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Abstract. Suppose that G is a locally compact group, that Γ is a discrete,
finitely generated group, and that

ϕ : G −→ Γ

is an ‘abstract’ surjective homomorphism. We are interested in conditions
which imply that ϕ is automatically continuous. We obtain a complete
answer to this question in the case where G is a topologically finitely gen-
erated locally compact abelian group or an almost connected Lie group.
In these two cases the well-known structure theory for such groups G

leads quickly to a solution. The question becomes much more difficult if
one assumes only that G is a locally compact group. This leads to in-
teresting questions about normal subgroups in infinite products and in
ultraproducts. �Los’ theorem, the solution of the 5th Hilbert problem, and
recent results by Nikolov–Segal can be combined to answer the question.
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1. Introduction

Suppose that G is a locally compact group, that Γ is a discrete, finitely gen-
erated group, and that

ϕ : G −→ Γ

is an ‘abstract’ surjective homomorphism. We are interested in conditions
which imply that ϕ is automatically continuous. We obtain a complete an-
swer to this question in the case where G is a topologically finitely generated
locally compact abelian group or an almost connected Lie group. In these two
cases the well-known structure theory for such groups G leads quickly to a
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solution. The question becomes much more difficult if one assumes only that
G is a locally compact group. This leads to interesting questions about normal
subgroups in infinite products and in ultraproducts. �Los’ theorem, the solu-
tion of the 5th Hilbert problem, and recent results by Nikolov–Segal can be
combined to answer the question.

The topic of this article is thus of a rather group-theoretic nature. However,
locally compact transformation groups are ubiquitous in geometry. Conversely,
several proofs in this article rely on geometry, at different levels of abstraction.
The ‘bootstrap Lemma’ 6.3 is based on a little exercise in spherical geometry,
which was still taught at German high schools in Günter Pickert’s early years.
But we also use some observations about euclidean and spherical buildings.

The article is organized as follows. In Sect. 2 we consider small abstract quo-
tients of locally compact abelian groups. In Sect. 3 we do the same for Lie
groups. Section 4 then extends these results to compact and to locally com-
pact groups. In Sect. 5 we make some observations about normal subgroups in
infinite products. This leads ultimately to questions about normal subgroups
in ultraproducts. We adopt a sheaf-theoretic viewpoint which is elementary
but useful. Section 6 gives a detailed proof for the nonexistence of countable
quotients of compact connected perfect groups, following Nikolov–Segal.

The necessary background material on Lie groups and locally compact groups
can be found in the excellent books by Hilgert and Neeb [13], Stroppel [31], and
Hofmann and Morris [16,17]. As the referee pointed out, it is likely that many
of our results can be extended to pro-Lie groups, using the structure theory
developed in [16]. At some places, this is straight-forward, as in Corollary 2.3,
or Lemma 4.1, which holds verbatim for pro-Lie groups. The generalization of
other results in this article would seem to require new ideas.

1.1. Notation and conventions

The cardinality of a set S is written as #S. We call a set S is countable
if #S ≤ ℵ0. Throughout this article, all topological groups and spaces are
assumed to be Hausdorff, unless stated otherwise. The identity component in
a topological group G is denoted by G◦. This is a closed normal subgroup of
G. We say that a topological group G is topologically finitely generated if G
has a finitely generated dense subgroup.

We call a quotient G/N of a topological group G abstract if no topological
assumptions like closedness of the subgroup N in G are made. Similarly, we
call a homomorphism between topological groups abstract if no continuity
assumptions are made.

We frequently use the fact that a subgroup of finite index in a finitely generated
group is also finitely generated. It suffices to prove this for finitely generated
free groups, where it follows from the Nielsen–Schreier theorem [27, 6.1.1].

A group Γ is called residually finite if the intersection of all normal subgroups of
finite index in Γ is trivial. Equivalently, Γ embeds in a product of finite groups.
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Every finitely generated abelian group is residually finite, and subgroups of
residually finite groups are again residually finite.

A group G is virtually ‘X’ (where ‘X’ is a group-theoretic property) if G has
a finite index subgroup which has property ‘X’.1

A group element g is called divisible if the equation xn = g has a solution
in the given group for every integer n ≥ 1. A group is called divisible if it
consists of divisible elements, and divisibly generated if it is generated by a set
of divisible elements. Divisibility will play an important role in some proofs.
The following group-theoretic facts illustrate some of the consequences and
non-consequences of divisibility.

1.2. Some facts about divisibility in groups

(i) Homomorphisms preserve divisibility.
(ii) A group of finite exponent (e.g. a finite group) contains no divisible el-

ements besides the identity. Hence a residually finite group contains no
divisible elements besides the identity. In particular, a finitely generated
abelian group contains no divisible elements besides the identity.

(iii) There exist finitely generated divisible groups. Moreover, every countable
group (e.g. the additive group Q) is isomorphic to a subgroup of some
2-generated group.

(iv) A connected locally compact group is divisibly generated.

Proof. Claim (i) is obvious. For (ii) we note that if a group H has finite ex-
ponent m > 1 and if h ∈ H is different from the identity, then the equation
xm = h cannot be solved in H. The claims (iii) and (iv) are much deeper. For
(iii), see [10] and [12, Thm. IV] or [27, 6.4.7]. Claim (iv) holds for all connected
pro-Lie groups, see [16, Lem. 9.52]. Every locally compact groups is a pro-Lie
group by the approximation theorem due to Gleason, Montgomery–Zippin,
and Yamabe [23, p. 175]. �
When we are concerned with continuity questions, we view every countable
group Γ as a discrete locally compact group. This is justified by the following
elementary fact.

Lemma 1.3. A locally compact countable group is discrete.

Proof. By the Baire category theorem, some and hence every singleton {g} ⊆ G
is open, see [6, XI.10]. �

2. The case where G is locally compact abelian

For locally compact abelian groups we have the following general result. Note
that a finitely generated abelian group is residually finite.

1 Finite group theory is therefore concerned with virtually trivial groups—this indicates the

drawbacks of unrestricted virtualization.
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Theorem 2.1. Suppose that G is a locally compact abelian group, that G/G◦

is topologically finitely generated, and that Γ is a countable residually finite
group. Suppose that

ϕ : G −→ Γ

is an abstract surjective group homomorphism. Then ϕ is continuous and open.

Proof. We proceed in four steps. The Steps (1) and (2) below follow loosely
the arguments in [24, Thm. 5.1].

(0) We may assume that G◦ = {1} and thus that G is topologically finitely
generated.
Since G◦ is divisible and since a residually finite group contains no non-
trivial divisible elements (see Sect. 1.2), ϕ is constant on G◦. Hence ϕ
factors through the continuous open homomorphism G −→ G/G◦.

(1) The claim is true if G is compact and if Γ is finite.
Let F ⊆ G be a finitely generated dense subgroup and let m denote the
exponent of Γ. Then Gm = {gm|g ∈ G} ⊆ G is a compact subgroup and
the compact abelian group G/Gm has finite exponent. The image of F
in G/Gm is finitely generated abelian of finite exponent and therefore
finite. On the other hand, F has dense image in G/Gm. Therefore G/Gm

is finite and thus Gm is open in G. Now Gm is contained in the kernel of
ϕ, hence ker(ϕ) is both open and closed. Therefore ϕ is continuous and
open.

(2) The claim is true if G is compact.
Let N denote the collection of all normal subgroups of finite index in Γ.
For Δ ∈ N let ϕΔ denote the composite G −→ Γ −→ Γ/Δ. By Step
(1), ker(ϕΔ) is closed. Hence ker(ϕ) =

�
{ker(ϕΔ)|Δ ∈ N} is closed.

Therefore G/ker(ϕ) is a countable locally compact group. By Lemma 1.3,
G/ker(ϕ) is discrete and therefore ker(ϕ) is open and ϕ is continuous and
open.

(2) The claim is true in general.
We may decompose the locally compact abelian group G topologically
as G = Rn × H, where H has a compact open subgroup K, see [17,
Thm. 7.57 (i)]. However, G◦ = {1} by Step (0), whence G = H has a
compact open subgroup K. Let Γ0 = ϕ(K). Then Γ0 ⊆ Γ is residually
finite and countable. The restriction ϕ : K −→ Γ0 is continuous and open
by Step (2). Since K ⊆ H is open, ϕ : H −→ Γ is continuous and open.

�
The following examples show that the assumptions on G and Γ cannot be
dropped.

Example 2.2. As an abstract group, the 1-torus U(1) ∼= R/Z is isomorphic to a
product of Prüfer groups and a rational vector space of uncountable dimension,
see e.g. [17, A1.43]. In particular, there exist (many) non-continuous surjective
homomorphisms U(1) −→ Q. Hence the condition that Γ is residually finite
cannot be dropped.
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The compact group G =
�∞

i=0 F2 admits many non-continuous surjective ho-
momorphisms onto F2 (where F2 denotes the field of two elements). Hence
the condition that G/G◦ is topologically finitely generated can also not be
dropped.

On the other hand, it is easy to extend the previous result to pro-Lie groups.

Corollary 2.3. Suppose that G is an abelian pro-Lie group, that G/G◦ is locally
compact and topologically finitely generated, and that Γ is a countable residually
finite group. Suppose that

ϕ : G −→ Γ

is an abstract surjective group homomorphism. Then ϕ is continuous and open.

Proof. The identity component G◦ is a connected pro-Lie group [16, 3.29], and
therefore divisible [16, Lem. 9.52]. Hence ϕ factors through the open homo-
morphism G −→ G/G◦. The claim follows now from Theorem 2.1. �

3. The case where G is an almost connected Lie group

Now we consider an abstract surjective group homomorphism

G −→ Γ,

where G is an almost connected2 Lie group and Γ is a finitely generated group.
The next result was observed (in different degrees of generality) by Goto [9],
Ragozin [26] and George Michael [7]. See also [17, Thm. 9.90] and [28, 94.21].
For the sake of completeness, we include a proof.

Theorem 3.1. Let G be a Lie group. If the Lie algebra Lie(G) is semisimple,
then every abstract normal subgroup N � G is closed.

Proof. Let N � G be a normal subgroup. Since G◦ ⊆ G is closed and open, it
suffices to show that N ∩ G◦ is closed in G◦ in order to show that N is closed.
Hence we may assume that G is connected, and we proceed by induction on
the dimension of the compact connected semisimple Lie group G. The claim
holds for trivial reasons if dim(G) = 0. For dim(G) > 0 we view N ⊆ G as a
topological group with respect to the subspace topology. Let N1 ⊆ N denote
the path component of the identity.

If N1 = {1}, then the path component of every element n ∈ N is trivial. Then
{gng−1|g ∈ G} = {n} holds for every n ∈ N . Thus N is contained in the
closed discrete group Cen(G) ⊆ G and therefore N is closed.

If N1 is nontrivial then there exists, by Yamabe’s Theorem (see [9] or [13,
Thm. 9.6.1]), a Lie group structure on N1 such that N1 �→ G is a con-
tinuous injection. In other words, N1 �→ G is a nontrivial connected ana-
lytic/virtual/integral Lie subgroup of G. Its Lie algebra Lie(N1) is then a
nontrivial ideal in Lie(G). Since Lie(G) is semisimple, the virtual subgroup

2 I.e. G/G◦ is finite.
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corresponding to any ideal in Lie(G) is closed: it is the connected centralizer
of the complementary ideal. Therefore N1 ⊆ G is closed and thus a closed Lie
subgroup of G. Now we may apply the induction hypothesis to N/N1 ⊆ G/N1.
The group N is the preimage of N/N1 under the continuous homomorphism
G −→ G/N1 and therefore closed in G. �
Corollary 3.2. If G is a connected Lie group whose Lie algebra is simple, then
every proper abstract normal subgroup of G is contained in the center of G. In
particular, G/Cen(G) is simple as an abstract group. �
Corollary 3.3. A connected semisimple Lie group has no proper abstract normal
subgroups of countable index. �
Now we come to the main result of this section. A variation is proved in
Proposition 4.3.

Theorem 3.4. Let G be a Lie group, with G/G◦ finite. Let Γ be a finitely
generated group and let

ϕ : G −→ Γ

be an abstract surjective homomorphism. Then Γ is finite and ϕ is continuous
and open.

Proof. The subgroup ϕ(G◦) ⊆ Γ has finite index and is therefore finitely gen-
erated. Hence it suffices to prove that ϕ is constant if G is connected.

Suppose that G is connected. Let R � G denote the solvable radical, i.e.
the unique maximal connected solvable closed normal subgroup of G, see [13,
Prop. 16.2.2.] and [28, Def. 94.18, Prop. 94.19]. Then the Lie algebra Lie(G/R)
is semisimple. We put N = ker(ϕ). By Theorem 3.1, NR ⊆ G is closed and
therefore a Lie subgroup. Since Γ ∼= G/N is countable, G/NR is a countable
and hence discrete Lie group. It follows that NR ⊆ G is open, hence G = NR.
Now we have Γ ∼= NR/N ∼= R/R ∩ N . Thus Γ is solvable. The connected Lie
group R is divisibly generated (see Sect. 1.2). It follows that the abelianization
Γab of Γ is both divisible and finitely generated abelian, whence Γab = {1}
(again by Sect. 1.2). On the other hand, Γ is solvable, hence Γab 
= {1} if
Γ 
= {1}. Hence Γ = {1}. �

Problem 3.5. Is the conclusion of Theorem 3.4 still true if we drop the as-
sumption that G/G◦ is finite?

4. Quotients of locally compact groups

We now extend the results from the previous sections to locally compact
groups. Here the fundamental work of Nikolov and Segal [24], as well as the
solution of the 5th Hilbert problem, enter in an essential way. But first we
draw a simple consequence from the facts collected in Sect. 1.2.

Lemma 4.1. Let G be a connected locally compact group and let E be a group
of finite exponent (e.g. a finite group), or a residually finite group. Then every



Vol. 107 (2016) On small abstract quotients of Lie groups 409

abstract homomorphism G −→ E is trivial. In particular, a connected locally
compact group has no abstract proper subgroups of finite index, and no non-
trivial residually finite quotients.

Proof. By Sect. 1.2, the group G is divisibly generated, and E contains no
divisible elements. Hence every homomorphism G −→ E is constant. For the
last assertion we note that a group G which has a proper finite index subgroup
H maps nontrivially into the finite symmetric group Sym(G/H). Hence the
existence of proper finite index subgroups implies the existence of proper finite
index normal subgroups. �
The situation is quite different for non-normal subgroups of countable index:
in connected Lie groups, such groups always exist.

Theorem 4.2. The group SLnC has subgroups of infinite countable index. There-
fore every connected Lie group G has subgroups of infinite countable index.

Proof. This is proved in [32, Thm. 2.1] and [20, Thm. 1]. The algebraic-
geometric reason is the following. Let p be a fixed prime. The group SLnQp

acts on its Bruhat–Tits building X, which has a countable set of vertices. Thus
SLnQp has subgroups of countable index, namely the parahoric subgroups.

Now let K denote the algebraic closure of Qp. The discrete valuation on Qp ex-
tends to a nondiscrete valuation on K, and there is a corresponding nondiscrete
euclidean building XK on which SLnK acts. This building is not simplicial any
more, but nevertheless it has a countable invariant subset of ‘vertices’. Thus
SLnK has subgroups of countable index.

Next we note that all algebraically closed fields of characteristic 0 and cardi-
nality 2ℵ0 are isomorphic to C. Thus SLnC ∼= SLnK has abstract subgroups
of countable index.

Finally, every connected Lie group G admits a nontrivial representation G −→
SLnC, for some n. Thus G has nontrivial abstract subgroups of countable index
as well, and the index cannot be finite by Lemma 4.1. �
More generally, one may look for subgroups in a locally compact group G
which are not Borel sets, or even not measurable with respect to the Haar
measure. Note that the σ-additivity of the Haar measure implies that sub-
groups of countable index cannot be measurable, so the subgroups appearing
in Theorem 4.2 cannot be measurable. The existence of non-measurable sub-
groups in general compact groups is studied in detail in a recent article by
Hernández et al. [11].

In contrast to Theorem 4.2, we have the following result for normal subgroups
of countable index. For the next results in this section, ‘countable’ may be
replaced by ‘of cardinality strictly less than 2ℵ0 ’ without changing any of the
arguments.

Proposition 4.3. Let G be a Lie group, with G/G◦ finite. Suppose that N �
G is an abstract normal subgroup of countable index. Then G/N is virtually
solvable. If G is connected, then G/N is solvable.
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Proof. Since the image of G◦ in G/N has finite index, it suffices to show that
the image of G◦ in G/N is solvable. So we may assume that G is connected. As
in the proof of Theorem 3.4, let R � G denote the solvable radical of G, Then
NR/R is a normal subgroup of countable index in the semisimple Lie group
G/R. By Corollary 3.3 we have NR = G. Thus G/N = NR/R ∼= R/N ∩ R is
solvable. �
In order to extend this result to general locally compact groups, a crucial
ingredient is Iwasawa’s splitting theorem. The global version of this result is
an extremely useful answer to Hilbert’s 5th problem.

Theorem 4.4 (The global splitting theorem). Let G be a locally compact group
and let U ⊆ G be a neighborhood of the identity. Then there is a compact
subgroup K ⊆ G contained in U , a simply connected Lie group L, and an open
and continuous homomorphism

ψ : L × K −→ G

with discrete kernel such that ψ(1, k) = k for all k ∈ K.

Proof. The local version of this result, assuming G to be connected and approx-
imable by Lie groups, is due to Iwasawa [18]. See also Gluškov [8]. The present
version (and some more remarks on the history) can be found in Hofmann and
Morris [15, Thm. 4.1] and [14, Thm. 4.4]. �
The next result by Nikolov–Segal is considerably more difficult to prove than
Proposition 4.3. A proof will be given in Sect. 6 below.

Theorem 4.5 (Nikolov–Segal). Let G be a compact group, with G/G◦ finite.
Suppose that N � G is an abstract normal subgroup of countable index. Then
G/N is virtually abelian. If G is connected, then G/N is abelian. If G/N is
residually finite, then N is closed.

Our final result about quotients of locally compact groups is as follows.

Theorem 4.6. Let G be a locally compact group, with G/G◦ compact. Suppose
that Γ is a finitely generated group and that

ϕ : G −→ Γ

is an abstract surjective homomorphism. Then Γ is finite. If G/G◦ is topolog-
ically finitely generated, then ϕ is continuous and open.

Proof. Let Γ0 = ϕ(G◦) and N = ker(ϕ). Since G/G◦ is compact and since
G/NG◦ is finitely generated, the main result [24, Thm. 5.25] implies that
G/NG◦ ∼= Γ/Γ0 is finite. Thus Γ0 is also finitely generated. We put ψ : L ×
K −→ G◦ as in Theorem 4.4 and we note that this homomorphism is neces-
sarily surjective. We consider the composite
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The connected Lie group L × {1} maps onto the finitely generated group
Γ0/ϕ̄({1} × K). By Theorem 3.4, we have ϕ̄({1} × K) = Γ0. In particular, K
maps onto the finitely generated group Γ0. Again by [24, Thm. 5.25], the quo-
tient Γ0 is finite. Since G◦ is divisibly generated (see Sect. 1.2), the group Γ0 is
trivial and Γ is finite. Moreover, ϕ factors through the projection G −→ G/G◦.
Again by [24, Thm. 5.25], the composite G −→ G/G◦ −→ Γ is continuous if
G/G◦ is topologically finitely generated. �
The previous proof relies heavily on Nikolov and Segal [24, Thm. 5.25], which is
stronger than Theorem 4.5 above. This result depends, among other things, on
the classification of the finite simple groups, and on their advanced structure
theory.

5. Products and ultraproducts of nonabelian simple groups

In order to prove Theorem 4.5, we will have to consider normal subgroups in
infinite products of compact semisimple Lie groups. In this section we take a
look at normal subgroups in products of abstract groups. We will see that this
leads almost inevitably to questions about ultraproducts.

If G1, . . . , Gm are nonabelian simple groups, then it is easy to see that the
product G1 × · · · × Gm is a perfect group, and that every proper normal
subgroup of the product is contained in the kernel of at least one projection
map

prj : G1 × · · · × Gm −→ Gj .

But both questions become considerably more interesting for infinite products
of groups.

First we look at products of perfect groups. Given a perfect group H, let c(H)
denote the commutator length of H, that is, the smallest integer n such that
every element h ∈ H can be written as a product of at most n commutators.
If no such integer exists, we put c(H) = ∞.

Lemma 5.1. Let (Gi)i∈I be a family of perfect groups. Put I∞ = {i ∈ I|c(Gi) =
∞}. Then the product

�
i∈I Gi is perfect if and only if I∞ is finite and if the

function i �→ c(Gi) is bounded on I0 = I − I∞.

Proof. Suppose that I∞ is finite. A finite product of perfect groups is perfect,
hence L =

�
j∈I∞

Gj is perfect. If the function k �→ c(Gk) is bounded on I0 by

a constant n ∈ N, then every element in M =
�

k∈I0
Gk is a product of at most

n commutators, and hence M is perfect as well. Therefore
�

i∈I Gi = L × M
is perfect.

If I∞ is infinite or if the function k �→ c(Gk) is unbounded on I0, then we
can find an injection ι : N −→ I such that for every n ∈ N there is an element
gι(n) ∈ Gι(n) which cannot be written as a product of less than n commutators.
Put gj = 1 if j 
∈ ι(N). Then (gi)i∈I is an element in

�
i∈I Gi which is not a

product of commutators. Therefore
�

i∈I Gi is not perfect. �
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In view of the previous lemma, we should expect to encounter lots of ‘strange’
normal subgroups in infinite products of nonabelian simple groups. In partic-
ular we cannot expect to catch all proper normal subgroups by the projection
maps

prj :
�

i∈I

Gi −→ Gj .

But if we replace the finiteness of the index set I by a compactness condition,
we gain some control over normal subgroups in the product. This leads directly
to ultraproducts, as we will see. We first change our viewpoint slightly.

5.2. Presheaves of groups

Recall that a presheaf of groups G on a topological space X is a contravariant
group functor

G : Open(X) −→ Group

which assigns to every open set U ⊆ X a group G(U). For open sets U ⊆ V ⊆
X, there are restriction homomorphisms prV

U : G(V ) −→ G(U), subject to the
usual compatibility condition prV

U ◦ prW
V = prW

U , for U ⊆ V ⊆ W , and with
prU

U = idG(U). Recall also that the stalk at a point p ∈ X is defined as the
direct limit

G(p) = lim
→

{G(U)|U ∈ Open(U) and p ∈ U}.

For every p ∈ U ∈ Open(X), there is a natural restriction homomorphism

prU
p : G(U) −→ G(p).

Given a continuous map ϕ : X −→ Y between topological spaces, there is the
direct image presheaf ϕ∗G on Y which assigns to W ∈ Open(Y ) the group

ϕ∗G(W ) = G(ϕ−1(W )).

We note that ϕ∗G(Y ) = G(X).

5.3. Products of groups as presheaves

We may view the family of groups (Gi)i∈I as the group-valued presheaf G on
the discrete topological space I which assigns to every nonempty subset J ⊆ I
the group GJ =

�
j∈J Gj , and to ∅ ⊆ I the trivial group. The stalks are then

the groups G(i) = Gi. The problem that not all normal subgroups in
�

i∈I Gi

can be detected by the projection maps prj :
�

i∈I Gi −→ Gj can be rephrased
as follows:

There are not enough stalks in the space I in order to detect all
normal subgroups in the product

�
i∈I Gi.

We remove this deficiency by ‘enlarging’ I through a map I −→ X, where X
is a compact space.
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Proposition 5.4. Suppose that (Gi)i∈I is a family of groups and that N ��
i∈I Gi is a normal subgroup. Let X be a compact space and let ι : I −→ X

be any map. If N maps under the composite homomorphism

N �→
�

i∈I

Gi

∼=−−→ ι∗G(X) −→ ι∗G(p)

onto ι∗G(p), for every p ∈ X, then N contains the derived group of
�

i∈I Gi.

Proof. We identify
�

i∈I Gi with ι∗G(X). Assuming that N surjects onto all
stalks ι∗G(p), and given any two elements g, h ∈ ι∗G(X), we will show that N
contains [g, h].

Let p ∈ X. Since N maps under prX
p onto ι∗G(p), there is an open neighbor-

hood Up ⊆ X of p and an element np ∈ N such that prX
Up

(np) = prX
Up

(g). Since

X is compact, we can cover X by finitely many such sets Up1
, . . . , Upr

. For
s = 1, . . . , r, put ns = nps

, and put

Is = ι−1(Ups
) and I 	

s = Is − (I1 ∪ · · · ∪ Is−1).

Then

I = I 	
1∪̇ · · · ∪̇I 	

r and ι(Is) ⊆ Ups
.

For s = 1, . . . , r we define elements ms ∈ �
i∈I Gi by

(ms)i =

�
hi if i ∈ I 	

s

1 else.

Then

([ns,ms])i =

�
([g, h])i if i ∈ I 	

s

1 else.

Therefore [g, h] = [n1,m1] . . . [nr,mr] ∈ N . �
In a completely analogous way, we have the following result

Proposition 5.5. Let X be a compact space, let (Gi)i∈I be a family of groups,
and let ι : I −→ X be a map. Then

�
i∈I Gi is perfect if and only if every stalk

ι∗G(p) is perfect.

Proof. First of all we note that it is clear from the construction of ι∗G that
the restriction homomorphisms prU

V are always surjective (such a presheaf is
called flabby), hence G(X) maps onto G(p), for every p ∈ X. The image of a
perfect group is perfect, so one implication is clear.

Now let g ∈ �
i∈I Gi and assume that every stalk ι∗G(p) is perfect. Hence

for every p ∈ X there are elements a1, b1, . . . , an, bn ∈ �
i∈I Gi such that

prX
p ([a1, b1] . . . [an, bn]) = prX

P (g). Again, this relation holds then in some open
neighborhood Up of p. Now X is covered by finitely many such sets U1 =
Up1

, . . . , Um = Upm
, where

prX
Us

(g) = prX
Us

[as,1, bs,1] . . . [as,n, bs,n].
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The number n can be chosen uniformly. By a similar argument as in the proof
of Proposition 5.4, there is a disjoint decomposition I = I 	

1 ∪ · · · ∪ I 	
m with

ι(I 	
s) ⊆ Us. We put

�(as,t)i
=

�
(as,t)i if i ∈ I 	

s

1 else
and �(bs,t)i

=

�
(bs,t)i if i ∈ I 	

s

1 else.

Then g = [�a1,1, �b1,1] . . . [�am,n, �bm,n]. �
Now we look at specific choices for X. There are (a least) three obvious can-
didates.

Example 5.6 (The trivial case). If X = {p} is a singleton and ι is the constant
map, then ι∗G(p) =

�
i∈I Gi. Obviously, the Propositions 5.4 and 5.5 tell us

nothing new.

Example 5.7 (The cofinite case). If X = Î = I ∪ {∞} is the Alexandrov

compactification of I and ι : I −→ Î is the inclusion, then ker(prÎ
∞) is the

restricted product
res�

i∈I

Gi = {(gi)i∈I |gi = 1 for almost all i} �
�

i∈I

Gi.

Thus
�

i∈I Gi is perfect if and only if each Gi is perfect, and if in addition�
i∈I Gi

� �res

i∈I Gi is perfect (compare this with Lemma 5.1).

If
�

i∈I Gi is perfect and if N �
�

i∈I Gi is a proper normal subgroup with

prX
i (N) = Gi for all i ∈ I (an example of such a group is N =

�res

i∈I Gi), then

N
� �res

i∈I Gi

�

= �

i∈I Gi.

Example 5.8 (The ultraproduct case). The real case of interest is however when
X = βI is the Čech–Stone compactification of I, with the standard inclusion
ι : I −→ βI. Recall that βI can be identified with the set of all ultrafilters on I.
The points j ∈ I correspond to the principal ultrafilters via j �→ {J ⊆ I|j ∈ J},
whereas the ‘new’ points in βI correspond to the free ultrafilters3 on I. For
J ⊆ I put J∗ = {μ ∈ βI|J ∈ μ}. Then {J∗|J ⊆ I} is a basis for the topology
on βI. Given μ ∈ βI, the set {J∗|J ∈ μ} is a neighborhood basis of μ. It
follows that ι∗G(μ) = Gj if μ is the principal ultrafilter generated by j. But if
μ is a free ultrafilter, then ι∗G(μ) is the ultraproduct (see [3, Ch. 5])

ι∗G(μ) =
�

i∈I

Gi

�
μ,

where we identify two sequences (gi)i∈I , (hi)i∈I if {j| gj = hj} ∈ μ.4 We write

prμ = prβI
μ :

�

i∈I

Gi −→
�

i∈I

Gi

�
μ

for the corresponding projection map.

3 Also called non-principal ultrafilters.
4 One may think of the elements of μ as sets of measure 1. Thus two sequences are considered

to be equivalent if they differ only on a set of measure 0.
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By Proposition 5.5, the product
�

i∈I Gi is perfect if and only if each Gi is

perfect and if for every free ultrafilter μ on I, the ultraproduct
�

i∈I Gi

�
μ is

perfect.

If the product
�

i∈I Gi is perfect and if N �
�

i∈I Gi is a proper normal
subgroup, then by Proposition 5.4 either there exists an index j ∈ I with
prj(N) 
= Gj , or there exists a free ultrafilter μ such that the image of N in�

i∈I Gi

�
μ is different from

�
i∈I Gi

�
μ.

We record this last result for later use.

Proposition 5.9. Let (Gi)i∈I be a family of groups. Suppose that the product�
i∈I Gi is perfect and that N �

�
i∈I Gi is a proper normal subgroup. Then

either there exists an index j ∈ I with prj(N) 
= Gj or there exists a free
ultrafilter μ on I such that prμ(N) 
= �

i∈I Gi

�
μ. �

Products and ultraproducts of finite simple groups and their normal subgroups
have been extensively studied. See e.g. [25,29,32] and the literature quoted
there. The normal subgroup lattice of ultraproducts of compact simple Lie
groups is studied in detail in [30].

6. Normal generation of compact simple Lie groups

We call a Lie group G almost simple if it is connected and if its Lie algebra is
simple. Let G be a compact almost simple Lie group. Then the center Cen(G) is
finite and G/Cen(G) is simple as an abstract group by Theorem 3.1. Moreover,
the conjugacy class

C(a) = {gag−1|g ∈ G}

of every non-central element a ∈ G generates G. We will now re-prove this in
a completely different way. The new approach has the advantage that it says,
in a quantitative way, how fast a conjugacy class generates the whole group.

6.1. Some observations

Suppose that G = SU(n). The conjugacy class of a matrix a ∈ SU(n) is
determined by its spectrum (with its multiplicities). Given such a spectral
datum, the task is therefore to write an arbitrary element g ∈ SU(n) as a
product g = a1 . . . am of special unitary matrices a1, . . . , am with a prescribed
spectrum.5

This viewpoint shows also that there are lower bounds on the number of matri-
ces needed. Consider for example the group G = SO(2k + 1), for k ≥ 1. Every
element in g ∈ SO(2k + 1) can be written as a product of an even number of
reflections. Let g ∈ SO(2k + 1) be a matrix with exactly one real eigenspace
E ⊆ R2k+1, of dimension dim(E) = 1. Then g cannot be written as a product

5 This problem is ultimately related to Horn inequalities, Schubert calculus and buildings,

see e.g. [2,19,21].
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of less than 2k be reflections. To see this, note that every reflection fixes a
hyperplane. The intersection of less than 2k hyperplanes in R2k+1 has dimen-
sion at least 2, hence a product of less than 2k reflections fixes a 2-dimensional
subspace pointwise. The reflections themselves are not in SO(2k+1), but their
negatives are. Hence we have here a lower bound on the number of multipli-
cations of a fixed conjugacy class needed, which grows with the rank of the
group.

We will prove in Theorem 6.11 that there exists a rational real function f ,
and on every simply connected almost simple compact Lie group G a nonneg-
ative bounded continuous real class function σ̂ with the following property. If
σ̂(a) > θ, then every element in G is a product of less than f(θ) conjugates of
a, a−1. This is a first-order property of compact Lie groups, which extends by
�Los’ theorem to ultraproducts. Combining Proposition 5.9 with the structure
theorem for compact connected groups, we obtain then a proof of Theorem 4.5.

In what follows, we put for a nonnegative real number r

�r� = min{k ∈ N|k ≥ r}

and we note that

�r� < r + 1.

Our whole approach follows closely the reasoning in Nikolov and Segal [24],
pp. 582–595, combined with a tweak introduced in [30]. However we avoid
the notion of asymptotic cones of metric spaces (the ultralimits in loc.cit.)
altogether. Instead we work bare hand with ultraproducts.

6.2. Some elementary calculations

We first consider the case of the almost simple matrix group

G = SU(2) =
�
( c s

−s̄ c̄ ) ∈ C2×2
�� cc̄ + ss̄ = 1

�
.

For c = ±1 we obtain the 2 × 2 identity matrix 1 and its negative −1, re-
spectively. Note that Cen(SU(2)) = {±1}. We identify SU(2) with the round
3-sphere in C2 ∼= R4, and we endow it with the unique bi-invariant Riemannian
metric d of diameter π (so d is the spherical or angular metric). We fix the
maximal torus

T =
�
( c

c̄ ) ∈ C2×2
�� cc̄ = 1

�
⊆ SU(2)

and we note that every element in SU(2) is conjugate to an element in T .

Now we use some elementary spherical geometry. The conjugation action of G
on itself is by rotations around the axis passing through ±1. The conjugacy
class C(a) = {gag−1|g ∈ G} of an element a ∈ G − {±1} is thus a round
2-sphere of spherical radius θ, where θ

2 = min{d(1, a), d(−1, a)} ∈ [0, π
2 ]. Then

C(a)a−1 is a round sphere of the same shape, but passing through the identity
element 1 ∈ G. The set of all conjugates of the set C(a)a−1, which coincides
obviously with C(a)C(a−1), is thus the closed metric ball

C(a)C(a−1) = Bθ(1)
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consisting of all b ∈ G whose spherical distance from 1 is at most θ. Next we
note that we have for every θ ∈ [0,π] that

G = Bθ(1) . . . Bθ(1)� �� �
kfactors

whenever kθ ≥ π.

In particular we have shown that every element in SU(2) is a product
not more than 2�π

θ � conjugates of a and a−1.

The quantity θ can be defined in a more natural way. We consider the root (or
character)

δ : T −→ U(1), δ ( c
c̄ ) = c2.

For c ∈ U(1) we denote by �(c) ∈ [0,π] the spherical (or angular) distance
between 1 and c on the unit circle. Thus �(ab) ≤ �(a) + �(b) and �(ā) = �(a)
hold for all a, b ∈ U(1). Then we have for all a ∈ T that the conjugacy class
C(a) is a sphere of diameter

θ = �(δ(a))

(where a ‘sphere of diameter 0’ is meant to be a point.) Using these elementary
observations, we have the following ‘bootstrap lemma’.

Lemma 6.3. Let H = H0 · H1 · · · Hs be a compact connected Lie group which
is a central product of groups Hi

∼= SU(2), for 1 ≤ i ≤ s, and a torus H0.
For each factor Hi

∼= SU(2) with 1 ≤ i ≤ s we fix a torus Ti ⊆ Hi and a
root δi : Ti −→ U(1) exactly as in Sect. 6.2. Suppose that 0 < θ ≤ π and that
h ∈ H is an element such that �(δi(h)) ≥ θ holds for all 1 ≤ i ≤ s. Then
every element in the subgroup H1 ·H2 · · · Hs ⊆ H is a product of at most 2�π

θ �
conjugates of h and h−1.

Proof. We write h as a product h = h0h1 · · · hs, with hi ∈ Hi. Then C(h)C(h−1)
is the product of the s commuting sets (C(hi)C(h−1

i )), with 1 ≤ i ≤ s. There
appears no more factor in H0, because H0 is in the center of H and because
h0 and h−1

0 cancel out. The claim follows now from the observations in Sect.
6.2, applied to each Hi individually. �
Now we turn to root systems in compact almost simple Lie groups in general.
The books [1,4,13,17] are excellent references for the facts that we need.

6.4. Roots in a compact Lie group

Suppose that G is a compact simply connected almost simple Lie group. We
fix a maximal torus T ⊆ G and its character group X∗(T ) = Hom(T,U(1)).
Associated to T we have the root system Φ ⊆ X∗(T ). The special case of
G = SU(2), where Φ = {±δ}, was described in Sect. 6.2.

Let Δ ⊆ Φ be a system of simple roots, Δ = {δ1, . . . , δr}. Then r = dim(T )
is the rank of G. There is a canonical isomorphism V = X(T )∗ ⊗ R ∼=
HomR(Lie(T ), R), and Δ is a basis of this real vector space. There is also
a canonical inner product on V , and Φ is a reduced irreducible root sys-
tem in the vector space V . The reflection group generated by Φ is the Weyl
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group W = W (Φ). The Weyl group is canonically isomorphic to N/T , where
N = NorG(T ) is the normalizer of T in G.

There is also the cocharacter group X∗(T ) = Hom(U(1), T ), and a natural
isomorphism X∗(T )⊗R ∼= Lie(T ). Associated to every root α there is a coroot
α∨, with α(α∨(c)) = c2. The action of W (Φ) on Lie(T ) coincides with the
adjoint action of N/T .

6.5. Some more definitions

For a subset Δ	 ⊆ Δ we denote by TΔ� the #Δ	-dimensional subtorus spanned
by the coroots {δ∨|δ ∈ Δ	}, i.e.

TΔ� =
�

{δ∨(c)|δ ∈ Δ	 and c ∈ U(1)} ⊆ T.

We now define real-valued continuous functions σ and σ̂ on T by

σ(h) =
1

r

r�

i=1

�(δi(h))

and

σ̂(h) = max{σ(w(h))|w ∈ W}.

Lemma 6.6. The function σ : T −→ R has the following properties.

(i) σ(h) = 0 holds if and only if h ∈ Cen(G).
(ii) σ(h) = σ(h−1).
(iii) σ(hh	) ≤ σ(h) + σ(h	).
(iv) σ(T ) = [0,π].

The function σ̂ has the same properties (i)–(iv). In addition, σ̂ extends uniquely
to a continuous class function on G.

Proof. Properties (ii) and (iii) are clear from the definition (both for σ and for
σ̂). It is also clear from the definition that σ and σ̂ take their values in [0,π].
Both σ and σ̂ map the identity element in T to 0. Consider the Lie group
homomorphism

P : T −→ U(1) × · · · × U(1), P (h) = (δ1(h), . . . , δr(h)).

This homomorphism has maximal rank r [this can be seen from the coroots
δ∨
i —the homomorphism P surjects onto each factor U(1)] and is therefore

surjective, because the target group is connected. Now σ(h) is the distance be-
tween P (h) and the identity element, with respect to the 1

r
-scaled �1-product

metric on the target group. Therefore σ assumes the value π. Since T is con-
nected, σ(T ) = [0,π]. It follows that σ̂(T ) = [0,π], and hence claim (iv) holds.
For claim (i) we note that the kernel of P is precisely the center of G, see [1,
Def. 4.38, Prop 5.3] or [4, Ch. V, Prop. 7.16]. Indeed, the adjoint action of
T on Lie(G) ⊗R C is precisely given by the characters, and the kernel of this
action is the center of G. Finally, the function σ̂ is by construction invariant
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under W = NorG(T )/T . Therefore it extends uniquely to a continuous class
function on G, see [4, Ch. IV, Cor. 2.7]. �

6.7. The root system, continued

We keep the notation and the assumptions from Sect. 6.4. Corresponding to
every simple root δi ∈ Δ there is a connected subgroup Hi of type Lie(Hi) ∼=
su(2), see [13, Lem. 12.2.15]. If two simple roots δi and δj are orthogonal, then
they are strongly orthogonal, i.e. δi ± δj 
∈ Φ. It follows from the commutator
relations in the complexified Lie algebra Lie(G) ⊗R C that then the groups Hi

and Hj commute, [Hi,Hj ] = 1.

Lemma 6.8. Since G is simply connected, the groups Hi are isomorphic to
SU(2) and the root δi restricts to a root on T ∩ Hi as described in Sect. 6.2.

Proof. Let Γ ⊆ Lie(T ) denote the subgroup generated by the coroots. Since
G is simply connected, this group coincides with the kernel I of the homo-
morphism exp: Lie(T ) −→ T , see [13, Prop. 12.4.14] or [4, Ch. V Thm. 7.1].
By [13, Prop. 12.4.10], we have for every simple root δ ∈ Δ a homomorphism
ρδ : SU(2) −→ G which maps the torus elements ( c

c̄ ) in SU(2) into T , such
that δ(ρδ(

c
c̄ )) = c2. The composite c �→ ρδ(

c
c̄ )) coincides with the coroot

δ∨. Now δ∨(−1) = exp(1
2δ∨) 
= 1, because 1

2δ∨ is not in Γ = I. Therefore ρδ is
injective. �
Now we get to the following key observation.

Key Lemma 6.9 (Nikolov–Segal). With the notation and assumptions as in
Sect. 6.4, let G be a compact simply connected almost simple Lie group of rank
r, with maximal torus T ⊆ G. Let θ be a positive real number, and let h ∈ T
be an element with σ(h) ≥ θ > 0. Then there exists a set Δ0 ⊆ Δ of pairwise
orthogonal simple roots such that the following conditions are simultaneously
satisfied.

(a) Δ0 has at not less than rθ
4 elements.

(b) Every element a ∈ TΔ0
is a product of at most 2�2π

θ � conjugates of h and

h−1.

Proof. We put Δ1 = {δ ∈ Δ|�(δ(h) ≥ θ/2} and t = #Δ1. Now we count

θ ≤ σ(h) ≤ 1

r

�
t + (r − t)

θ

2

�
≤ t

r
+

θ

2
,

whence rθ
2 ≤ t.

We claim that Δ1 contains a subset Δ0 consisting of pairwise orthogonal roots,
with t

2 ≤ #Δ1. We postpone the proof of this claim, which is easy and purely

combinatorial, to Sect. 6.15. We have thus #Δ0 ≥ rθ
4 .

Now we apply Lemma 6.3 to the group H generated by T and the Hi with
δi ∈ Δ0. We conclude that every element in TΔ0

⊆ H is a product of at most
2� 2π

θ � conjugates of h and h−1. �
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The last ingredient that we need is the following representation theoretic fact.

Lemma 6.10. Let Φ be a reduced irreducible root system of rank r in a real r-
dimensional vector space V , let Δ ⊆ Φ be a set of simple roots and let Δ0 ⊆ Δ
be a nonempty set consisting of s pairwise orthogonal roots. Let W denote the
Weyl group of Φ. Then there exist elements w1, . . . , wt ∈ W with the following
properties.

(1) w1(Δ0) ∪ · · · ∪ wt(Δ0) generates V .
(2) t ≤ 2r

s
+ 3.

Again we postpone the proof to Sect. 6.15, and state first the main result.

Theorem 6.11. (Nikolov–Segal) Let G be a compact simply connected almost
simple Lie group of rank r. Suppose that h ∈ G is an element with σ̂(h) ≥
θ > 0. Then every element of G can be written as a product of less than
f(θ) = 2( 8

θ + 3)(2π
θ + 1) conjugates of h and h−1.

Proof. Let T ⊆ G be a maximal torus. Every element in G is conjugate to an
element in T , see [1, Thm. 4.21]. Since σ̂ is a class function, we may assume
that h ∈ T . After conjugating h further by an element in the Weyl group
W = NorG(T )/T , we can assume that σ(h) = σ̂(h).

We use the notation set up in Sect. 6.4. By the Key Lemma 6.9, there is a
nonempty set Δ0 of s pairwise orthogonal simple roots, with s ≥ rθ

4 . Moreover,

we can generate the torus TΔ0
in less than 2(2π

θ + 1) steps from conjugates

of h and h−1. Let w1, . . . , wt be as in Lemma 6.10. Then the t-fold prod-
uct multiplication map TΔ0

× · · · × TΔ0
−→ T which maps (a1, . . . , at) to

w1(a1)w2(a2) · · · wt(at) is a surjective homomorphism, because it is a homo-
morphism of connected Lie groups whose derivative at the identity is surjective.
Hence every element in T is a product of not more than 2t(2π

θ + 1) conjugates

of h and h−1. Moreover, t ≤ 2r
s

+ 3 and 1
s

≤ 4
rθ , whence t ≤ 8

θ + 3. Since every
element in G is conjugate to an element in T , the claim follows. �

6.12. A geometric interpretation

The adjoint action of G on itself is a prototype of a polar action, as studied
in Riemannian geometry. The conjugacy classes in G near the identity ele-
ment are the flag manifolds for the spherical Tits building Δ associated to the
complexification GC of G. The question that is addressed by Theorem 6.11
can be re-stated as follows. Let X = G/Cen(G). Endowed with a bi-invariant
Riemannian metric, this is a symmetric space of compact type.

Let κ ⊆ X be a nontrivial geodesic segment. Show that every element
g ∈ X can be joined to the identity 1 ∈ X by a piecewise geodesic
path, whose pieces are conjugates of κ under the isometric action of
G × G on X. Bound the number of pieces needed in terms of κ.
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It would be interesting to know if there is a ‘Riemannian proof’ of Theo-
rem 6.11, starting from this viewpoint of broken geodesics, using Morse theory
and polar foliations.

In any case we now combine Theorem 6.11, Proposition 5.9 and �Los’ Theo-
rem 6.13 in order to prove Theorem 4.5. We need some elementary facts from
the model theory of ultraproducts. Any old-fashioned logic text book such as
[3,5] will do as a reference. See also [22, pp. 5–7] for a very brief introduction
aimed at metric geometers.

Theorem 6.13 (�Los’ theorem). Let (Mi)i∈I be a family of L-structures, for
some first order language L. Let μ be a free ultrafilter on I and let ∗M denote
the ultraproduct with respect to μ. Let ψ be a sentence in L. Then ψ is true in
∗M if and only if the set Iψ = {i ∈ I|ψ is true in Mi} is contained in μ.

The proof of �Los’ theorem is not difficult and well explained e.g. in Bell–
Slomson [3, Ch. 5, Thm. 2.1].

Proposition 6.14. Let (Gi)i∈I be a family of compact simply connected almost
simple Lie groups. Let N �

�
i∈I Gi be an abstract normal subgroup of count-

able index. Then N =
�

i∈I Gi.

Proof. Assume to the contrary that N 
= �
i∈I Gi is of countable index. If

prj(N) = Kj 
= Gj for some index j ∈ I, then Kj ⊆ Gj is contained in the
center of Gj by Theorem 3.1 and hence G/N maps onto the uncountable group
Gj/Kj , which is impossible. Thus prj(N) = Gj holds for all j ∈ I. In a com-
pact semisimple Lie group, every element is a commutator by Goto’s theorem,
see [17, Cor. 6.56]. Thus

�
i∈I Gi is perfect and we may apply Proposition 5.9.

It follows that there exists a free ultrafilter μ on I such that

prμ(N) = Kμ 
=
�

i∈I

Gi

�
μ.

Let f(θ) = 2( 8
θ + 3)(2π

θ + 1).

We put ∗G =
�

i∈I Gi

�
μ for short. We choose for every i ∈ I a maximal torus

Ti ⊆ Gi, a set of simple roots, and we define σ̂i : Gi −→ [0,π] as in Sect. 6.4. In
the ultraproduct we obtain an abelian subgroup ∗T =

�
i∈I Ti

�
μ ⊆ ∗G. The

ultraproduct of the σ̂i is denoted by ∗σ̂. This function takes its values in the
nonstandard reals ∗R (the ultraproduct of R with respect to μ, a real closed
non-archimedean ordered field).

Let m be a positive integer. Then by Theorem 6.11, the following first-order
sentence is true in each Gi.

6

If g ∈ G with σ̂i(g) ≥ 1
m

, then every element in Gi is a product of

at most f( 1
m

) conjugates of g.

6 The relevant first-order language contains predicates for elements of groups G, T , of a field

R, function symbols for maps σ̂, f , function symbols ·, +, × for the group multiplication,

the addition and multiplication in a field, and a relation symbol < for an ordering on the

field. The number m is written out as 1 + 1 + · · · + 1.
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By �Los’ Theorem 6.13, the same sentence is true in the ultraproduct ∗G. Also,
every element in ∗G is conjugate to an element in ∗T (either by �Los’ theorem,
or directly, because this is true in each Gi by [1, Thm. 4.21]). Therefore ∗T ∩Kμ

consists necessarily of elements whose σ̂-value is infinitesimally small. Let A ⊆
∗T denote the collection of all elements in ∗T whose ∗σ̂-value is infinitesimally
small. By �Los’ Theorem and and the properties of σ̂ stated in Lemma 6.6,
A ⊆ ∗T is a subgroup. Moreover, |∗σ̂(a) − ∗σ̂(b)| is infinitesimally small if
a, b ∈ ∗T are elements with ab−1 ∈ A. Consider the standard part function
std: ∗Rfin −→ R which assigns to every finite nonstandard real its real part.
The map ∗σ̂ surjects ∗T onto the set Q = {x ∈ ∗R|0 ≤ x ≤ π} (again by
Lemma 6.6 and �Los’ theorem). Then std surjects Q onto [0,π] and we have a
commuting diagram

Therefore the quotient ∗T/A is uncountable. Now ∗T/∗T ∩ Kμ injects into
∗G/Kμ and surjects onto ∗T/A. It follows that ∗G/Kμ is uncountable. Hence
G/N is also uncountable, a contradiction. �
Proof of Theorem 4.5. Let ϕ denote the projection G −→ G/N and put Γ =
G/N and Γ0 = ϕ(G◦). Then Γ0 has finite index in Γ.

By the approximation theorem for compact connected groups, there exists a
compact connected abelian group Z, a family (Gi)i∈I of simply connected
compact almost simple Lie groups and a continuous central surjective homo-
morphism ψ : Z ×

�
i∈I Gi −→ G◦ with totally disconnected kernel, see [17,

Thm. 9.24]. By Theorem 6.11, ϕ ◦ ψ annihilates
�

i∈I Gi, because Γ0 is count-
able. Since

�
i∈I Gi is the derived group of Z×

�
i∈I Gi, the group Γ0 is abelian,

and thus Γ is virtually abelian.

Suppose now that Γ is residually finite. Then Γ0 is also residually finite. On
the other hand, Z is connected and therefore divisible. It follows from Sect.
1.2 that ϕ is constant on Z and hence constant on G◦. Thus ϕ is continuous
and open, and Γ is finite. �

6.15. The remaining combinatorial proofs

Proof of the claim made in the proof of the Key Lemma 6.9. Let Γ denote the
underlying graph of the Dynkin diagram of Φ. The vertices of Γ are the simple
roots in Δ. This graph is a tree and admits therefore a coloring, using red and
blue, such that no two adjacent nodes have the same color. Simple roots which
are not joined by an edge are orthogonal. Thus both the red and the blue roots
form sets of pairwise orthogonal roots. In particular we have partitioned Δ1

into two sets of pairwise orthogonal roots. One of these sets has at least #Δ1

2
elements. �
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Proof of Lemma 6.10. Given a set Δ0 consisting of s ≥ 1 pairwise orthogonal
simple roots, let t be the minimum number of elements w1, . . . , wt ∈ W with
the property that w1(Δ0) ∪ · · · ∪ wt(Δ0) generates V . The action of W on V
is irreducible (because Φ is irreducible). Therefore the W -orbit of every root
α generates V . Given α, there exist thus r elements w1, . . . , wr ∈ W such that
w1(α), . . . , wr(α) is a basis for V . This shows that we have always

t ≤ r,

and that t = r if s = 1. Now we consider the different types of root systems of
rank r ≥ 2, and we assume that s > 1.

For type Ar the Weyl group W is the symmetric group on the set {1, . . . , r +
1}. The reflections determined by the roots are the transpositions (i, j) with
i < j. The reflections corresponding to the simple roots δ1, . . . , δr are the
transpositions (i, i + 1), for 1 ≤ i ≤ r. The reflections corresponding to the
roots in Δ0 are then pairwise commuting transpositions. Given 1 ≤ k ≤ r −
2s − 1, there exists therefore a permutation w ∈ W which conjugates these s
commuting transpositions to (k, k+1), (k+2, k+3), . . . , (k+2s−2, k+2s−1).
Thus w maps Δ0 to the set of roots ε1δk, ε2δk+2, . . . , εsδk+2s−2 ⊆ Φ, with
εi = ±1. Since V is spanned by δ1, . . . , δr, we may simply count how many
subdiagrams of type A2s are needed to cover the whole Ar-diagram. We obtain
thus an upper bound

t ≤ 2
� r

2s

�
<

r

s
+ 2 <

2r

s
+ 3.

For the types Br,Cr,Dr.Er and r ≥ 5 we note that there is a root subsystem
Φ	 ⊆ Φ of type Ar−1, such that Δ0 intersects this subsystem in a set of size
at least s − 1 > 0. The r − 1-dimensional subspace V 	 generated by Φ	 is thus
contained in a subspace generated by at most 2� r−1

2(s−1)� W -translates of Δ0.

Since V 	 is not invariant under W , we can generate V if we add one more
W -translate of Δ0, i.e.

t ≤ 2

�
r − 1

2s − 2

�
+ 1 <

r − 1

s − 1
+ 3 ≤ 2r

s
+ 3.

One checks directly that for 2 ≤ r ≤ 4 and 2 ≤ s < r one has r ≤ 2r
s

+ 3,

whence t ≤ 2r
s

+ 3. �
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[4] Bröcker, T., tom Dieck, T.: Representations of compact Lie groups. In: Graduate
Texts in Mathematics, vol. 98. Springer, New York (1995). (Translated from the
German manuscript, corrected reprint of the 1985 translation)

[5] Chang, C.C., Keisler, H.J.: Model theory. In: Studies in Logic and the Founda-
tions of Mathematics, vol. 73, 3rd edn. North-Holland, Amsterdam (1990)

[6] Dugundji, J.: Topology. Allyn & Bacon, Boston (1966)

[7] George Michael, A.A.: On normal subgroups of semisimple Lie groups. Results
Math. 58(1–2), 37–38 (2010)
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