◦)p ∼= SO(2) acts with a two-element kernel on
lk({p, q}), while (L◦)d ∼= O(2) acts faithfully on lk({d, q}). The L◦-stabilizer of
γ = {p, d, q} acts trivially on lk({p, q}), and as a reflection on lk({d, q}).

In the symplectic situation, it is the other way around.
We note that in both cases u becomes trivial in π0(Gp,d), π0(Gp) and π0(Gd),

and that v becomes trivial in π0(Gp,q), π0(Gp) and π0(Gq). The element v is not
trivial in π0(Gd), because its action on S1×S1 is not orientation preserving. Since
we have a product action of M ◦ on lk(d), the element u acts trivially on lk(d), and
in particular C = {1, u} ⊆ (Gd)

◦.

4.35. (In the symplectic situation G is unique). The circle group (Kq)
◦ acts

with kernel {1, v} on lk({p, q}). The group (Lp)
◦, which must be its image, acts

faithfully on lk({p, q}). Therefore we have B = {1, v} ⊆ (Gq)
◦.

We claim that A = 1. Suppose to the contrary that 1 	= a ∈ A. Then a is
nontrivial in π0(Gp) by 4.29. It is nontrivial in π0(Gd), since its action on S1 × S1

is not orientation preserving. Also, it acts differently than the L◦-stabilizer of
γ, hence a is nontrivial in π0(Gq). It follows now easily that G admits a simple
homomorphism onto Z/2, hence G is by 2.29 and the remark preceding 4.4 not
connected, a contradiction.

Therefore A = 1 and π0(Gγ) ∼= Z/2 ⊕ Z/2 has u, v as a Z/2-basis. From the
action of 〈u, v〉 = Gγ on lk({p, q}) ∪ lk({d, q}) we see that Gq/B = L = SO(3) ×
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SO(2) is connected. Since B ⊆ (Gq)
◦, the group Gq is also connected. Since qp

is contained in the simple part q′ = [q, q] ∼= so(3) and since the corresponding
connected circle group contains the nontrivial kernel B, we have [Gq, Gq] ∼= SU(2)
and we may identify (Kq)

◦ with the subgroup SO(2) ⊆ SU(2). The group SU(2)×
SO(2) contains no involution u that normalizes SO(2) and acts by inversion. Thus
Gq = U(2) and Gp,q = O(2) ⊆ U(2), embedded in the standard way as the
group of elements fixed by complex conjugation. The group (Gp,d)

◦ is determined
by its Lie algebra, and Gp,d = Gp,d,q(Gp,d)

◦. This group can be identified with(
O(1)

U(1)

)
⊆ U(2). The image of v in Gq, being in the kernel B, is

(−1
−1

)
. The

action of (Gp,d)
◦ on lk({d, q}) has in its kernel the element

(
1 −1

)
. Since (Gp,d)

◦

acts trivially on lk({p, d}), we conclude that this matrix is the image of u (and
not of uv, which acts nontrivially on lk({d, q})) in Gq. Thus we know Gq and its
stabilizers, and the homomorphism Kq → Gq. It remains to determine Gd. But
Gd is the quotient of Gp,d ×Gd,q, where we identify the respective images of u, v
and uv. The diagram G is now completely determined. �
4.36. (In the orthogonal situation G is unique). The circle group (Kq)

◦

acts with kernel {1, v} on lk({p, q}). The group (Lp)
◦, which must be its image,

acts also with a 2-element kernel on lk({p, q}). The element v acts therefore as a
reflection on lk({d, q}) and on lk({p, d}).

Let Q ⊆ Gq denote the connected normal subgroup with Lie algebra so(3). We
claim that Q = SO(3). Suppose to the contrary thatQ = SU(2), with center {1, z}.
The circle group (Gd,q)

◦ ⊆ Q contains z. Since we have a product action on lk(d),
the element z acts trivially on lk(d), and it acts trivially on lk(q). This contradicts
2.8. Thus Q = SO(3) has trivial center. It follows that (Gq)

◦ = SO(3) × SO(2).
We have Gq/Gp,q

∼= RP3. From the exact sequence

1 → π1(Gp,q)︸ ︷︷ ︸
Z

→ π1(Gq)︸ ︷︷ ︸
Z⊕Z/2

→ π1(RP
3)︸ ︷︷ ︸

Z/2

→ π0(Gp,q) → π0(Gq) → 1

we have an isomorphism π0(Gp,q) ∼= π0(Gq). If A 	= 1, then we see from the action
on E1({p, d, q}) that Gp,d,q has 8 elements, and from the action of Gp,q on lk({p, q})
that π0(Gp,q) ∼= Z/2⊕Z/2. As in the symplectic case, we conclude that π0(G) has
a nontrivial simple homomorphism to Z/2, which is impossible. Therefore A = 1
and Gp,d,q = 〈u, v〉 has 4 elements. From the action of Gp,d,q on E1({p, d, q}) we
see that B = 1. Also, we know (Kq)

◦ → Gq. Since B = 1, there is a unique target
for u in Gq. This determines Kq → Gq completely. Also, Gd,q is now determined
by its Lie algebra and by Kd,q → Gq.

Finally, (Gp,d)
◦ ∩ (Gd,q)

◦ = 1, since u is not contained in Gd,q, hence (Gd)
◦ =

(Gp,d)
◦ × (Gd,q)

◦. Also, we have Gd ⊆ Gp,d × Gd,q and we know the image of v
in the first factor. The image in the second factor is uniquely determined by the
action of v on lk({d, q}), a reflection, since Gd,q acts faithfully on lk({d, q}). Thus,
the target of v in Gd is uniquely determined, and this determines the remaining
homomorphisms in G. The diagram G is now completely determined. �

Proof of Theorem 4.1. In the previous sections we have determined, up to
isomorphism, all possibilities for a simple complex of compact groups G arising
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from a homogeneous compact geometry in HCG(C3), with G being minimal. Each
example that we found is either realized by a rank 3 polar space (a building), or
by the exceptional C3 geometry. �

5. Consequences and applications

In this last section we show first that in homogeneous compact geometries of
higher rank, no exceptions occur.

Lemma 5.1. Suppose that (G,Δ) is a homogeneous compact geometry in the cate-
gory HCG(F4). Then Δ is continuously and equivariantly 2-covered by a compact
connected Moufang building of type F4.

Proof. In the exceptional geometry of type C3 from Section 3B, the panels have
dimensions 2 and 3. In the geometry Δ, however, all panels belong to compact
Moufang planes and have therefore dimensions 1, 2, 4, or 8 by 2.6. By 4.1, every
link of type C3 in Δ is covered by a C3 building. By Tits’ Theorem 1.16, there
exists a building Δ̃ and a 2-covering ρ : Δ̃ → Δ. By 2.22, the building Δ̃ can be
topologized in such a way that ρ becomes equivariant and continuous, and Δ̃ is
the compact Moufang building associated to a simple noncompact Lie group. �

Lemma 5.2. Suppose that (G,Δ) is a homogeneous compact geometry in the cate-
gory HCG(C4). Then Δ is continuously and equivariantly 2-covered by a compact
connected Moufang building of type C4.

Proof. We label the vertex types as follows:

◦ ◦ ◦ ◦
1 2 3 4

Let γ = {v1, v2, v3, v4} be a chamber, where vi has type i. We have to show that
lk(v1) cannot be the exceptional C3 geometry from Section 3B. Assume to the
contrary that this is the case. For ∅ 	= α ⊆ γ, we put gα = Lie(Gα) and we let
nα � gα denote the Lie algebra of the kernel of the action on lk(α). Finally, we
put hα = gα/nα. This is the Lie algebra of the group induced by Gα on lk(α).

We have hv1 = su(3)⊕su(3) and, by 4.24, we have hv1,v3 = so(4), corresponding
to the exceptional action of SO(4) on S2 × S3.

Now we consider hv3 ⊆ su(3) ⊕ so(4). The projection pr1 : hv3 → su(3) to the
first factor is onto, since PSU(3) has no chamber-transitive closed subgroups. Let
h2 denote the kernel of this projection, and let h1 ∼= su(3) be a supplement of the
kernel, hv3 = h1 ⊕ h2. Every homomorphism from su(3) to so(4) is trivial, hence
h1 is the kernel of the projection pr2 : hv3 → so(4). The Lie algebra hv3 splits
therefore in its action on lk(v3) as a direct sum. It follows that the Lie algebra
hv1,v3 splits also in its action on lk({v1, v3}). We have reached a contradiction.

As in the previous lemma, we conclude from 1.16 and 2.22 that there exists a
compact building Δ̃ associated to a simple noncompact Lie group and a continuous
equivariant covering ρ : Δ̃ → Δ. �

The following two theorems summarize the main results of our classification.
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Theorem 5.3. Let M be a spherical irreducible Coxeter matrix of rank at least 4
and suppose that (G,Δ) is a homogeneous compact geometry in HCG(M). Then

there exists a compact connected spherical building Δ̃ and a continuous 2-covering
ρ : Δ̃ → Δ.

Proof. By the previous two lemmata and by induction we see that the link of every
vertex is 2-covered by a building. The claim follows now as in the proof of 5.1.
�

The next theorem is an immediate consequence of 2.4, 5.3 and 4.1. It contains
the Theorem A of the introduction as a special case.

Theorem 5.4. Let M be a Coxeter matrix of spherical type and let (G,Δ) be a
homogeneous compact geometry in HCG(M). Suppose that the Coxeter diagram
of M has no isolated nodes. Then there exists a homogeneous compact geometry
(K, Δ̃) in HCG(M) which is a join of buildings associated to simple noncompact
Lie groups and geometries of typeC3 which are isomorphic to the exceptional geo-
metry in Section 3B, and a continuous 2-covering Δ̃→Δ, which is equivariant with
respect to a compact connectedLie groupK acting transitively on the chambers of Δ̃.

Proof. We decompose Δ as a join Δ = Δ1 ∗Δ2 ∗ · · · ∗Δm of irreducible factors,
and we let Hi denote the group induced by G on Δi. Now we apply 4.1 and 5.3 to
the homogeneous compact geometries (Hi,Δi). We obtain equivariant 2-coverings

Δ̃i → Δi, where Δ̃i is either a compact building or the exceptional C3 geometry
from Section 3B. Taking the join of these 2-coverings, we obtain the result that
we claimed. We note that the group induced by K on Δ may be strictly larger
than the group G we started with. �

Recall from Section 3 that an isometric group action G×X → X on a complete
Riemannian manifoldX is called polar if it admits a section Σ ⊆ X , i.e., a complete
totally geodesic submanifold that intersects every orbit perpendicularly. A polar
action is called hyperpolar if the section Σ is flat. One motivation for the present
work is a recent result by the second author [Lyt]. Relying on the classification of
buildings by Tits and Burns–Spatzier [BuSp], the main theorem of [Lyt] contains
a classification of polar foliations on symmetric spaces of compact type under
the assumption that the irreducible parts of the foliation have codimension at
least 3. We refer to [Lyt] for the history of the subject and an extensive list of
literature about this problem. Our main result now covers the remaining cases of
codimension 2, provided that the polar foliation arises from a polar action. The
result is as follows.

Theorem 5.5. Suppose that G×X → X is a polar action of a compact connected
Lie group G on a symmetric space X of compact type. Then, possibly after replac-
ing G by a larger orbit equivalent group, we have splittings G = G1×· · ·×Gm and
X = X1×· · ·×Xm, such that the action of Gi on Xi is either trivial or hyperpolar
or the space Xi has rank 1, for i = 1, . . .m.

We indicate briefly the connection between our main theorem and 5.5 and re-
fer the interested reader to [Lyt]. Given a polar action on a symmetric space of
compact type, the de Rham decomposition of a section of the action gives rise to
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an equivariant product decomposition of the whole space. Removing the hyper-
polar pieces (corresponding to the flat factor of the section) and the pieces that
do not admit reflection groups (corresponding to trivial actions), one is left with
polar actions whose sections have constant positive curvature. Moreover, one can
split off another factor with a trivial action of our group G, unless any two points
of the manifold can be connected by a sequence of points p1, . . . , pr, where each
consecutive pair pi, pi+1 is contained in a section. All these decomposition results
rely heavily on results by Wilking [Wilk]. Then it remains to show that in this
case the symmetric space has rank 1.

In order to do this, one observes that each section is a sphere or a projective
space, and that the quotient space of the action is isometric to the quotient of the
universal covering of a section by a finite Coxeter group. If the Coxeter group is
reducible, the decomposition of the Coxeter group implies the existence of very
special “polar” submanifolds of our symmetric space and from this one deduces
that the rank must be 1. In the irreducible case, the quotient is a Coxeter sim-
plex and each section is decomposed by such Coxeter simplices. Taking all these
simplices from all sections together one finds a huge polyhedral complex. This
polyhedral complex turns out to be a geometry of spherical type, each link of
which is a spherical building (defined by the corresponding slice representations).

Thus we have found a homogeneous compact geometry of spherical type. If
the geometry is covered by a building (which is always the case if the geometry
is not of type C3) then the covering complex is a Moufang building Δ belonging
to a simple noncompact Lie group and the manifold we started with is the base
of a principal bundle with total space homeomorphic to a sphere (the geometric
realization |Δ|K in the coarse topology). Thus X turns out to be of rank 1 in
this case. The C3 case cannot be handled in this way, since the Cayley plane OP2

is not the quotient of a free action of a compact group on a sphere. Indeed, the
exceptional geometry described in Section 3B cannot arise in this way. However,
4.1 says that the Podestà–Thorbergsson example is the only exception. �

Using the methods of [Koll], the above extension of [Lyt] was obtained in [KoLy]
under the additional assumption that X is irreducible. Kollross has announced an
independent extension of [KoLy] to the reducible case, with the methods of [Koll]
(unpublished).

Key ideas and methods of [Lyt] were discovered and used independently by
Fang–Grove–Thorbergsson in their classification of polar actions in positive cur-
vature [FGTh]. In particular, the classification of compact Moufang buildings by
Tits and Burns–Spatzier, and Tits’ local approach to buildings play crucial roles.
With a few exceptions, the classification in cohomogeneity two involving C3 ge-
ometries is based on an axiomatic characterization by Tits. Of course our main
result here can also be used for this purpose.
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Abstract. We correct an error in our article [6], completing the classification of compact
homogeneous geometries.

The present note contains a correction for our article [6] and some additional
remarks. In [6] we classified compact homogeneous geometries. Kollross and
Gorodski [2] discovered in 2015 that our classification as well as many related
classifications, for instance [7], were incomplete: there exists a further example
of a polar action on the Cayley plane which gives rise to an exceptional compact
homogeneous geometry of type C3. In the present note we correct the mistake
in our classification by showing that this is the only other example of a compact
homogeneous geometry. The final result is that there exist exactly two homoge-
neous compact geometries of type C3 which are not covered by buildings. These
two geometries have been studied in a purely algebraic setting by Schillewaert and
Struyve [9], who determined in particular their automorphism groups and showed
that the underlying simplicial complexes are simply connected. The last claim was
independently obtained by Pasini [11]. The main results of [6] should be modified
as follows.

Theorem A in [6], revised. Let ∆ be a compact geometry of irreducible spherical
type and rank at least 2, with connected panels. Assume that a compact group acts
continuously and transitively on the chambers of ∆.

If ∆ is not of type C3, then there exists a simple noncompact Lie group S,
a compact chamber-transitive subgroup K ⊆ S and a K-equivariant 2-covering
∆̃→ ∆, where ∆̃ is the canonical spherical building associated to S.

If ∆ is of type C3, then either there exists a building ∆̃ and a 2-covering
∆̃ → ∆ as in the previous case, or ∆ is isomorphic to one of the two exceptional
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homogeneous compact C3 geometries which cannot be 2-covered by any building.

Theorem 5.4 in [6], revised. Let M be a Coxeter matrix of spherical type and
let (G,∆) be a homogeneous compact geometry in HCG(M). Suppose that the
Coxeter diagram of M has no isolated nodes. Then there exists a homogeneous
compact geometry (K, ∆̃) in HCG(M) which is a join of buildings associated to
simple noncompact Lie groups and geometries of type C3 which are isomorphic
to the exceptional geometry in Section 3B in [6] or to the exceptional geometry

described in this note, and a continuous 2-covering ∆̃ → ∆, which is equivariant
with respect to a compact connected Lie group K acting transitively on the chambers
of ∆̃.

Theorem 4.1 in [6], revised. Let (G,∆) be a homogeneous compact geometry of
type C3 with connected panels. Assume that G is compact and acts faithfully, and
let (Ĝ, ∆̂) denote the corresponding universal compact homogeneous geometry, as

in 2.27 in [6]. Then ∆̂ is either a building or the exceptional geometry described in
Section 3B in [6] or the exceptional geometry described below in 6.8.

Remark 3.20 in [6] should also be modified accordingly: the alternative approach
to the exceptional geometries would require in addition the classification results
in [2].

We note also that Problem 5 in [6] is answered in [9]: the two exceptional
compact homogeneous geometries of type C3 are simply connected, and their
automorphism groups are compact. Similar geometries may be defined at least
over other real closed fields. We finally mention that an affirmative answer to
Problem 1 in [6] has been given in [10]. In particular, [10] shows that without
additional topological assumptions there exist free constructions of homogeneous
geometries of type C3.

Acknowledgment. The authors thank Claudio Gorodski and Andreas Kollross
for helpful remarks, and the referees for detailed comments and suggestions on an
earlier version of this erratum.

6. The corrections

We will freely use the terminology and the results from our article, which we
will refer to as Part I. We first indicate where an error occurs in Part I. At the
beginning of Section 4D, on the bottom of p. 841 in Part I we write: “By 2.5 we
have a product action of M◦ on S1 × Sn.” But this conclusion is not implied by
Lemma 2.5 in Part I.

In the relevant section we consider a compact homogeneous geometry (G,∆) of
type C3 with parameters (1, n). The group G is a compact connected Lie group.
We recall the notions introduced in 4.10 in Part I. We fix a chamber {p, d, q} in
the geometry ∆. Then

lk({p, d}) ∼= S1 ∼= lk({p, q}) and lk({d, q}) ∼= Sn.

The link of {p} is the projective geometry of the real projective plane, the link
of q is a generalized quadrangle with parameters (1, n) and the link of {d} is a
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generalized digon of type S1× Sm. We denote the kernels of the actions of Gp, Gq

and Gd on the respective links by A,B,C, and we put

K = Gp/A, L = Gq/B and M = Gd/C.

We know that K = SO(3) and that the stabilizers Kd and Kq act as O(2) on
the 1-spheres lk({p, d}) and lk({p, q}). For n > 1, the group Gp is connected by
Lemma 4.4 in Part I. We recall also from Lemma 2.8 in Part I that A ∩B = {1}.
The relevant case of Lemma 2.5 in Part I reads as follows.

Lemma 6.1. Consider the standard orthogonal action of SO(2) × SO(n + 1) on
S1 × Sn. Suppose that H ⊆ SO(2) × SO(n + 1) is a transitive compact connected
subgroup. Then H splits as a product H = H1 ×H2, where Hj is the image of H
under the projection prj for the diagram

SO(2)
pr1←−− SO(2)× SO(n+ 1)

pr2−−→ SO(n+ 1),

provided that either H2 = SO(n+ 1) or that H2 is a compact simple group.

Corollary 6.2. If the group N induced by (Gd,q)◦ on lk({d, q}) ∼= Sn is either
SO(n + 1) or if N is simple and maximal among compact connected subgroups
in SO(n + 1), then the action of M◦ on lk({d}) is a product action. Under this
additional hypothesis, all the classification results in Section 4D of Part I are valid.

Proof. For the projection H2 in Lemma 6.1 we have N ⊆ H2 ⊆ SO(n+ 1). �

Inspecting the classification of compact connected groups acting transitively on
compact generalized quadrangles with parameters (1, n) in [4], [5], we see that the
only cases where the connected group induced on lk({d, q}) is not SO(n + 1) are
n = 5, 6, with L◦ = SO(2)×G2 and L◦ = SO(2) ·Spin(7), respectively. In the case
n = 6, the group induced by (Gd,q)◦ on S6 is G2, which is simple and a maximal
connected subgroup in SO(7), see, e.g., 95.12 in [8]. So this case is covered by
Lemma 6.1 and hence Corollary 4.31 in Part I shows that this case cannot occur
in the geometry ∆.

In the case n = 5, the group induced by (Gd,q)◦ on S5 is SU(3). Here, we
can embed a 1-torus T diagonally into SO(2) × U(3). Then it may happen that
H2 = U(3) and then the action of K = T · SU(3) is not split. This case was
overlooked in Part I and leads to a new compact homogeneous C3-geometry.

Auxiliary results

We introduce some groups. We put

C2 = {±1}

and we let Q ⊆ Spin(3) ⊆ H denote the quaternion group of order 8, i.e., the group
generated by i, j ∈ H. We put

J = (Q× SU(2))/{±(1, 1)}

and we note that π0(J) ∼= C2
2 . The group J can be realized as a subgroup of SO(4).
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Lemma 6.3. The group J is not isomorphic to C2
2 × SU(2).

Proof. The center of J is C2 and the center of C2
2 × SU(2) is C3

2 . �

Lemma 6.4. Consider the action of the group G2 = Aut(O) on the 7-dimensional
space of all pure elements in O. The subgroup of G2 consisting of all elements h
with h(i) = ±i and h(j) = ±j is isomorphic to the group J .

Proof. The quaternion subalgebra H ⊆ O is generated by i, j and thus invariant
under this group. Let ` ∈ O be a pure element with `2 = −1 which is orthogonal
to H. Then i, j, ` is a Cayley triple in O and O = H ⊕ H`. By Lemma 11.30 in
[8], the subgroup of Aut(O) of all automorphisms which leave H invariant consists
of all maps of the form

[a, b] : H⊕H`→ H⊕H`, u+ v` 7→ auā+ (bvā)`,

where a, b ∈ Spin(3) ⊆ H are unit quaternions. The claim follows. �

Lemma 6.5. Consider the polar representation of O(2)×G2 ⊆ O(2)× SO(7) on
R2×7. The principal isotropy group is isomorphic to J .

Proof. Let e1, . . . , e7 denote the standard basis of R7, and consider the 2 × 7-
matrices P1 = (2e1, e2), P2 = (e1, 0) and P3 = (e1, e2). The O(2)×SO(7)-stabilizer
of P1 is principal and fixes P2 and P3. It consist of all elements of the form(

ε1 0
0 ε2

)
×

ε1 0 0
0 ε2 0
0 0 ε1ε2A


with ε1, ε2 = ±1 and A ∈ SO(5). We may put i = e1 and j = e2 and then apply
Lemma 6.4. �

We remark that Lemma 6.5 contradicts the formula for the principal isotropy
group given on p. 54 in [2].

The missing case with n = 5 and q = R ⊕ g2

The maps Lp −→ L and Mp −→ M are (n − 1)-equivalences. Since the groups
induced by K = Gp/A on the 1-spheres lk({p, q}) are in both cases O(2), we
conclude that neither L nor M are connected. The group Kd,q is finite and hence
gp,d,q = a = qp,d, and b = c = 0. It follows that A◦ = (Gp,d,q)◦ = SU(2).

We first inspect the diagrams for the Lie algebras of M,L and K. They look
as follows:

R⊕ su(3) su(3)oo

R⊕ su(2)

ϕ

OO

su(2)oo

OO
su(3) // R⊕ g2

su(2) //

OO

R⊕ su(2)

99

R

��

0oo // R

ss
so(3).
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Except for ϕ, all arrows are canonical or determined by the diagrams for lk(p)
and lk(q). For ϕ, there are two fundamentally different possibilities. If ϕ restricts
an isomorphism between the R-factors, then the action of M◦ on S1 × S5 is split.
This case is covered by Section 4D in Part I. So we have to consider the case where
the ϕ-image of R is diagonally embedded into R × su(3). Up to automorphism,
there is just one such map. (The ϕ-image of R cannot be contained in su(3), since
M/Mp

∼= S5.) There is just one way to glue these data to a diagram Lie(G), which
looks as follows:

R⊕ su(3) su(3)oo // R⊕ g2

R⊕ su(2)

ϕ

OO

��

su(2)

OO

//oo R⊕ su(2)

99

tt
so(3)⊕ su(2).

In all instances, the maps between the su(2) factors are the identity maps. (The
Lie algebras so(3) and su(2) are of course isomorphic, but naming them differently
helps keeping track of the maps.) By Lemma 4.13 in Part I the diagram G◦ of
the connected components is uniquely determined by the diagram Lie(G) and the
subdiagram

Gp,d

��

Gp,d,q
oo // Gp,q

uu
Gp.

(1)

We now study the stabilizers in more detail. The group Gp is connected, and
hence

Gp = (Spin(3)× SU(2))/E,

and E ⊆ C2×C2 is a central subgroup. Therefore Gp,d,q = (Q×SU(2))/E, where
Q ⊆ Spin(3) denotes again the quaternion group of order 8.

We noted above that the group L is not connected. By [5] we have [L : L◦] = 2
and thus L = O(2) × G2, in its natural polar action on R2×7. By Lemma 6.5 we
have Lp,d

∼= J . Since Lp,d = Gp,d,q/B, we deduce that |E| · |B| = 2.
If |B| = 2, then we have by Lemma 6.3 that B = {±(1, 1)}, because (Q ×

SU(2))/B ∼= J . But (−1,−1) acts also trivially on lk(p), contradicting the fact
that A ∩B is trivial. Hence B is trivial.

It follows from Lemma 6.3 that E = {±(1, 1)} and thus Gp = (Spin(3) ×
SU(2))/E ∼= SO(4). This determines the diagram (1) uniquely, and hence by
Lemma 4.13 in Part I the diagram G◦ of connected components.

It also follows that Gq = L and that

Z/2 ∼= π0(Gq) ∼= π0(Gp,q) ∼= π0(Gd,p) ∼= π0(Gd). (2)
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At this stage, the following subdiagram of G is uniquely determined:

Gd,q
// Gq

Gp.d

��

Gp,d,q

OO

oo // Gp,q

==

uu
Gp.

(3)

Let O(2) ⊆ Gp,d ⊆ Gp = SO(4) denote the subgroup which maps onto Kd
∼=

O(2). We choose an element h in O(2) which is a reflection and fixes {p, d, q}
(there are two such elements in O(2)). Then h is an involution and generates each
of the cyclic groups in Equation (2). In particular we have

Gd,q = (Gd,q)◦ o 〈h〉 and Gp,d = (Gp,d)◦ o 〈h〉.

This determines the conjugation action of h on (Gd)◦ = 〈(Gp,d)◦ ∪ (Gd,q)◦〉, and
hence the structure of Gd = (Gd)◦ o 〈u〉 as well as the missing upper left corner
in diagram (3). We have established the following result.

Proposition 6.6. In the case where q = R ⊕ g2 and where the action of M◦ is
not a product action, there is at most one possibility for the diagram G and hence
at most one universal compact homogeneous geometry of type C3.

It remains to show the existence of the geometry. There are two ways for this.
In Section 3.4 in [2], the construction of a polar action on the Cayley plane is
shown, in such a way that the resulting geometry is of the type described above.
Similarly to Section 3B in Part I, one could work out the precise orbit structure
for this polar action. There is a second and very explicit way to construct the
geometry in a purely algebraic way, as shown in [9]. We indicate it briefly at the
end of this note.

Proposition 6.7. Besides the geometry described in Section 3B in Part I there
exist, up to isomorphism, exactly one compact homogeneous geometry of type C3

which is not 2-covered by a building.

Proof. Let (G,∆) denote the exceptional compact homogeneous geometry of type
C3 which arises from the polar action on the Cayley plane as described in [2].
We claim first that ∆ is not covered by a building ∆′. Otherwise, there would
(by Theorem 2.22 in Part I and the subsequent remarks) exist a fiber bundle
Sm ∼= |∆′| → |∆| ∼= OP2, which arises from a free action of a compact Lie group E
on the building ∆′. However, such a fiber bundle Sm/E → OP2 does not exist. Its
mapping cone would be a finite 7-connected CW complex with cohomology ring
Z[x]/(x4) for a generator x in degree 8, which is impossible by Adams’ results on
the Hopf invariant. Theorem 5.1. and the subsequent remarks in [1] show this
explicitly.
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Hence (G,∆) is a compact homogeneous geometry of type C3 which is not 2-
covered by a building. By our classification of possible diagrams for such geomet-
ries, this geometry has to be in the category HCGG(C3), where G is the unique

simple complex of groups determined above. Let (Ĝ, ∆̂, {p̂, d̂, q̂}, ψ̂) denote the
universal homogeneous compact geometry in HCGG(C3). The actions of K and

L◦ on lk(p̂) and lk(q̂) are minimal by the classification in [4, 5]. Therefore the Ĝ-

action on ∆̂ is minimal, i.e., Ĝ has no proper compact connected chamber transitive
subgroup. Hence there exists a continuous surjective group homomorphism Ĝ→ G
which induces an equivariant morphism ∆̂→ ∆. We have to show that the kernel
F � Ĝ of the group homomorphism is trivial. We first show that the Lie algebra
f of F is trivial. We have Lie(Ĝ) ∼= Lie(G) ⊕ f, and Lie(G) ∼= so(3) ⊕ g2 by the
results in [2]. From the polar action on the Cayley plane as given in [2] we know
that |∆| ∼= OP2 in the coarse topology.

We put H1 = exp(so(3)) ⊆ Ĝp and H2 = exp(g2) ⊆ Ĝq and we note the
following. The group H1 and H2 induce transitive groups on the links lk({p̂, q̂}),
lk({p̂, d̂}) and lk({d̂, q̂}) in ∆̂ and hence the abstract group H = 〈H1 ∪ H2〉 acts

transitively on the chambers of ∆̂. Moreover, H1 and H2 consist of commutators,
hence H is a perfect group. Being path-connected, H ↪→ Ĝ is an analytic subgroup
with a Lie algebra h, see [3]. Since H is perfect, h is a compact semisimple Lie

algebra and hence H ⊆ Ĝ is compact. Since Ĝ is minimal, Ĝ = H and Lie(Ĝ) is
generated as a Lie algebra by Lie(H1) + Lie(H2).

By the formula given before 4.3 in Part I we have

dim Ĝ− dim Ĝp̂,d̂,q̂ ≤ 6 · 1 + 3 · 5 = 21

and thus dim(F ) ≤ 7. The projection

Lie(Ĝ) ∼= so(3)⊕ g2 ⊕ f −→ so(3)⊕ f

is surjective and annihilates Lie(H2) ∼= g2. Therefore Lie(H1) maps onto so(3)⊕ f.

But dim(Lie(H1)) = 3 and thus f = 0. It follows that |∆̂| → |∆| is in the coarse

topology a covering. Since |∆| ∼= OP2 is simply connected, |∆̂| = |∆| and F = {1}.
Finally, the Cayley plane admits no fixed-point free homeomorphism. Therefore no
group can act continuously and freely on OP2 and therefore the geometry (G,∆)
has no equivariant quotients. �

Construction 6.8 (The exceptional geometry). Let H denote the quaternion al-
gebra, and O the Cayley algebra. For a ∈ H with a2 = −1 put [a] = {±a}. For
b ∈ H and c ∈ O with b2 = c2 = −1 put [b, c] = {±(b, c)}. Let ∆ be the simplicial
complex whose maximal simplices are the sets {[a], [b, c], δ}, where δ : H −→ O is
an algebra homomorphism, with the property that

a ⊥ b and δ(b) = c.

The group G = Aut(H) × Aut(O) = SO(3) × G2 acts in the obvious way on ∆.
It is shown in [9] that ∆ is a simply connected geometry of type C3 and one can
check that (G,∆) fits the diagram G above. For example, we could put a = j,
b = i = c and δ : H ⊆ O. In this case it is not difficult to work out the stabilizers
of p = δ, d = [i, i] and q = [j].
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