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We shall review basically known facts about periodic locally compact abelian groups. 
For any periodic locally compact abelian group A, its automorphism group contains 
(as a subgroup) those automorphisms that leave invariant every closed subgroup of 
A; to be denoted by SAut(A). This subgroup is profinite in the g-Arens topology and 
hence allows a decomposition into its p-primary subgroups for the primes p for which 
topological p-elements in this automorphism subgroup exist. The interplay between 
the p-primary decomposition of SAut(A) and A can be encoded in a bipartite graph, 
the mastergraph of A. Properties and applications of this concept are discussed.

© 2019 Published by Elsevier B.V.

Introduction

This text deals with widely known observations about periodic locally compact abelian groups. A topo-

logical group is called periodic if it is locally compact and totally disconnected and if it is the union of 

compact subgroups. The ring Z of integers acts on every abelian group A via scalar multiplication. The ring 

Z has a universal compactification to a compact totally disconnected topological ring Z̃ ⊇ Z, and, if A is 
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a periodic locally compact abelian group, then the scalar multiplication of A by Z extends to a continuous 

scalar multiplication

(z, a) �→ z·a : Z̃ × A → A.

(As a consequence of [7, Lemma 4.1.1], every profinite abelian group turns out to be a Z̃-module and so does 

A being the union of its compact and hence profinite open subgroups.) The automorphism group Aut(A) is 

of considerable interest to group theoreticians. Its center contains all automorphisms of the form a �→ r·a

for any (multiplicatively) invertible element r ∈ Z̃. Such elements are called units and they form a compact 

multiplicative subgroup Z̃× of Z̃. The profinite abelian group Z̃× has a remarkably rich structure. So, for 

each prime number p the compact ring Zp is a subring of Z̃, and so its group of units Z×
p is a subgroup of 

Z̃
×. It contains a compact open multiplicative subgroup which is isomorphic to the additive group Zp, but, 

if p > 2 then it also contains a finite cyclic group of order p − 1 of roots of unity which therefore contains 

elements of order qνp(q−1) if q|(p −1), where νp(q −1) is the largest natural number n such that p = qnm +1

for a natural number m. The simple task of finding the p-Sylow subgroups of Z̃× appears to be a mind 

boggling problem at first sight.

We solve this problem by describing a countably infinite bipartite labeled graph that is easily depicted 

and imagined as drawn in the real plane. It supplies a very good organization of the set of all procyclic 

(and cyclic) subgroups of Z̃ that are compact p-groups (i.e., are pro-p groups) and this allows us to find 

the maximal p-subgroups. Indeed, the essential cyclic and procyclic subgroups are lucidly indexed by the 

labeled edges of the graph, which we call the mastergraph. For a group G let tor(G) denote the set of its 

torsion elements. A locally compact p-group has only elements contained in compact p-subgroups. With 

the help of the tools that it provides it is, for instance, possible to argue that the multiplicative group Z̃×

is isomorphic to the additively written group Z̃ × tor(Z̃×) and that the group tor(Z̃×) contains a dense 

subgroup algebraically isomorphic to the large torsion-free group (Z̃, +)(N). (See Corollary 21.)

Given a periodic locally compact abelian group A we let SEnd(A) ⊆ End(A) denote the subring of all 

endomorphisms implemented by scalar multiplication. Then the natural homomorphism ζ: Z̃ → SEnd(A)

defined by ζ(r)(a) = r·a will be shown to be a quotient morphism of profinite rings, and we call the ring 

R(A) := Z̃/ ker(ζ) the ring of scalars of A. Then ζ factors through R(A) with an isomorphism R(A) →

SEnd(A) of rings. The group of units of SEnd(A) is denoted SAut(A), and we have R(A)× ∼= SAut(A). 

We shall clarify the structure of R(A)× completely in the way it depends on the exponents of the Ap. (See 

Theorem 39.)

Let G be a locally compact group with a closed normal subgroup A. Let Int(A) denote the group of all 

inner automorphisms. There is a natural representation G → Int(A) sending g to the inner automorphism 

a �→ gag−1 whose kernel is the centralizer of A in G.

Proposition 1. For a locally compact group G with a periodic abelian closed normal subgroup A the following 

statements are equivalent:

(i) Int(A) ⊆ SAut(A), i.e., every inner automorphism induced on A is a scalar automorphism.

(ii) Every closed subgroup of A is normal in G.

(iii) There is a morphism ρ: G → R(A)× such that

(∀g ∈ G, a ∈ A) gag−1 = ρ(g)·a

For a proof of this see Proposition 34.

We emphasize here again that in Theorem 39 we shall give an explicit structure theory of R(A)× ∼=

SAut(A).
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1. The Sylow structure of the compactified ring of integers

By the “ring of compactified integers” we mean the profinite completion of the ring Z and we denote 

it by Z̃. Technically, if B = α(G) is the Bohr compactification of a topological group G, then B/B0 (with 

the identity component B0 of B) is the zero dimensional compactification or the profinite completion of G. 

Since Z is a ring it turns out that Z̃ = B/B0 in this case carries a ring structure. The profinite ring Z̃ is at 

the focus of the present discussion.

The set of all prime numbers is denoted by π. For each profinite abelian group A the p-primary component 

or p-Sylow subgroup Ap is the largest p-subgroup of A, and one has the Sylow decomposition A =
∏

p∈π Ap. 

Note, however that the ring Z of integers in its discrete topology is not profinite, allowing the standard 

notation Zp for the ring of p-adic integers to be an exception to this convention. Accordingly, we shall 

formulate the equation (Z̃)p = Zp. The compact ring Z̃ then satisfies

Z̃ =
∏

p∈π

(Z̃)p
∼=

∏

p∈π

Zp. (1)

This is the Sylow decomposition (or primary decomposition) of Z̃.

2. The group of p-adic units Z×

p

For a unital commutative ring R we denote by R× the multiplicative group of its units, i.e., invertible 

elements. We clarify this concept for R = Zp by a reminder of some elementary structural information of 

Zp. Recall that under suitable circumstances in a topological ring R the sequence 1 + x + 1
2 ·x + 1

3! x
3 · · ·

converges for x from a suitable domain D and defines a function

exp: D → 1 + D, 1 + D ⊆ R×.

If p ∈ π is a prime and m ∈ N, then

νp(m) = max{n ∈ N0 : pn|m} (2)

is that unique nonnegative integer n for which m = pnm′ and (m′, p) = 1.

For the following information on the ring Zp of p-adic integers see e.g. [5].

Lemma 2. (i) For each prime p 	= 2, the function

exp: p·Z → (1 + pZp), 1 + pZp ⊆ Z
×
p

is an isomorphism of profinite groups and 1 + pZp is an open subgroup of Z×
p . In particular,

z �→ exp pz : (Zp, +) → (1 + pZp, ×) (3)

is an isomorphism of profinite groups.

(ii) The factor ring Zp/pZp is the field GF(p) of p elements, and so (Zp/pZp)× is a cyclic group of p − 1

elements. The ring Z×
p contains a cyclic group Cp of p − 1 elements (called roots of unity) such that

(x, c) �→ xc : (1 + pZp) × Cp → Z
×
p is an isomorphism,

and
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(Z×
p , ×) ∼=

(
Zp ⊕

⊕

q∈π

Z

(
qνq(p−1)

)
, +

)
. (4)

In particular, for q ∈ π the q-Sylow subgroup of Z×
p is procyclic and

(Z×
p )q

∼=

⎧
⎨
⎩

Z
(
qνq(p−1)

)
if q < p,

Zp if q = p,

{0} if p < q.

From a formalistic point of view it is regrettable that the case p = 2 is not exactly subordinate to the 

scheme. However, here it is:

Lemma 3. (i) The function

exp: 4Z2 → (1 + 4Z2), 1 + 4Z2 ⊆ Z
×
2

is an isomorphism of profinite groups and 1 + 4Z2 is an open subgroup of Z×
2 . In particular,

z �→ exp 4z : (Z2, +) → (1 + 4Z2, ×) (5)

is an isomorphism of profinite groups.

(ii) The factor ring Z2/2Z2 is the field GF(2) of 2 elements, and the group of units of (Z2/4Z2)× is a 

group of 2 elements. The group Z×
2 contains a cyclic group C2 of 2 elements (called roots of unity) such 

that

(x, c) �→ xc : (1 + 4Z2) × C2 → Z
×
2 is an isomorphism,

and

(Z×
2 , ×) ∼= (Z2 ⊕ Z(2), +). (6)

In particular, Z×
2 is a nonprocyclic 2-group.

The product representation (1) Z̃p =
∏

p∈π Zp immediately yields

Z̃
× =

∏

p∈π

Z
×
p . (7)

Since for p 	= 2 the profinite group Z×
p is not a p-group, the product representation of the profinite group 

Z̃
× in (7) is not its Sylow decomposition. Our first and foremost goal is now to determine the Sylow 

decomposition of Z̃× and to describe it in an intuitive and useful form.

3. Some helpful facts on groups and numbers

The information contained in (1) through (6) suggests rather clearly that products G =
∏

j∈J Z(pnj )

(for families (nj)j∈J of natural numbers and for a fixed prime number p will play a role in the structure of 

Z̃
×). Lemma 3.9 of [2] provides the following standard information:

Lemma 4. The group 
∏

j∈J Z(pnj ) is a torsion group if and only if (nj)j∈J is a bounded family.
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Accordingly we first collect some general facts on groups G for general families (nj)j∈J and keep in mind 

as a special example the family N = (1, 2, 3, . . .) and, accordingly, the group

P = Z(p) × Z(p2) × Z(p3) × · · · (8)

Definition 5. Let p ∈ π. Given G =
∏

j∈J Z(pnj ) for a family (nj)j∈J , for each m ∈ N we define

njm =

{
nj if nj ≤ m,

0 otherwise.

Now we set Gm =
∏

j∈J Z(pnjm). For any finite subset F ⊆ J we let

njF =

{
nj if j ∈ F,

0 otherwise

and set

GF =
∏

j∈J

Z(pnjF ) ∼=
⊕

j∈F

Z(pnj ).

We see that m ≤ n implies Gm ≤ Gn, and for any finite subset F ⊆ J there is an m such that GF ≤ Gm. 

Since 
⋃

F ⊆J, F finite GF is dense in 
∏

j∈J Z(pnj ), we have

Remark 6. For any family (nj)j∈J of natural numbers, the profinite p-group G =
∏

j∈J Z(pnj ) has the dense 

torsion subgroup 
⋃

m∈N
Gm of the ascending sequence Gm, m = 1, 2, . . . of compact torsion subgroups.

Let us consider the character group A := Ĝ of G. Then A ∼=
⊕

j∈J Z(pnj ).

From Propositions 8.2 and 8.3 in [3] we cite

Lemma 7. If Γ is any compact or any discrete group, then

tor Γ = Div(Γ̂)⊥, (9)

the annihilator of the group of all divisible elements of the character group of Γ.

We consider the special group

Σp = Z(p) ⊕ Z(p2) ⊕ Z(p3) ⊕ · · · , (10)

the character group of the group P in (8) above. In [2] Σp emerges as the torsion subgroup of the remarkable 

locally compact p-group ∇p (see [2], Theorem 3.16) and it shows some surprising features itself.

Firstly we cite Lemma 3.17 of [2] known to Prüfer:

Lemma 8. Let en be the generator of Z(pn) in Σp and let φ: Σp → Σp be the endomorphism defined by 

φ(en) = en − p·en+1. Then φ is injective and its cokernel Σp/φ(Σp) is, up to isomorphism, the Prüfer group 

Z(p∞). That is, the following sequence is exact:

0 → Σp
φ

−→Σp → Z(p∞) → 0.

We can iterate φ and set Sn = φn(Σp), n = 0, 1, 2, . . .. Then Σp = S0 ⊇ S1 ⊇ S2 ⊇ · · ·. Since φ is 

injective, all Sn are isomorphic to Σp.
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Proposition 9. The countable torsion group Σp is filtered by a sequence S0 = Σp ⊇ S1 ⊇ S2 ⊇ · · · of 

isomorphic subgroups such that

(i) Sn−1/Sn
∼= Z(p∞) for n ∈ N, and

(ii)
⋂

n∈N
Sn = {0}.

Proof. We have to prove (i) and (ii). For each n ∈ N, set Kn = Sn−1/Sn; in particular K0 = Z(p∞). The 

injective endomorphism φ: S0 → S0 leaves Sn invariant and induces an injective endomorphism φn: Sn → Sn

with cokernel Kn. We have the commutative diagram

0 → S0
φ

−→ S0 → K0 → 0

↓ ↓ ↓ ↓ ↓

0 → S1
φ2

−→ S1 → K1 → 0

↓ ↓ ↓ ↓ ↓
...

...
...

...
...

0 → Sn
φn

−→ Sn → Kn → 0
...

...
...

...
...

in which all rows are exact and the vertical morphisms Sn−1 → Sn n ∈ N are the isomorphisms induced 

by φ|Sn Since the downarrows Sn−1 → Sn are isomorphisms, and K1 = Z(p∞), it follows, inductively, that 

Kn
∼= Z(p∞) for all n ∈ N.

(ii) By the definition of φ in Lemma 8 we have φ(en) = en − p·en+1. We define ℓ: Σp → N as follows: let 

x =
∑

n∈N
xm with xm ∈ Z(pm). Then

ℓ(x) =

⎧
⎨
⎩

0 if x = 0,

max{m ∈ N| 0 	= xm ∈ Z(pm)}

− min{m ∈ N| 0 	= xm ∈ Z(pm)} + 1 otherwise.

In the definition of φ in Lemma 8 we set φ(en) = en − p·en+1. Thus let y =
∑

n∈N
yn be φ(x) and assume 

x 	= 0. Then

min{m ∈ N| 0 	= ym ∈ Z(pm)} = min{m ∈ N| 0 	= xm ∈ Z(pm)}

and

max{m ∈ N| 0 	= ym ∈ Z(pm)} = max{m ∈ N| 0 	= xm ∈ Z(pm)} + 1.

Thus

ℓ
(
φn(x)

)
= ℓ(x) + n. (11)

Now assume that y ∈
⋂

m∈N
Sm. Suppose that y 	= 0 and set n = ℓ(y) ∈ N. Then y ∈

⋂
m∈N

Sm ⊆ Sn, and 

so there is an x 	= 0 such that φn(x) = y. Thus (11) shows that ℓ(y) = ℓ
(
φn(x)

)
= ℓ(x) + n = ℓ(x) + ℓ(y), 

that is, ℓ(x) = 0 and hence x = 0 which is impossible. ✷

This proposition dualizes comfortably according to the Annihilator Mechanism of locally compact abelian 

groups (see [3], 7.17 ff., notably Corollary 7.22, all of which fully applies to locally compact abelian groups). 

So let P of (8) be the dual of Σp and let Hn ≤ P be the annihilator (Sn)⊥ of Sn ≤ Σp. Since the Sn are 

descending, the Hn are ascending, and since 
⋂

n∈N
Sn = {0} we know that
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P =
⋃

n∈N

Hn. (12)

For all n ∈ N we deduce via duality from Sn−1/Sn
∼= Z(p∞) that Hn/Hn−1

∼= Zp for n ∈ N. However, at 

this point we can utilize the fact that in the category of compact p-groups, the group Zp is projective (since 

its dual Z(p∞) is divisible hence injective in the category of discrete p-groups; see also [3], Theorem 8.78.) 

Therefore, for each n ∈ N, the compact group Hn contains a compact subgroup Kn
∼= Zp such that

(∀n ∈ N) Hn = Hn−1Kn
∼= Hn−1 × Kn. (13)

By induction we conclude at once that

(∀n ∈ N) Hn = C1 · · · Cn = C1 × · · · × Cn
∼= Z

n
p (14)

and there are algebraic isomorphisms

⋃

n∈N

Hn =

〈
⋃

n∈N

Cn

〉
∼=

⊕

n∈N

Cn
∼= Z

(N)
p (15)

Let us collect this information:

Corollary 10. The group P = Z(p) ×Z(p2) ×Z(p3) ×· · · contains a dense Zp-submodule which is algebraically 

isomorphic to the Zp-module Z
(N)
p .

Corollary 11. For any family (nj)j∈J of natural numbers, the profinite p-group G =
∏

j∈J Z(pnj ) is either 

a torsion group or else it contains a Zp-submodule isomorphic to Z
(N)
p whose closure is isomorphic to 

P = Z(p) × Z(p2) × Z(p3) × · · ·

Proof. Either the family (nj)j∈J is bounded, in which case G is a torsion group, or else it is unbounded. 

In that case there is an increasing unbounded subsequence (nj(m))m∈N . Set km = nj(m). Since the kn

are increasing, we have n ≤ kn. The cyclic group Z(pkm) = Z(pnj(m)) contains a subgroup Bm
∼= Z(pm). 

Then group B1 × B2 × B3 × · · · is clearly isomorphic to a subgroup B of G which is isomorphic to Z(p) ×

Z(p2) × Z(p3) × · · ·. Then it follows from Corollary 10 that B contains a dense Zp-submodule algebraically 

isomorphic to Z
(N)
p , as asserted. ✷

We shall need the following pieces of information. The first one is number theoretical. As in (2), for a 

prime p and a natural number r, let νp(r) be the exponent of the largest p-power dividing r.

Lemma 12. Let p ∈ π be an arbitrary prime number and n an arbitrary natural number. Then there is a 

prime number q such that n ≤ νp(q − 1). Accordingly, pn|(q − 1). In particular p|(q − 1).

Proof. Fix p ∈ π and an arbitrary natural number n. The numbers a = pn and b = 1 are relatively prime. 

Hence the arithmetic progression (am + b)m∈N contains infinitely many primes q by the Dedekind Prime 

Number Theorem. Let q be one of them. Then q−1 = pnm, that is νp(q−1) ≥ n. In particular, p|(q−1). ✷

Lemmas 2 and 3 imply via (7) that Z̃× contains for each fixed prime p a product

E :=
∏

q∈π

Z(pνp(q−1)),
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where we note that νp(q −1) = 0 if p fails to divide q −1. Therefore the following conclusion of the preceding 

Lemma 12 is relevant:

Proposition 13. Let p ∈ π be an arbitrary prime number. Then the group E contains a subgroup isomorphic 

to

P = Z(p) × Z(p2) × Z(p3) × · · ·

which in turn contains a dense subgroup and Zp-module D ∼= Z
(N)
p .

Proof. By Lemma 12 for each n there is a q ∈ π such that n ≤ νp(q − 1). Hence the group Z(pνp(q−1))

contains a subgroup Bn
∼= Z(pn). Thus E contains an isomorphic copy of

B =
∏

n∈N

Bn
∼= Z(p) × Z(p2) × Z(p3) × · · ·

The remainder then follows from Corollary 10. ✷

4. The mastergraph

We introduce a bipartite edge-labeled graph G as follows:

Definition 14. A bipartite graph consists of two disjoint sets U and V and a binary relation E ⊆ (U ∪ V )2

such that (u, v) ∈ E implies u ∈ U and v ∈ V . The elements of U ∪ V are called vertices and the elements 

of E are called edges. Any triple (U, V, E) of this type is called a bipartite graph.

An edge labeled graph is a quadruple (U, V, E , λ) such that (U, V, E) is a bipartite graph and λ is a function 

λ: E → L for some set L of labels.

Labels could be numbers, or symbols like ∞.

Now we define a particular edge labeled graph G. Recall the definition of νp(m) from (2) above.

Definition 15. The following bipartite edge labeled graph

G = (U, V, E , λ), E ⊆ U × V,

will be called the prime mastergraph or mastergraph for short:

(i) U = π × {1} ⊆ π × {0, 1},

(ii) V = π × {0} ⊆ π × {0, 1},

(iii) E = {
(
(p, 1), (q, 0)

)
: p = q or p|(q − 1)},

(iv) λ: E → N ∪ {∞}, λ
(
((p, 1), (q, 0))

)
=

{
∞, if p = q,

νp(q − 1), if p < q.

We shall call the vertices in U the upper and those in V the lower vertices. The edges 
(
(p, 1), (p, 0)

)
, 

p ∈ π are said to be vertical, all others are called sloping. We say that e = ((p, 1), (q, 0)) is the edge from p

to q (see Fig. 1 and Fig. 2).

The labels of the sloping edges are all equal to 1 with the exception 2—5 where it is 2 (see Fig. 2).

The “geometric” terminology is chosen because G has an intuitive representation in the plane R2 pre-

serving the order:
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Fig. 1. Vertical and sloping edges.

Fig. 2. The five vertices in U connected to the lower vertex numbered “211” in V .

Fig. 3. The initial part of the master-graph.

Proposition 16. Let ω: π → N be the bijection inverse to the usual enumeration n �→ pn of primes according 

to their natural ordering according to their size. Let id be the identity map of the set {0, 1}. There is a 

faithful representation of the configuration of G into the plane R2 preserving the componentwise order which 

is induced by the injection

π × {0, 1}
ω×id
−→N × {0, 1}

incl
−→R × R = R

2

and taking U to N × {1} and V to N × {0}.

In Fig. 3 the label of the edge from (2, 1) to (13, 0) is 2.

Definition 17. Let p and q be any primes. Then

Ep = {e : e = ((p, 1), (p′, 0)) ∈ E such that p = p′ or p|(p′ − 1)},



W. Herfort et al. / Topology and its Applications 263 (2019) 26–43 35

the set of all edges emanating downwards from the vertex (p, 1) ∈ U will be called the cone peaking at p. 

Further the set

Fq = {e : e = ((q′, 1), (q, 0)) ∈ E such that q′|(q − 1)},

the set of edges ending below in the vertex (q, 0) ∈ V , is called the funnel pointing to q.

Both the cones and the funnels provide a partition of the set of edges. It is instantly clear that each funnel 

is finite, and so the funnels, are not as important as the cones. The structure of a cone is more interesting 

than that of a funnel as the following translation of Lemma 12 into the language of the mastergraph G

shows.

Proposition 18. Let p be any prime. Accordingly, in the graph G, the cone Ep is peaking at the upper vertex 

(p, 1), and for each natural number n, it contains an edge e = ((p, 1), (q, 0)) labeled νp(q − 1) ≥ n. In 

particular, Ep contains infinitely many edges.

5. The Sylow decomposition of Z̃ indexed by G

We recall that E is the set of all edges of the mastergraph G = (U, V, E , λ). We start the indexing by 

attaching to each edge e = ((p, 1), (q, 0)) ∈ E a profinite group Se being, up to a natural isomorphism, a 

subgroup of Z̃:

Definition 19. For each edge e ∈ E from p to q we set

Se =

⎧
⎨
⎩

Z2 ⊕ Z(2), if p = q = 2,

Zp, if 2 < p = q,

Z(pνp(q−1)), if p < q.

(16)

We noted in (7) that

Z̃
× =

∏

q∈π

Z
×
q

and in Lemmas 2 and 3 a procyclic p-group occurs precisely as a subgroup of some Se for an edge e with 

upper vertex p. Therefore, the p-Sylow subgroup of Z̃× is represented by the cone E peaking in p. One has

(Zq)× =
∏

p

(Z×
q )p =

∏

e∈Fq

Se, (17)

as well as

(Z̃×)p
∼=

(
∏

q∈π

Z
×
q

)

p

=
∏

e∈Ep

Se, (18)

p �→ Ep (19)

is a bijection from the set of primes to the set C of cones such that C =
⋃

p∈π Ep in the mastergraph.

Taking these matters and Proposition 13 into account, we can summarize:

Theorem 20. (i) The group Z̃× of units of the universal procyclic compactification Z̃ of the ring of integers 

Z is the product
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Z̃
× ∼=

∏

q

(Z×)q =
∏

q

∏

e∈Fq

Se =
∏

e∈E

Se (20)

extended over the set E of all edges of the mastergraph, where Se is the profinite group given in (16) above.

(ii) Its p-Sylow subgroup is the subproduct extended over the cone peaking in p:

(Z̃×)p =
∏

e∈Ep

Se
∼=

{
Z2 ⊕ Z(2) ⊕

∏
q>2 Z(2ν2(q−1)), if p = 2,

Zp ⊕
∏

q>p Z(pνp(q−1)), otherwise.
(21)

(iii) For each p ∈ π fixed,

(Z̃×)p
∼= Zp ⊕ Tp, where Tp = tor(Z̃×)p, (22)

and where Tp contains a Zp-submodule algebraically isomorphic to Z
(N)
p whose closure is isomorphic to ∏

n∈N
Z(pn).

Let T = tor(Z̃×). For each prime p, define

ZPp =
∏

n∈N

Z(pn), ZP =
∏

p∈π

ZPp =

⎛
⎝ ∏

(p,n)∈π×N

Z(pn).

⎞
⎠ (23)

Corollary 21. (i) ZP contains a dense copy of the torsion-free Z̃-module M := Z̃
(N).

(ii) The closure T of the torsion subgroup of Z̃× contains a copy of M .

Proof. (i) The group ZPp contains a dense copy of Z
(N)
p (see Theorem 20 (iii) above). Hence ZP =

∏
p∈π ZPp

contains a dense copy of 
∏

p∈π Z
(N)
p which contains a copy of Z̃(N) ∼=

∏
p∈π Zp and this copy is still dense 

in ZP .

(ii) From Theorem 20 (iii) implies that for each prime, Tp contains a copy of ZPp. Hence T contains a 

copy of ZP . ✷

6. The Sylow decomposition of Z(n)× indexed by G

We record n =
∏

p|n pν(n) (finite product: almost all νp(n) 	= 0 only if p|n) and accordingly Z(n) =∏
p|n Z(pνp(n)). Hence Z(n)× =

∏
p|n Z(pνp(n))×, and it suffices to recall the case that n = pm. This we 

assume for the remainder of this section, and we fix a prime p.

While the structure of Z(pm)× is usually dealt with in elementary number theory (see e.g. [1, Chapter 4]) 

we show how its structure can be determined also by interpreting Z(pm) as a p-adic Lie group and thus 

use the exponential function from Section 2.

Here we have Z(pm) = Zp/pm·Zp. Let μ: Zp → Zp denote the scalar endomorphism given by μ(x) =

pmx. Then

0 → Zp

µ
−→Zp → Z(pm) → 0

is exact and μ induces a quotient morphism μ×: Z×
p

→ Z(pm)×. We recall that the morphism Zp →

Zp/pZp
∼= GF(p) maps Cp of Lemmas 2 and 3 faithfully because pm

Zp ⊆ pZp unless p = 2 and m ≤ 2, 

in which case pm = 2 or = 4, in which case we have Z(2)× = {1}, respectively, Z(4)× = {±1}. If p > 2

then we know that
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exp: (pZp, +) → (1 + pZp, ×) is an isomorphism,

whence by applying μ

exp:

(
pZp

pmZp

, +

)
→ (μ(1 + pZp), ×) is an isomorphism.

Since 
pZp

pmZp

∼= Z(pm−1) in view of Lemma 2 we have

Z(pm)× ∼= Z(pm−1) ⊕ Z(p − 1).

Analogously, for p = 2 and m > 2, from Lemma 3 we obtain

Z(2m)× ∼= Z(2m−2) ⊕ Z(2) (24)

Summarizing, we have

Lemma 22. The group of units of Z(pm) is

Z(pm)× ∼=

⎧
⎪⎪⎨
⎪⎪⎩

{0}, if pm = 2,

Z(2), if pm = 4,

Z
(
2m−2

)
⊕ Z(2), if p = 2, m > 2,

Z
(
pm−1

)
⊕ Z(p − 1), if p > 2.

(25)

We may use G as index set for describing the p-Sylow decomposition of A = Z(pm)× as follows:

We index subgroups Se ≤ A by attaching again to each edge e = ((p, 1), (q, 0)) ∈ E a profinite group Se

being, up to a natural isomorphism, a subgroup of Z̃×:

Definition 23. For each edge e ∈ E from p to q we set

Se =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0}, if pm = 2 or q > pm,

Z(2), if pm = 4 and p = q = 2,

Z2 ⊕ Z(2), if p = q = p = 2,

Z
(
pm−2

)
, if 2 < p and q ≤ p,

Z
(
pνp(q−1)

)
, if p < q ≤ p.

(26)

With this indexing we can formulate

Theorem 24. For a fixed prime p and a fixed natural number m,

(i) the group Z(pm)× of units of the universal cyclic group Z(pm) is

Z(pm)× =
∏

e∈E

Se (27)

extended over the set E of all edges of the mastergraph, where Se is the profinite group given in (26) above.

(ii) Its p-Sylow subgroup is the subproduct extended over the cone peaking in p:

(
Z(pm)×

)
p

=
∏

e∈Ep

Se
∼=

{
Z(4) ⊕ Z(2) ⊕

⊕
p≥q>2 Z

(
2ν2(q−1)

)
, if p = 2,

Z(pm−2) ⊕
⊕

p≥q>p Z
(
pνp(q−1)

)
, otherwise.

(28)
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7. The mastergraph of a periodic abelian group

Recall that for a locally compact group G an element g is called compact if it is contained in a compact 

subgroup. The set of compact elements is called comp(G). If G is abelian, then comp(G) is a fully charac-

teristic subgroup. For details see [3], Chapter 7 and [2]. The identity component of a topological group is 

written G0.

Definition 25. A locally compact group G is said to be periodic, if it satisfies the following conditions:

(i) G = comp(G),

(ii) G0 = {0}.

In other words, G is the union of its compact subgroups and is totally disconnected. In fact, if G is 

abelian, then G is the directed union of its compact open subgroups, and if C and K are two of them, then 

C and K are commensurable, that is both C/(C ∩ K) and K/(C ∩ K) are finite.

If (Gj)j∈J is a family of topological groups and Cj ≤ Gj is a compact open subgroup for each j, then 

the set of all (gj)j∈J ∈ T =
∏

j∈J Gj such that {j ∈ J | gj /∈ Cj} is finite forms a subgroup L ≤ T of the 

product containing C =
∏

j∈J Cj . Then L is a locally compact topological group for the unique topology 

for which C is open in G. This group L is called the local product of the family (Gj , Cj)j∈J and is written

L =

loc∏

j∈J

(Gj , Cj).

We shall write abelian groups additively in general, unless the context demands otherwise, e.g. in the case 

of the group of units of a ring, such as Zp.

With this notation it is easy to reproduce Braconnier’s theorem on the Sylow decomposition of a periodic 

locally compact abelian group A into its p-Sylow subgroups Ap, p ∈ π:

Theorem 26. (J. Braconnier) Let A be a periodic locally compact abelian group and C any compact open 

subgroup of A. Then A is isomorphic to the local product

loc∏

p

(Ap, Cp). (29)

If A is a periodic locally compact abelian group, then every endomorphism α leaves the Sylow subgroup 

Ap invariant. We write αp = α|Gp : Ap → Ap. If C is a compact open subgroup, let End(G, C) denote the 

subring of the endomorphism ring End(G) of all endomorphisms leaving C invariant.

In view of Theorem 26 we may identify A with its canonical local product decomposition of the pair 

(A, C).

Every locally compact abelian p-group A is a Zp-module for a multiplication (rp, gp) �→ rp·gp. If we 

identify Z̃ and 
∏

p∈π Zp by (1) and a periodic locally compact abelian group A with 
∏loc

p∈π(Ap, Cp) for any 

compact open subgroup C, we see at once that we have a continuous module multiplication, a map from 

Z̃ × A to A given by

(r, g) = ((rp)p, (gp)p) �→ (rp·gp)p = r·g. (30)

In a similar vein we observe
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Proposition 27. For a periodic locally compact abelian group A, the componentwise application κ defined by

α �→ (αp)p : End(A, C) →
∏

p

End(Ap, Cp)

is an isomorphism of groups, and α((gp)p) = (αp(gp))p.

Proof. After identifying (A, C) and 
∏loc

p (Ap, Cp) according to Theorem 26, it is straightforward to verify 

that κ is an injective morphism of groups. Moreover, if

(φp)p ∈
∏

p

End(Ap, Cp),

then the morphism

φ:
∏

p

Ap →
∏

p

Ap defined by φ((gp)p) = (φp(gp))p

leaves C =
∏

p Cp fixed as a whole and does the same with 
∏loc

p (Ap, Cp) and so κ(φ) = (φp)p. Thus κ is 

surjective as well. ✷

We noted in (30) that every r ∈ Z̃ yields an endomorphism a �→ r·a of the periodic locally compact 

abelian group A, giving us a morphism of rings ζ: Z̃ → End(A). In particular, since scalar multiplication 

Z̃ × A → A is continuous, ker(ζ) is a closed ideal of Z̃.

Definition 28. For a locally compact abelian group A we denote the factor ring Z̃/ ker(ζ) by R(A) and call 

it the ring of scalars of A. There is an obvious scalar multiplication R(A) × A → A.

The ring morphism ζ factors through an isomorphism of rings

R(A)
∼=

−→ End(A). (31)

We note that

R(A) ∼=
∏

p

R(A)p, (32)

and scalar multiplication operates componentwise on A ∼=
∏

p(Ap, Cp).

We shall be mostly interested in the scalar multiplication by units r ∈ Z̃. In this context it is clear that 

(32) induces an isomorphism

R(A)× ∼=
∏

p

(R(A)p)×, (33)

where (R(A)p)× is isomorphic to a quotient group of (Zp)×.

One verifies easily the following piece of information:

Example 29. Let A be a locally compact abelian p-group. Then

R(A) =

{
Zp/pm

Zp
∼= Z(pm), if A has finite exponent pm,

Zp, otherwise.
(34)

Lemma 4 shows that among the compact abelian groups A the torsion groups are exactly the ones having 

finite exponent.
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8. Scalar multiplication on a periodic locally compact abelian group

The following lemma is straightforward:

Lemma 30. For a continuous endomorphism α of a locally compact group G the following conditions are 

equivalent:

(i) α(H) ⊆ H for all closed subgroups H of G.

(ii) α(〈g〉) ⊆ 〈g〉 for all g ∈ G.

(iii) α(g) ∈ 〈g〉 for all g ∈ G.

Definition 31. An endomorphism α of a locally compact group G is called scalar if it satisfies the equivalent 

conditions of Lemma 30.

In [5] it is shown that on a compact abelian p-group G, for any automorphism α which is scalar in the 

sense of Definition 31 there is an r ∈ Z
×
p such that α(g) = r·g for all g ∈ G. The proof through Lemma 2.21 

and Proposition 2.22 in [5] works for endomorphisms as well and thus yields

Lemma 32. Let A be a compact abelian p-group. Then for any scalar endomorphism α there is an r ∈ Zp

such that α(a) = r·a for all a ∈ A. Accordingly, α is an automorphism iff r ∈ Z
×
p .

In [2], Lemma 4.6 it is shown for a locally compact abelian p-group A for any automorphism α for which 

any restriction to a compact-open subgroup is scalar, there is an r ∈ Zp such that α(a) = r·a for all a ∈ A. 

Again this proof works for endomorphisms as well as for automorphisms. Therefore we have

Lemma 33. Let A be a locally compact abelian p-group. Then for any scalar endomorphism α there is an 

r ∈ Zp such that α(a) = r·a for all a ∈ A. Accordingly, α is an automorphism iff r ∈ Z
×
p .

Finally, if A =
∏loc

p (Ap, Cp) is any periodic locally compact abelian group we observe that every closed 

subgroup H is of the form 
∏loc

p (Hp, Cp ∩ Hp), and so an endomorphism α of A is scalar iff every restriction 

αp to Ap is scalar. If this is the case, then for every p there is an rp ∈ Zp such that αp(ap) = rp·ap for 

all ap ∈ Ap. So if r = (rp)p in Z̃ =
∏

p Zp, for the scalar endomorphism α we have an r ∈ Z̃ such that 

α(a) = r·a for a ∈ A. Thus we have the following classification of scalar endomorphisms, justifying the 

nomenclature:

Proposition 34. Let A be a periodic locally compact abelian group and α: A → A an endomorphism of locally 

compact abelian groups such that α(H) ⊆ H for all closed subgroups of A. Then there is an r ∈ Z̃ such that 

α(a) = r·a for all a ∈ A.

Definition 35. The group of scalar automorphisms of a locally compact group G is denoted by SAut(G).

If A is abelian and is written additively, then the subgroup

{idA, − idA} ⊆ SAut(A)

is said to consist of trivial scalar automorphisms. All other scalar automorphisms are called nontrivial.

Notice that we shall not only call the identity automorphism, but also the inversion automorphism 

“− idG” trivial.
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For periodic locally compact abelian groups A we have seen in Proposition 34 that all scalar automor-

phisms are indeed scalar multiplications in the traditional sense (see [2], Proposition 4.15):

We topologize SAut(G) with the Braconnier topology (see [4, (26.3)]).

Proposition 36. Let the locally compact abelian group G be periodic. Then we have the following conclusions:

(i) The natural map ζ: Z̃× → SAut(G) (such that ζ(r)(g) = r·g) is surjective. In particular, SAut(G) is a 

profinite group and a homomorphic image of Z̃×.

(ii) The subsequent two statements are equivalent:

(a) SAut(G) = {idG, − idG}.

(b) The exponent of G is 2, 3, or 4.

Notably: The exponent of G is 2 if and only if − idG = idG.

Indeed, periodicity and the existence of nontrivial scalar multiplications are related as follows (see [2], 

Theorem 4.16):

Theorem 37. For a locally compact abelian group G, we consider the following statements:

(i) G has nontrivial scalar automorphisms.

(ii) G is periodic.

Then (i) implies (ii), and if G does not have exponent 2, 3, or 4, then both statements are equivalent.

The Sylow decomposition of SAut(G) is described in the following theorem (see [2], Theorem 4.17):

Theorem 38 (Mukhin, Theorem 2 in [6]). Let G be a locally compact abelian group written additively.

(a) SAut(G) is a homomorphic image of Z̃×.

(b) If G is not periodic, then SAut(G) = {id, − id}.

(c) If G is periodic, then SAut(G)=
∏

p SAut(Gp), where SAut(Gp) may be identified with the group of units 

of the ring R(Gp) of scalars of Gp, namely, R(Gp)× is isomorphic to

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zp × Z(p − 1), if p > 2 and the exponent of Gp is infinite,

Z(pm−1) × Z(p − 1), if p > 2 and the exponent of Gp is pm,

Z2 × Z(2), if p = 2 and the exponent of G2 is infinite,

Z(2m−2) × Z(2), if p = 2 and the exponent of G2 is 2m > 2,

{0}, if p = 2 and the exponent of G2 is 2.

(d) An α ∈ Aut(G) is in SAut(G) iff there is a unit z ∈ Z̃
× such that

(∀g ∈ G) α(g) = z·g =
∏

p

zp·gp for z =
∏

p

zp, g =
∏

p

gp.

9. The prime graph of a periodic locally compact abelian group

Now let A be a periodic locally compact abelian group; the Sylow structure of SAut(A) is now easily 

discussed: The quotient morphism ζ: Z̃× → SAut(A) of Proposition 36, preserving the Sylow structures, and 

the structure of SAut(A) described so far in Theorem 38 allow a precise description of the Sylow structure 

of SAut(A).
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We associate with A the bipartite graph G(A) = (U, V, E(A), λ) with U and V as in the mastergraph and 

with

E(A) = {e ∈ E : e = ((p, 1), (q, 0)) such that SAut(Aq)p 	= {idA}},

and for fixed p we let the cone Ep peaking at p be the set of edges in E emanating from (p, 1) and the funnel

at q be the set of those edges terminating at (q, 0).

Let us define

Se(A) := SAut(Aq)p. (35)

Finally, for e ∈ E(A) from p to q the label is

λ(e) =

{
0, if p = q,

νp(q − 1), if p|(q − 1).
(36)

Now let A be a periodic locally compact abelian group; the Sylow structure of SAut(A) is then easily 

discussed: The quotient morphism ζ: Z̃× → SAut(A) of Proposition 36, preserving the Sylow structures, and 

the structure of SAut(A) described so far in Theorem 38 allow a precise description of the Sylow structure 

of SAut(A).

Theorem 39 (The Sylow Structure of SAut(A)). Let A be a periodic locally compact abelian group and 

SAut(A) =
∏

p∈π SAut(A)p the p-primary decomposition of the profinite group SAut(A) =
∏

e∈E(A) Se. 

Then

(i) The p-primary decomposition of SAut(Aq) is (additive notation assumed)

∏

e∈Fq

SAut(Aq)pe
=

∏

e∈Fq

Se(A),

(see Eq. 35) and this group is isomorphic, in case p = 2, to

⎧
⎨
⎩

{0}, if A2 has exponent ≤ 2,

Z(2r−2) ⊕ Z(2), if A2 has finite exponent 2r > 2,

Z2 ⊕ Z(2), if A2 has infinite exponent,

and in case p > 2, to

{
Z(qr−1) ⊕

⊕
e∈Fq

Z(p
λ(e)
e ), if Aq has finite exponent qr,

Zq ⊕
⊕

e∈Fq
Z(p

λ(e)
e ), if Aq has infinite exponent.

(ii) The structure of the p-primary component SAut(A)p of SAut(A) (in additive notation) is

∏

e∈Ep

(SAut(Aqe
))

p
=

∏

e∈Ep

Se(A) ∼=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∏
e∈Ep

Z(2λ(e)), if p = 2 and A2 has exponent ≤ 2,

Z(2r−2) ⊕ Z(2) ⊕
∏

e∈Ep
Z(2λ(e)), if p = 2 and A2 has fin. exp. 2r>2,

Z2 ⊕ Z(2) ⊕
∏

e∈Ep
Z(2λ(e)), if p = 2 and A2 has inf. exponent,

Z(pr−1) ⊕
∏

e∈Ep
Z(p

λ(e)
e ), if 2 < p and Ap has exponent pr,

Zp ⊕
∏

e∈Ep
Z(p

λ(e)
e ), if 2 < p and Ap has infinite index.



W. Herfort et al. / Topology and its Applications 263 (2019) 26–43 43

10. An application

For easy reference we repeat the following definition from the introduction

Definition 40. If (G, A) is a pair consisting of a topological group G and a closed normal subgroup A, then we 

call it a special extension of A if G is a locally compact group and the equivalent conditions of Proposition 1

are satisfied.

We now prove the following result as an example of the methods we are proposing.

Theorem 41. Let (G, A) be a special extension of a periodic locally compact abelian group. Then for each 

sloping edge e ∈ E(G, A) from some p to some q, all of Aq consists of commutators. In particular, Aq ⊆ G′.

Proof. By definition the existence of a sloping edge e from (p, 1) to (q, 0) in G(A) we have p < q and there 

is a p-element 1 	= g ∈ Gp acting nontrivially on A. Hence 1 	= r = ρ(g) ∈ (R(Aq)×)
p
. By Theorem 38 we 

know that (R(Aq)×)
p

is a cyclic group of order pλ(e) = pνp(q−1).

We claim that 1 − r is a unit in the ring R(Aq) of scalars which is isomorphic to Zq or quotient ring 

thereof depending as Aq has infinite or finite exponent. By way of contradiction suppose that r − 1 is not a 

unit. Since Z×
q = Zq \qZq, there is an element u ∈ R(Aq) such that 1 −r = qu. Then r = 1 −qu ∈ 1 +qR(Aq)

which, according to the structure of Z×
q in (4), respectively, of Z(qm)× in (25), is the q-Sylow subgroup of 

R(Aq)×. But r is a p-element with p < q and this is a contradiction.

Now let a ∈ Aq. For the purpose of this proof we write g additively. Then the commutator of g and a is 

[g, a] = ρ(g)(a) − a = r·a − a = (r − 1)·a. Since 1 − r is invertible, we set b = (r − 1)−1·a ∈ Aq and obtain

a = ρ(g)(b) − b = gbg−1 − b = [g, b].

This shows that every element of Aq is a commutator and thus proves the theorem. ✷
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