

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The Sylow structure of scalar automorphism groups

Wolfgang Herfort^a, Karl H. Hofmann^b, Linus Kramer^c, Francesco G. Russo^{d,*}

^a Institute for Analysis and Scientific Computation, Technische Universität Wien, Wiedner Hauptstraße

8-10/101, Vienna, Austria ^b Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany

^c Mathematisches Institut, Universität Münster, Einsteinstraße 62, 48149 Münster, Germany

^d Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town, South

ABSTRACT

A frica

ARTICLE INFO

Article history: Received 25 February 2018 Received in revised form 27 August 2018 Accepted 12 September 2018 Available online 31 May 2019

MSC: 22B05 20E18 05C25 20E36 05C63

Keywords: Scalar automorphism Periodic locally compact abelian group Mastergraph Sylow subgroups Braconnier's Theorem

Introduction

This text deals with widely known observations about periodic locally compact abelian groups. A topological group is called *periodic* if it is locally compact and totally disconnected and if it is the union of compact subgroups. The ring \mathbb{Z} of integers acts on every abelian group A via scalar multiplication. The ring \mathbb{Z} has a universal compactification to a compact totally disconnected topological ring $\widetilde{\mathbb{Z}} \supseteq \mathbb{Z}$, and, if A is

We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut(A). This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut(A) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed.

@ 2019 Published by Elsevier B.V.

^{*} Corresponding author.

E-mail addresses: wolfgang.herfort@tuwien.ac.at (W. Herfort), hofmann@mathematik.tu-darmstadt.de (K.H. Hofmann), linus.kramer@uni-muenster.de (L. Kramer), francescog.russo@yahoo.com (F.G. Russo).

a periodic locally compact abelian group, then the scalar multiplication of A by \mathbb{Z} extends to a continuous scalar multiplication

$$(z,a) \mapsto z \cdot a : \widetilde{\mathbb{Z}} \times A \to A$$

(As a consequence of [7, Lemma 4.1.1], every profinite abelian group turns out to be a \mathbb{Z} -module and so does A being the union of its compact and hence profinite open subgroups.) The automorphism group $\operatorname{Aut}(A)$ is of considerable interest to group theoreticians. Its center contains all automorphisms of the form $a \mapsto r \cdot a$ for any (multiplicatively) invertible element $r \in \mathbb{Z}$. Such elements are called *units* and they form a compact multiplicative subgroup \mathbb{Z}^{\times} of \mathbb{Z} . The profinite abelian group \mathbb{Z}^{\times} has a remarkably rich structure. So, for each prime number p the compact ring \mathbb{Z}_p is a subring of \mathbb{Z} , and so its group of units \mathbb{Z}_p^{\times} is a subgroup of \mathbb{Z}^{\times} . It contains a compact open multiplicative subgroup which is isomorphic to the additive group \mathbb{Z}_p , but, if p > 2 then it also contains a finite cyclic group of order p-1 of roots of unity which therefore contains elements of order $q^{\nu_p(q-1)}$ if q|(p-1), where $\nu_p(q-1)$ is the largest natural number n such that $p = q^n m + 1$ for a natural number m. The simple task of finding the p-Sylow subgroups of \mathbb{Z}^{\times} appears to be a mind boggling problem at first sight.

We solve this problem by describing a countably infinite bipartite labeled graph that is easily depicted and imagined as drawn in the real plane. It supplies a very good organization of the set of all procyclic (and cyclic) subgroups of $\widetilde{\mathbb{Z}}$ that are compact *p*-groups (i.e., are pro-*p* groups) and this allows us to find the maximal *p*-subgroups. Indeed, the essential cyclic and procyclic subgroups are lucidly indexed by the labeled edges of the graph, which we call the mastergraph. For a group *G* let tor(*G*) denote the set of its torsion elements. A locally compact *p*-group has only elements contained in compact *p*-subgroups. With the help of the tools that it provides it is, for instance, possible to argue that the multiplicative group $\widetilde{\mathbb{Z}}^{\times}$ is isomorphic to the additively written group $\widetilde{\mathbb{Z}} \times \operatorname{tor}(\widetilde{\mathbb{Z}}^{\times})$ and that the group $\operatorname{tor}(\widetilde{\mathbb{Z}}^{\times})$ contains a dense subgroup algebraically isomorphic to the large torsion-free group ($\widetilde{\mathbb{Z}}, +$)^(N). (See Corollary 21.)

Given a periodic locally compact abelian group A we let $\operatorname{SEnd}(A) \subseteq \operatorname{End}(A)$ denote the subring of all endomorphisms implemented by scalar multiplication. Then the natural homomorphism $\zeta: \mathbb{Z} \to \operatorname{SEnd}(A)$ defined by $\zeta(r)(a) = r \cdot a$ will be shown to be a quotient morphism of profinite rings, and we call the ring $\mathcal{R}(A) := \mathbb{Z}/\operatorname{ker}(\zeta)$ the ring of scalars of A. Then ζ factors through $\mathcal{R}(A)$ with an isomorphism $\mathcal{R}(A) \to$ $\operatorname{SEnd}(A)$ of rings. The group of units of $\operatorname{SEnd}(A)$ is denoted $\operatorname{SAut}(A)$, and we have $\mathcal{R}(A)^{\times} \cong \operatorname{SAut}(A)$. We shall clarify the structure of $\mathcal{R}(A)^{\times}$ completely in the way it depends on the exponents of the A_p . (See Theorem 39.)

Let G be a locally compact group with a closed normal subgroup A. Let Int(A) denote the group of all inner automorphisms. There is a natural representation $G \to Int(A)$ sending g to the inner automorphism $a \mapsto gag^{-1}$ whose kernel is the centralizer of A in G.

Proposition 1. For a locally compact group G with a periodic abelian closed normal subgroup A the following statements are equivalent:

- (i) $Int(A) \subseteq SAut(A)$, i.e., every inner automorphism induced on A is a scalar automorphism.
- (ii) Every closed subgroup of A is normal in G.
- (iii) There is a morphism $\rho: G \to \mathcal{R}(A)^{\times}$ such that

$$(\forall g \in G, a \in A) gag^{-1} = \rho(g) \cdot a$$

For a proof of this see Proposition 34.

We emphasize here again that in Theorem 39 we shall give an explicit structure theory of $\mathcal{R}(A)^{\times} \cong$ SAut(A).

1. The Sylow structure of the compactified ring of integers

By the "ring of compactified integers" we mean the profinite completion of the ring \mathbb{Z} and we denote it by $\widetilde{\mathbb{Z}}$. Technically, if $B = \alpha(G)$ is the Bohr compactification of a topological group G, then B/B_0 (with the identity component B_0 of B) is the zero dimensional compactification or the profinite completion of G. Since \mathbb{Z} is a ring it turns out that $\widetilde{\mathbb{Z}} = B/B_0$ in this case carries a ring structure. The profinite ring $\widetilde{\mathbb{Z}}$ is at the focus of the present discussion.

The set of all prime numbers is denoted by π . For each profinite abelian group A the p-primary component or p-Sylow subgroup A_p is the largest p-subgroup of A, and one has the Sylow decomposition $A = \prod_{p \in \pi} A_p$. Note, however that the ring \mathbb{Z} of integers in its discrete topology is not profinite, allowing the standard notation \mathbb{Z}_p for the ring of p-adic integers to be an exception to this convention. Accordingly, we shall formulate the equation $(\widetilde{\mathbb{Z}})_p = \mathbb{Z}_p$. The compact ring $\widetilde{\mathbb{Z}}$ then satisfies

$$\widetilde{\mathbb{Z}} = \prod_{p \in \pi} (\widetilde{\mathbb{Z}})_p \cong \prod_{p \in \pi} \mathbb{Z}_p.$$
(1)

This is the Sylow decomposition (or primary decomposition) of \mathbb{Z} .

2. The group of *p*-adic units \mathbb{Z}_n^{\times}

For a unital commutative ring R we denote by R^{\times} the multiplicative group of its units, i.e., invertible elements. We clarify this concept for $R = \mathbb{Z}_p$ by a reminder of some elementary structural information of \mathbb{Z}_p . Recall that under suitable circumstances in a topological ring R the sequence $1 + x + \frac{1}{2} \cdot x + \frac{1}{3!} x^3 \cdots$ converges for x from a suitable domain D and defines a function

$$\exp: D \to 1 + D, \quad 1 + D \subseteq R^{\times}.$$

If $p \in \pi$ is a prime and $m \in \mathbb{N}$, then

$$\nu_p(m) = \max\{n \in \mathbb{N}_0 : p^n | m\}$$

$$\tag{2}$$

is that unique nonnegative integer n for which $m = p^n m'$ and (m', p) = 1.

For the following information on the ring \mathbb{Z}_p of *p*-adic integers see e.g. [5].

Lemma 2. (i) For each prime $p \neq 2$, the function

$$\exp: p \cdot \mathbb{Z} \to (1 + p\mathbb{Z}_p), \quad 1 + p\mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$$

is an isomorphism of profinite groups and $1 + p\mathbb{Z}_p$ is an open subgroup of \mathbb{Z}_p^{\times} . In particular,

$$z \mapsto \exp pz : (\mathbb{Z}_p, +) \to (1 + p\mathbb{Z}_p, \times) \tag{3}$$

is an isomorphism of profinite groups.

(ii) The factor ring $\mathbb{Z}_p/p\mathbb{Z}_p$ is the field GF(p) of p elements, and so $(\mathbb{Z}_p/p\mathbb{Z}_p)^{\times}$ is a cyclic group of p-1 elements. The ring \mathbb{Z}_p^{\times} contains a cyclic group C_p of p-1 elements (called roots of unity) such that

$$(x,c) \mapsto xc: (1+p\mathbb{Z}_p) \times C_p \to \mathbb{Z}_p^{\times}$$
 is an isomorphism,

W. Herfort et al. / Topology and its Applications 263 (2019) 26-43

$$\left(\mathbb{Z}_{p}^{\times},\times\right)\cong\left(\mathbb{Z}_{p}\oplus\bigoplus_{q\in\pi}\mathbb{Z}\left(q^{\nu_{q}\left(p-1\right)}\right),+\right).$$
(4)

In particular, for $q \in \pi$ the q-Sylow subgroup of \mathbb{Z}_p^{\times} is procyclic and

$$(\mathbb{Z}_p^{\times})_q \cong \begin{cases} \mathbb{Z}\left(q^{\nu_q(p-1)}\right) & \text{if } q < p, \\ \mathbb{Z}_p & \text{if } q = p, \\ \{0\} & \text{if } p < q. \end{cases}$$

From a formalistic point of view it is regrettable that the case p = 2 is not exactly subordinate to the scheme. However, here it is:

Lemma 3. (i) The function

$$\exp: 4\mathbb{Z}_2 \to (1+4\mathbb{Z}_2), \quad 1+4\mathbb{Z}_2 \subseteq \mathbb{Z}_2^{\times}$$

is an isomorphism of profinite groups and $1 + 4\mathbb{Z}_2$ is an open subgroup of \mathbb{Z}_2^{\times} . In particular,

$$z \mapsto \exp 4z : (\mathbb{Z}_2, +) \to (1 + 4\mathbb{Z}_2, \times) \tag{5}$$

is an isomorphism of profinite groups.

(ii) The factor ring $\mathbb{Z}_2/2\mathbb{Z}_2$ is the field GF(2) of 2 elements, and the group of units of $(\mathbb{Z}_2/4\mathbb{Z}_2)^{\times}$ is a group of 2 elements. The group \mathbb{Z}_2^{\times} contains a cyclic group C_2 of 2 elements (called roots of unity) such that

$$(x,c) \mapsto xc: (1+4\mathbb{Z}_2) \times C_2 \to \mathbb{Z}_2^{\times}$$
 is an isomorphism,

and

$$(\mathbb{Z}_2^{\times}, \times) \cong (\mathbb{Z}_2 \oplus \mathbb{Z}(2), +).$$
(6)

In particular, \mathbb{Z}_2^{\times} is a nonprocyclic 2-group.

The product representation (1) $\widetilde{\mathbb{Z}}_p = \prod_{p \in \pi} \mathbb{Z}_p$ immediately yields

$$\widetilde{\mathbb{Z}}^{\times} = \prod_{p \in \pi} \mathbb{Z}_p^{\times}.$$
(7)

Since for $p \neq 2$ the profinite group \mathbb{Z}_p^{\times} is not a *p*-group, the product representation of the profinite group $\widetilde{\mathbb{Z}}^{\times}$ in (7) is not its Sylow decomposition. Our first and foremost goal is now to determine the Sylow decomposition of $\widetilde{\mathbb{Z}}^{\times}$ and to describe it in an intuitive and useful form.

3. Some helpful facts on groups and numbers

The information contained in (1) through (6) suggests rather clearly that products $G = \prod_{j \in J} \mathbb{Z}(p^{n_j})$ (for families $(n_j)_{j \in J}$ of natural numbers and for a fixed prime number p will play a role in the structure of \mathbb{Z}^{\times}). Lemma 3.9 of [2] provides the following standard information:

Lemma 4. The group $\prod_{i \in J} \mathbb{Z}(p^{n_i})$ is a torsion group if and only if $(n_j)_{j \in J}$ is a bounded family.

Accordingly we first collect some general facts on groups G for general families $(n_j)_{j \in J}$ and keep in mind as a special example the family $\mathbb{N} = (1, 2, 3, ...)$ and, accordingly, the group

$$P = \mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$$
(8)

Definition 5. Let $p \in \pi$. Given $G = \prod_{i \in J} \mathbb{Z}(p^{n_i})$ for a family $(n_j)_{j \in J}$, for each $m \in \mathbb{N}$ we define

$$n_{jm} = \begin{cases} n_j & \text{if } n_j \le m, \\ 0 & \text{otherwise.} \end{cases}$$

Now we set $G_m = \prod_{i \in J} \mathbb{Z}(p^{n_{jm}})$. For any finite subset $F \subseteq J$ we let

$$n_{jF} = \begin{cases} n_j & \text{if } j \in F, \\ 0 & \text{otherwise} \end{cases}$$

and set

$$G_F = \prod_{j \in J} \mathbb{Z}(p^{n_{jF}}) \cong \bigoplus_{j \in F} \mathbb{Z}(p^{n_j}).$$

We see that $m \leq n$ implies $G_m \leq G_n$, and for any finite subset $F \subseteq J$ there is an m such that $G_F \leq G_m$. Since $\bigcup_{F \subseteq J, F \text{ finite }} G_F$ is dense in $\prod_{j \in J} \mathbb{Z}(p^{n_j})$, we have

Remark 6. For any family $(n_j)_{j \in J}$ of natural numbers, the profinite *p*-group $G = \prod_{j \in J} \mathbb{Z}(p^{n_j})$ has the dense torsion subgroup $\bigcup_{m \in \mathbb{N}} G_m$ of the ascending sequence G_m , $m = 1, 2, \ldots$ of compact torsion subgroups.

Let us consider the character group $A := \widehat{G}$ of G. Then $A \cong \bigoplus_{j \in J} \mathbb{Z}(p^{n_j})$. From Propositions 8.2 and 8.3 in [3] we cite

Lemma 7. If Γ is any compact or any discrete group, then

$$\overline{\operatorname{tor}\Gamma} = Div(\widehat{\Gamma})^{\perp},\tag{9}$$

the annihilator of the group of all divisible elements of the character group of Γ .

We consider the special group

$$\Sigma_p = \mathbb{Z}(p) \oplus \mathbb{Z}(p^2) \oplus \mathbb{Z}(p^3) \oplus \cdots,$$
(10)

the character group of the group P in (8) above. In [2] Σ_p emerges as the torsion subgroup of the remarkable locally compact *p*-group ∇_p (see [2], Theorem 3.16) and it shows some surprising features itself.

Firstly we cite Lemma 3.17 of [2] known to Prüfer:

Lemma 8. Let e_n be the generator of $\mathbb{Z}(p^n)$ in Σ_p and let $\phi: \Sigma_p \to \Sigma_p$ be the endomorphism defined by $\phi(e_n) = e_n - p \cdot e_{n+1}$. Then ϕ is injective and its cokernel $\Sigma_p / \phi(\Sigma_p)$ is, up to isomorphism, the Prüfer group $\mathbb{Z}(p^{\infty})$. That is, the following sequence is exact:

$$0 \to \Sigma_p \xrightarrow{\phi} \Sigma_p \to \mathbb{Z}(p^\infty) \to 0.$$

We can iterate ϕ and set $S_n = \phi^n(\Sigma_p)$, $n = 0, 1, 2, \dots$ Then $\Sigma_p = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots$. Since ϕ is injective, all S_n are isomorphic to Σ_p .

Proposition 9. The countable torsion group Σ_p is filtered by a sequence $S_0 = \Sigma_p \supseteq S_1 \supseteq S_2 \supseteq \cdots$ of isomorphic subgroups such that

(i) $S_{n-1}/S_n \cong \mathbb{Z}(p^{\infty})$ for $n \in \mathbb{N}$, and (ii) $\bigcap_{n \in \mathbb{N}} S_n = \{0\}.$

Proof. We have to prove (i) and (ii). For each $n \in \mathbb{N}$, set $K_n = S_{n-1}/S_n$; in particular $K_0 = \mathbb{Z}(p^{\infty})$. The injective endomorphism $\phi: S_0 \to S_0$ leaves S_n invariant and induces an injective endomorphism $\phi_n: S_n \to S_n$ with cokernel K_n . We have the commutative diagram

0	\rightarrow	S_0	$\xrightarrow{\phi}$	S_0	\rightarrow	K_0	\rightarrow	0
\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
0	\rightarrow	S_1	$\xrightarrow{\phi_2}$	S_1	\rightarrow	K_1	\rightarrow	0
\downarrow		\downarrow		\downarrow		\downarrow		\downarrow
÷		÷		÷		÷		÷
0	\rightarrow	S_n	$\xrightarrow{\phi_n}$	S_n	\rightarrow	K_n	\rightarrow	0
:		:		÷		:		:

in which all rows are exact and the vertical morphisms $S_{n-1} \to S_n$ $n \in \mathbb{N}$ are the isomorphisms induced by $\phi | S_n$ Since the downarrows $S_{n-1} \to S_n$ are isomorphisms, and $K_1 = \mathbb{Z}(p^{\infty})$, it follows, inductively, that $K_n \cong \mathbb{Z}(p^{\infty})$ for all $n \in \mathbb{N}$.

(ii) By the definition of ϕ in Lemma 8 we have $\phi(e_n) = e_n - p \cdot e_{n+1}$. We define $\ell: \Sigma_p \to \mathbb{N}$ as follows: let $x = \sum_{n \in \mathbb{N}} x_m$ with $x_m \in \mathbb{Z}(p^m)$. Then

$$\ell(x) = \begin{cases} 0 & \text{if } x = 0, \\ \max\{m \in \mathbb{N} \mid 0 \neq x_m \in \mathbb{Z}(p^m)\} \\ -\min\{m \in \mathbb{N} \mid 0 \neq x_m \in \mathbb{Z}(p^m)\} + 1 & \text{otherwise.} \end{cases}$$

In the definition of ϕ in Lemma 8 we set $\phi(e_n) = e_n - p \cdot e_{n+1}$. Thus let $y = \sum_{n \in \mathbb{N}} y_n$ be $\phi(x)$ and assume $x \neq 0$. Then

$$\min\{m \in \mathbb{N} \mid 0 \neq y_m \in \mathbb{Z}(p^m)\} = \min\{m \in \mathbb{N} \mid 0 \neq x_m \in \mathbb{Z}(p^m)\}\$$

and

$$\max\{m \in \mathbb{N} \mid 0 \neq y_m \in \mathbb{Z}(p^m)\} = \max\{m \in \mathbb{N} \mid 0 \neq x_m \in \mathbb{Z}(p^m)\} + 1$$

Thus

$$\ell(\phi^n(x)) = \ell(x) + n. \tag{11}$$

Now assume that $y \in \bigcap_{m \in \mathbb{N}} S_m$. Suppose that $y \neq 0$ and set $n = \ell(y) \in \mathbb{N}$. Then $y \in \bigcap_{m \in \mathbb{N}} S_m \subseteq S_n$, and so there is an $x \neq 0$ such that $\phi^n(x) = y$. Thus (11) shows that $\ell(y) = \ell(\phi^n(x)) = \ell(x) + n = \ell(x) + \ell(y)$, that is, $\ell(x) = 0$ and hence x = 0 which is impossible. \Box

This proposition dualizes comfortably according to the Annihilator Mechanism of locally compact abelian groups (see [3], 7.17 ff., notably Corollary 7.22, all of which fully applies to locally compact abelian groups). So let P of (8) be the dual of Σ_p and let $H_n \leq P$ be the annihilator $(S_n)^{\perp}$ of $S_n \leq \Sigma_p$. Since the S_n are descending, the H_n are ascending, and since $\bigcap_{n \in \mathbb{N}} S_n = \{0\}$ we know that

$$P = \overline{\bigcup_{n \in \mathbb{N}} H_n}.$$
(12)

For all $n \in \mathbb{N}$ we deduce via duality from $S_{n-1}/S_n \cong \mathbb{Z}(p^{\infty})$ that $H_n/H_{n-1} \cong \mathbb{Z}_p$ for $n \in \mathbb{N}$. However, at this point we can utilize the fact that in the category of compact *p*-groups, the group \mathbb{Z}_p is projective (since its dual $\mathbb{Z}(p^{\infty})$ is divisible hence injective in the category of discrete *p*-groups; see also [3], Theorem 8.78.) Therefore, for each $n \in \mathbb{N}$, the compact group H_n contains a compact subgroup $K_n \cong \mathbb{Z}_p$ such that

$$(\forall n \in \mathbb{N}) H_n = H_{n-1} K_n \cong H_{n-1} \times K_n.$$
(13)

By induction we conclude at once that

$$(\forall n \in \mathbb{N}) H_n = C_1 \cdots C_n = C_1 \times \cdots \times C_n \cong \mathbb{Z}_p^n$$
(14)

and there are algebraic isomorphisms

$$\bigcup_{n \in \mathbb{N}} H_n = \left\langle \bigcup_{n \in \mathbb{N}} C_n \right\rangle \cong \bigoplus_{n \in \mathbb{N}} C_n \cong \mathbb{Z}_p^{(\mathbb{N})}$$
(15)

Let us collect this information:

Corollary 10. The group $P = \mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$ contains a dense \mathbb{Z}_p -submodule which is algebraically isomorphic to the \mathbb{Z}_p -module $\mathbb{Z}_p^{(\mathbb{N})}$.

Corollary 11. For any family $(n_j)_{j \in J}$ of natural numbers, the profinite p-group $G = \prod_{j \in J} \mathbb{Z}(p^{n_j})$ is either a torsion group or else it contains a \mathbb{Z}_p -submodule isomorphic to $\mathbb{Z}_p^{(\mathbb{N})}$ whose closure is isomorphic to $P = \mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$

Proof. Either the family $(n_j)_{j \in J}$ is bounded, in which case G is a torsion group, or else it is unbounded. In that case there is an increasing unbounded subsequence $(n_{j(m)})_{m \in \mathbb{N}}$. Set $k_m = n_{j(m)}$. Since the k_n are increasing, we have $n \leq k_n$. The cyclic group $\mathbb{Z}(p^{k_m}) = \mathbb{Z}(p^{n_{j(m)}})$ contains a subgroup $B_m \cong \mathbb{Z}(p^m)$. Then group $B_1 \times B_2 \times B_3 \times \cdots$ is clearly isomorphic to a subgroup B of G which is isomorphic to $\mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$. Then it follows from Corollary 10 that B contains a dense \mathbb{Z}_p -submodule algebraically isomorphic to $\mathbb{Z}_p^{(\mathbb{N})}$, as asserted. \Box

We shall need the following pieces of information. The first one is number theoretical. As in (2), for a prime p and a natural number r, let $\nu_p(r)$ be the exponent of the largest p-power dividing r.

Lemma 12. Let $p \in \pi$ be an arbitrary prime number and n an arbitrary natural number. Then there is a prime number q such that $n \leq \nu_p(q-1)$. Accordingly, $p^n|(q-1)$. In particular p|(q-1).

Proof. Fix $p \in \pi$ and an arbitrary natural number n. The numbers $a = p^n$ and b = 1 are relatively prime. Hence the arithmetic progression $(am + b)_{m \in \mathbb{N}}$ contains infinitely many primes q by the Dedekind Prime Number Theorem. Let q be one of them. Then $q-1 = p^n m$, that is $\nu_p(q-1) \ge n$. In particular, p|(q-1). \Box

Lemmas 2 and 3 imply via (7) that $\widetilde{\mathbb{Z}}^{\times}$ contains for each fixed prime p a product

$$E := \prod_{q \in \pi} \mathbb{Z}(p^{\nu_p(q-1)}),$$

where we note that $\nu_p(q-1) = 0$ if p fails to divide q-1. Therefore the following conclusion of the preceding Lemma 12 is relevant:

Proposition 13. Let $p \in \pi$ be an arbitrary prime number. Then the group E contains a subgroup isomorphic to

$$P = \mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$$

which in turn contains a dense subgroup and \mathbb{Z}_p -module $D \cong \mathbb{Z}_p^{(\mathbb{N})}$.

Proof. By Lemma 12 for each *n* there is a $q \in \pi$ such that $n \leq \nu_p(q-1)$. Hence the group $\mathbb{Z}(p^{\nu_p(q-1)})$ contains a subgroup $B_n \cong \mathbb{Z}(p^n)$. Thus *E* contains an isomorphic copy of

$$B = \prod_{n \in \mathbb{N}} B_n \cong \mathbb{Z}(p) \times \mathbb{Z}(p^2) \times \mathbb{Z}(p^3) \times \cdots$$

The remainder then follows from Corollary 10. \Box

4. The mastergraph

We introduce a bipartite edge-labeled graph \mathcal{G} as follows:

Definition 14. A bipartite graph consists of two disjoint sets U and V and a binary relation $\mathcal{E} \subseteq (U \cup V)^2$ such that $(u, v) \in \mathcal{E}$ implies $u \in U$ and $v \in V$. The elements of $U \cup V$ are called *vertices* and the elements of \mathcal{E} are called *edges*. Any triple (U, V, \mathcal{E}) of this type is called a *bipartite graph*.

An *edge labeled* graph is a quadruple $(U, V, \mathcal{E}, \lambda)$ such that (U, V, \mathcal{E}) is a bipartite graph and λ is a function $\lambda: \mathcal{E} \to L$ for some set L of labels.

Labels could be numbers, or symbols like ∞ .

Now we define a particular edge labeled graph \mathcal{G} . Recall the definition of $\nu_p(m)$ from (2) above.

Definition 15. The following bipartite edge labeled graph

$$\mathcal{G} = (U, V, \mathcal{E}, \lambda), \quad \mathcal{E} \subseteq U \times V,$$

will be called the *prime mastergraph* or *mastergraph* for short:

(i)
$$U = \pi \times \{1\} \subseteq \pi \times \{0, 1\},$$

(ii) $V = \pi \times \{0\} \subseteq \pi \times \{0, 1\},$
(iii) $\mathcal{E} = \{((p, 1), (q, 0)) : p = q \text{ or } p | (q - 1)\},$
(iv) $\lambda: \mathcal{E} \to \mathbb{N} \cup \{\infty\}, \ \lambda(((p, 1), (q, 0))) = \begin{cases} \infty, & \text{if } p = q \\ \nu_p(q - 1), & \text{if } p < q \end{cases}$

We shall call the vertices in U the upper and those in V the lower vertices. The edges ((p, 1), (p, 0)), $p \in \pi$ are said to be vertical, all others are called *sloping*. We say that e = ((p, 1), (q, 0)) is the edge from p to q (see Fig. 1 and Fig. 2).

The labels of the sloping edges are all equal to 1 with the exception 2—5 where it is 2 (see Fig. 2).

The "geometric" terminology is chosen because \mathcal{G} has an intuitive representation in the plane \mathbb{R}^2 preserving the order:

Fig. 1. Vertical and sloping edges.

Fig. 2. The five vertices in U connected to the lower vertex numbered "211" in V.

Fig. 3. The initial part of the master-graph.

Proposition 16. Let $\omega: \pi \to \mathbb{N}$ be the bijection inverse to the usual enumeration $n \mapsto p_n$ of primes according to their natural ordering according to their size. Let id be the identity map of the set $\{0,1\}$. There is a faithful representation of the configuration of \mathcal{G} into the plane \mathbb{R}^2 preserving the componentwise order which is induced by the injection

$$\pi \times \{0,1\} \xrightarrow{\omega \times \mathrm{id}} \mathbb{N} \times \{0,1\} \xrightarrow{\mathrm{incl}} \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

and taking U to $\mathbb{N} \times \{1\}$ and V to $\mathbb{N} \times \{0\}$.

In Fig. 3 the label of the edge from (2,1) to (13,0) is 2.

Definition 17. Let p and q be any primes. Then

$$\mathcal{E}_p = \{ e : e = ((p,1), (p',0)) \in \mathcal{E} \text{ such that } p = p' \text{ or } p | (p'-1) \},\$$

the set of all edges emanating downwards from the vertex $(p, 1) \in U$ will be called the *cone peaking at p*. Further the set

$$\mathcal{F}_q = \{e : e = ((q', 1), (q, 0)) \in \mathcal{E} \text{ such that } q' | (q - 1) \},\$$

the set of edges ending below in the vertex $(q, 0) \in V$, is called the *funnel pointing to q*.

Both the cones and the funnels provide a partition of the set of edges. It is instantly clear that each funnel is finite, and so the funnels, are not as important as the cones. The structure of a cone is more interesting than that of a funnel as the following translation of Lemma 12 into the language of the mastergraph \mathcal{G} shows.

Proposition 18. Let p be any prime. Accordingly, in the graph \mathcal{G} , the cone \mathcal{E}_p is peaking at the upper vertex (p, 1), and for each natural number n, it contains an edge e = ((p, 1), (q, 0)) labeled $\nu_p(q - 1) \geq n$. In particular, \mathcal{E}_p contains infinitely many edges.

5. The Sylow decomposition of $\widetilde{\mathbb{Z}}$ indexed by \mathcal{G}

We recall that \mathcal{E} is the set of all edges of the mastergraph $\mathcal{G} = (U, V, \mathcal{E}, \lambda)$. We start the indexing by attaching to each edge $e = ((p, 1), (q, 0)) \in \mathcal{E}$ a profinite group \mathbb{S}_e being, up to a natural isomorphism, a subgroup of $\widetilde{\mathbb{Z}}$:

Definition 19. For each edge $e \in \mathcal{E}$ from p to q we set

$$S_e = \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}(2), & \text{if } p = q = 2, \\ \mathbb{Z}_p, & \text{if } 2 (16)$$

We noted in (7) that

$$\widetilde{\mathbb{Z}}^{\times} = \prod_{q \in \pi} \mathbb{Z}_q^{\times}$$

and in Lemmas 2 and 3 a procyclic *p*-group occurs precisely as a subgroup of some S_e for an edge *e* with upper vertex *p*. Therefore, the *p*-Sylow subgroup of $\widetilde{\mathbb{Z}}^{\times}$ is represented by the cone \mathcal{E} peaking in *p*. One has

$$(\mathbb{Z}_q)^{\times} = \prod_p (\mathbb{Z}_q^{\times})_p = \prod_{e \in \mathcal{F}_q} \mathbb{S}_e,$$
(17)

as well as

$$(\widetilde{\mathbb{Z}}^{\times})_{p} \cong \left(\prod_{q \in \pi} \mathbb{Z}_{q}^{\times}\right)_{p} = \prod_{e \in \mathcal{E}_{p}} \mathbb{S}_{e},$$
(18)

$$p \mapsto \mathcal{E}_p$$
 (19)

is a bijection from the set of primes to the set \mathcal{C} of cones such that $\mathcal{C} = \bigcup_{p \in \pi} \mathcal{E}_p$ in the mastergraph.

Taking these matters and Proposition 13 into account, we can summarize:

Theorem 20. (i) The group $\widetilde{\mathbb{Z}}^{\times}$ of units of the universal procyclic compactification $\widetilde{\mathbb{Z}}$ of the ring of integers \mathbb{Z} is the product

$$\widetilde{\mathbb{Z}}^{\times} \cong \prod_{q} (\mathbb{Z}^{\times})_{q} = \prod_{q} \prod_{e \in \mathcal{F}_{q}} \mathbb{S}_{e} = \prod_{e \in \mathcal{E}} \mathbb{S}_{e}$$
(20)

extended over the set \mathcal{E} of all edges of the mastergraph, where \mathbb{S}_e is the profinite group given in (16) above. (ii) Its p-Sulow subgroup is the subproduct extended over the cone peaking in p:

$$(\widetilde{\mathbb{Z}}^{\times})_p = \prod_{e \in \mathcal{E}_p} \mathbb{S}_e \cong \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}(2) \oplus \prod_{q>2} \mathbb{Z}(2^{\nu_2(q-1)}), & \text{if } p = 2, \\ \mathbb{Z}_p \oplus \prod_{q>p} \mathbb{Z}(p^{\nu_p(q-1)}), & \text{otherwise.} \end{cases}$$
(21)

(iii) For each $p \in \pi$ fixed,

$$(\widetilde{\mathbb{Z}}^{\times})_p \cong \mathbb{Z}_p \oplus T_p, \quad where \ T_p = \overline{\operatorname{tor}(\widetilde{\mathbb{Z}}^{\times})_p},$$

$$(22)$$

and where T_p contains a \mathbb{Z}_p -submodule algebraically isomorphic to $\mathbb{Z}_p^{(\mathbb{N})}$ whose closure is isomorphic to $\prod_{n \in \mathbb{N}} \mathbb{Z}(p^n)$.

Let $T = \overline{\operatorname{tor}(\widetilde{\mathbb{Z}}^{\times})}$. For each prime p, define

$$\mathbb{ZP}_p = \prod_{n \in \mathbb{N}} \mathbb{Z}(p^n), \qquad \mathbb{ZP} = \prod_{p \in \pi} \mathbb{ZP}_p = \left(\prod_{(p,n) \in \pi \times \mathbb{N}} \mathbb{Z}(p^n).\right)$$
(23)

Corollary 21. (i) \mathbb{ZP} contains a dense copy of the torsion-free $\widetilde{\mathbb{Z}}$ -module $M := \widetilde{\mathbb{Z}}^{(\mathbb{N})}$.

(ii) The closure T of the torsion subgroup of $\widetilde{\mathbb{Z}}^{\times}$ contains a copy of M.

Proof. (i) The group \mathbb{ZP}_p contains a dense copy of $\mathbb{Z}_p^{(\mathbb{N})}$ (see Theorem 20 (iii) above). Hence $\mathbb{ZP} = \prod_{p \in \pi} \mathbb{ZP}_p$ contains a dense copy of $\prod_{p \in \pi} \mathbb{Z}_p^{(\mathbb{N})}$ which contains a copy of $\widetilde{\mathbb{Z}}^{(\mathbb{N})} \cong \prod_{p \in \pi} \mathbb{Z}_p$ and this copy is still dense in \mathbb{ZP} .

(ii) From Theorem 20 (iii) implies that for each prime, T_p contains a copy of \mathbb{ZP}_p . Hence T contains a copy of \mathbb{ZP} . \Box

6. The Sylow decomposition of $\mathbb{Z}(n)^{\times}$ indexed by \mathcal{G}

We record $n = \prod_{p|n} p^{\nu(n)}$ (finite product: almost all $\nu_p(n) \neq 0$ only if p|n) and accordingly $\mathbb{Z}(n) = \prod_{p|n} \mathbb{Z}(p^{\nu_p(n)})$. Hence $\mathbb{Z}(n)^{\times} = \prod_{p|n} \mathbb{Z}(p^{\nu_p(n)})^{\times}$, and it suffices to recall the case that $n = p^m$. This we assume for the remainder of this section, and we fix a prime **p**.

While the structure of $\mathbb{Z}(\mathbf{p}^m)^{\times}$ is usually dealt with in elementary number theory (see e.g. [1, Chapter 4]) we show how its structure can be determined also by interpreting $\mathbb{Z}(\mathbf{p}^m)$ as a **p**-adic Lie group and thus use the exponential function from Section 2.

Here we have $\mathbb{Z}(\mathbf{p}^m) = \mathbb{Z}_{\mathbf{p}}/\mathbf{p}^m \cdot \mathbb{Z}_{\mathbf{p}}$. Let $\mu: \mathbb{Z}_{\mathbf{p}} \to \mathbb{Z}_{\mathbf{p}}$ denote the scalar endomorphism given by $\mu(x) = \mathbf{p}^m x$. Then

$$0 \to \mathbb{Z}_{\mathbf{p}} \xrightarrow{\mu} \mathbb{Z}_{\mathbf{p}} \to \mathbb{Z}(\mathbf{p}^m) \to 0$$

is exact and μ induces a quotient morphism $\mu^{\times}: \mathbb{Z}_{\mathbf{p}}^{\times} \to \mathbb{Z}(\mathbf{p}^{m})^{\times}$. We recall that the morphism $\mathbb{Z}_{\mathbf{p}} \to \mathbb{Z}_{\mathbf{p}}/\mathbf{p}\mathbb{Z}_{\mathbf{p}} \cong \operatorname{GF}(\mathbf{p})$ maps $C_{\mathbf{p}}$ of Lemmas 2 and 3 faithfully because $\mathbf{p}^{m}\mathbb{Z}_{\mathbf{p}} \subseteq \mathbf{p}\mathbb{Z}_{\mathbf{p}}$ unless $\mathbf{p} = 2$ and $m \leq 2$, in which case $\mathbf{p}^{m} = 2$ or = 4, in which case we have $\mathbb{Z}(2)^{\times} = \{1\}$, respectively, $\mathbb{Z}(4)^{\times} = \{\pm 1\}$. If $\mathbf{p} > 2$ then we know that

$$\exp:(\mathbf{p}\mathbb{Z}_{\mathbf{p}},+) \to (1+\mathbf{p}\mathbb{Z}_{\mathbf{p}},\times)$$
 is an isomorphism,

whence by applying μ

$$\exp:\left(\frac{\mathbf{p}\mathbb{Z}_{\mathbf{p}}}{\mathbf{p}^m\mathbb{Z}_{\mathbf{p}}},+\right)\to (\mu(1+\mathbf{p}\mathbb{Z}_{\mathbf{p}}),\times) \text{ is an isomorphism.}$$

Since $\frac{\mathbf{p}\mathbb{Z}_p}{\mathbf{p}^m\mathbb{Z}_p}\cong\mathbb{Z}(\mathbf{p}^{m-1})$ in view of Lemma 2 we have

$$\mathbb{Z}(\mathbf{p}^m)^{\times} \cong \mathbb{Z}(\mathbf{p}^{m-1}) \oplus \mathbb{Z}(\mathbf{p}-1)$$

Analogously, for $\mathbf{p} = 2$ and m > 2, from Lemma 3 we obtain

$$\mathbb{Z}(2^m)^{\times} \cong \mathbb{Z}(2^{m-2}) \oplus \mathbb{Z}(2) \tag{24}$$

Summarizing, we have

Lemma 22. The group of units of $\mathbb{Z}(\mathbf{p}^m)$ is

$$\mathbb{Z}(\mathbf{p}^{m})^{\times} \cong \begin{cases} \{0\}, & \text{if } \mathbf{p}^{m} = 2, \\ \mathbb{Z}(2), & \text{if } \mathbf{p}^{m} = 4, \\ \mathbb{Z}\left(2^{m-2}\right) \oplus \mathbb{Z}(2), & \text{if } \mathbf{p} = 2, m > 2, \\ \mathbb{Z}\left(\mathbf{p}^{m-1}\right) \oplus \mathbb{Z}(\mathbf{p} - 1), & \text{if } \mathbf{p} > 2. \end{cases}$$

$$(25)$$

We may use \mathcal{G} as index set for describing the *p*-Sylow decomposition of $A = \mathbb{Z}(\mathbf{p}^m)^{\times}$ as follows:

We index subgroups $\mathbb{S}_e \leq A$ by attaching again to each edge $e = ((p, 1), (q, 0)) \in \mathcal{E}$ a profinite group \mathbb{S}_e being, up to a natural isomorphism, a subgroup of $\widetilde{\mathbb{Z}}^{\times}$:

Definition 23. For each edge $e \in \mathcal{E}$ from p to q we set

$$\mathbb{S}_{e} = \begin{cases} \{0\}, & \text{if } \mathbf{p}^{m} = 2 \text{ or } q > \mathbf{p}^{m}, \\ \mathbb{Z}(2), & \text{if } \mathbf{p}^{m} = 4 \text{ and } p = q = 2, \\ \mathbb{Z}_{2} \oplus \mathbb{Z}(2), & \text{if } p = q = \mathbf{p} = 2, \\ \mathbb{Z}\left(p^{m-2}\right), & \text{if } 2 < \mathbf{p} \text{ and } q \leq \mathbf{p}, \\ \mathbb{Z}\left(p^{\nu_{p}(q-1)}\right), & \text{if } p < q \leq \mathbf{p}. \end{cases}$$

$$(26)$$

With this indexing we can formulate

Theorem 24. For a fixed prime \mathbf{p} and a fixed natural number m,

(i) the group $\mathbb{Z}(\mathbf{p}^m)^{\times}$ of units of the universal cyclic group $\mathbb{Z}(\mathbf{p}^m)$ is

$$\mathbb{Z}(\mathbf{p}^m)^{\times} = \prod_{e \in \mathcal{E}} \mathbb{S}_e \tag{27}$$

extended over the set \mathcal{E} of all edges of the mastergraph, where \mathbb{S}_e is the profinite group given in (26) above. (ii) Its p-Sylow subgroup is the subproduct extended over the cone peaking in \mathbf{p} :

$$\left(\mathbb{Z}(\mathbf{p}^{m})^{\times}\right)_{p} = \prod_{e \in \mathcal{E}_{p}} \mathbb{S}_{e} \cong \begin{cases} \mathbb{Z}(4) \oplus \mathbb{Z}(2) \oplus \bigoplus_{\mathbf{p} \ge q > 2} \mathbb{Z}\left(2^{\nu_{2}(q-1)}\right), & \text{if } p = 2, \\ \mathbb{Z}(p^{m-2}) \oplus \bigoplus_{\mathbf{p} \ge q > p} \mathbb{Z}\left(p^{\nu_{p}(q-1)}\right), & \text{otherwise.} \end{cases}$$
(28)

7. The mastergraph of a periodic abelian group

Recall that for a locally compact group G an element g is called *compact* if it is contained in a compact subgroup. The set of compact elements is called comp(G). If G is abelian, then comp(G) is a fully characteristic subgroup. For details see [3], Chapter 7 and [2]. The identity component of a topological group is written G_0 .

Definition 25. A locally compact group G is said to be *periodic*, if it satisfies the following conditions:

- (i) $G = \operatorname{comp}(G)$,
- (ii) $G_0 = \{0\}.$

In other words, G is the union of its compact subgroups and is totally disconnected. In fact, if G is abelian, then G is the directed union of its compact open subgroups, and if C and K are two of them, then C and K are commensurable, that is both $C/(C \cap K)$ and $K/(C \cap K)$ are finite.

If $(G_j)_{j\in J}$ is a family of topological groups and $C_j \leq G_j$ is a compact open subgroup for each j, then the set of all $(g_j)_{j\in J} \in T = \prod_{j\in J} G_j$ such that $\{j\in J| g_j\notin C_j\}$ is finite forms a subgroup $L \leq T$ of the product containing $C = \prod_{j\in J} C_j$. Then L is a locally compact topological group for the unique topology for which C is open in G. This group L is called the *local product* of the family $(G_j, C_j)_{j\in J}$ and is written

$$L = \prod_{j \in J}^{\mathrm{loc}} (G_j, C_j).$$

We shall write abelian groups additively in general, unless the context demands otherwise, e.g. in the case of the group of units of a ring, such as \mathbb{Z}_p .

With this notation it is easy to reproduce Braconnier's theorem on the Sylow decomposition of a periodic locally compact abelian group A into its p-Sylow subgroups A_p , $p \in \pi$:

Theorem 26. (J. Braconnier) Let A be a periodic locally compact abelian group and C any compact open subgroup of A. Then A is isomorphic to the local product

$$\prod_{p}^{\text{loc}}(A_p, C_p).$$
(29)

If A is a periodic locally compact abelian group, then every endomorphism α leaves the Sylow subgroup A_p invariant. We write $\alpha_p = \alpha | G_p : A_p \to A_p$. If C is a compact open subgroup, let End(G, C) denote the subring of the endomorphism ring End(G) of all endomorphisms leaving C invariant.

In view of Theorem 26 we may identify A with its canonical local product decomposition of the pair (A, C).

Every locally compact abelian p-group A is a \mathbb{Z}_p -module for a multiplication $(r_p, g_p) \mapsto r_p \cdot g_p$. If we identify $\widetilde{\mathbb{Z}}$ and $\prod_{p \in \pi} \mathbb{Z}_p$ by (1) and a periodic locally compact abelian group A with $\prod_{p \in \pi}^{\text{loc}} (A_p, C_p)$ for any compact open subgroup C, we see at once that we have a continuous module multiplication, a map from $\widetilde{\mathbb{Z}} \times A$ to A given by

$$(r,g) = ((r_p)_p, (g_p)_p) \mapsto (r_p \cdot g_p)_p = r \cdot g.$$

$$(30)$$

In a similar vein we observe

Proposition 27. For a periodic locally compact abelian group A, the componentwise application κ defined by

$$\alpha \mapsto (\alpha_p)_p : \operatorname{End}(A, C) \to \prod_p \operatorname{End}(A_p, C_p)$$

is an isomorphism of groups, and $\alpha((g_p)_p) = (\alpha_p(g_p))_p$.

Proof. After identifying (A, C) and $\prod_{p}^{\text{loc}}(A_p, C_p)$ according to Theorem 26, it is straightforward to verify that κ is an injective morphism of groups. Moreover, if

$$(\phi_p)_p \in \prod_p \operatorname{End}(A_p, C_p),$$

then the morphism

$$\phi: \prod_p A_p \to \prod_p A_p$$
 defined by $\phi((g_p)_p) = (\phi_p(g_p))_p$

leaves $C = \prod_p C_p$ fixed as a whole and does the same with $\prod_p^{\text{loc}}(A_p, C_p)$ and so $\kappa(\phi) = (\phi_p)_p$. Thus κ is surjective as well. \Box

We noted in (30) that every $r \in \widetilde{\mathbb{Z}}$ yields an endomorphism $a \mapsto r \cdot a$ of the periodic locally compact abelian group A, giving us a morphism of rings $\zeta: \widetilde{\mathbb{Z}} \to \operatorname{End}(A)$. In particular, since scalar multiplication $\widetilde{\mathbb{Z}} \times A \to A$ is continuous, $\operatorname{ker}(\zeta)$ is a closed ideal of $\widetilde{\mathbb{Z}}$.

Definition 28. For a locally compact abelian group A we denote the factor ring $\widetilde{\mathbb{Z}}/\ker(\zeta)$ by $\mathcal{R}(A)$ and call it *the ring of scalars* of A. There is an obvious scalar multiplication $\mathcal{R}(A) \times A \to A$.

The ring morphism ζ factors through an isomorphism of rings

$$\mathcal{R}(A) \xrightarrow{\cong} \operatorname{End}(A). \tag{31}$$

We note that

$$\mathcal{R}(A) \cong \prod_{p} \mathcal{R}(A)_{p},\tag{32}$$

and scalar multiplication operates componentwise on $A \cong \prod_p (A_p, C_p)$.

We shall be mostly interested in the scalar multiplication by units $r \in \mathbb{Z}$. In this context it is clear that (32) induces an isomorphism

$$\mathcal{R}(A)^{\times} \cong \prod_{p} (\mathcal{R}(A)_{p})^{\times}, \tag{33}$$

where $(R(A)_p)^{\times}$ is isomorphic to a quotient group of $(\mathbb{Z}_p)^{\times}$.

One verifies easily the following piece of information:

Example 29. Let A be a locally compact abelian p-group. Then

$$\mathcal{R}(A) = \begin{cases} \mathbb{Z}_p / p^m \mathbb{Z}_p \cong \mathbb{Z}(p^m), & \text{if } A \text{ has finite exponent } p^m, \\ \mathbb{Z}_p, & \text{otherwise.} \end{cases}$$
(34)

Lemma 4 shows that among the *compact* abelian groups A the torsion groups are exactly the ones having finite exponent.

8. Scalar multiplication on a periodic locally compact abelian group

The following lemma is straightforward:

Lemma 30. For a continuous endomorphism α of a locally compact group G the following conditions are equivalent:

- (i) $\alpha(H) \subseteq H$ for all closed subgroups H of G.
- (ii) $\alpha(\overline{\langle g \rangle}) \subseteq \overline{\langle g \rangle}$ for all $g \in G$.
- (iii) $\alpha(g) \in \overline{\langle g \rangle}$ for all $g \in G$.

Definition 31. An endomorphism α of a locally compact group G is called *scalar* if it satisfies the equivalent conditions of Lemma 30.

In [5] it is shown that on a compact abelian *p*-group *G*, for any automorphism α which is scalar in the sense of Definition 31 there is an $r \in \mathbb{Z}_p^{\times}$ such that $\alpha(g) = r \cdot g$ for all $g \in G$. The proof through Lemma 2.21 and Proposition 2.22 in [5] works for endomorphisms as well and thus yields

Lemma 32. Let A be a compact abelian p-group. Then for any scalar endomorphism α there is an $r \in \mathbb{Z}_p$ such that $\alpha(a) = r \cdot a$ for all $a \in A$. Accordingly, α is an automorphism iff $r \in \mathbb{Z}_p^{\times}$.

In [2], Lemma 4.6 it is shown for a locally compact abelian *p*-group A for any automorphism α for which any restriction to a compact-open subgroup is scalar, there is an $r \in \mathbb{Z}_p$ such that $\alpha(a) = r \cdot a$ for all $a \in A$. Again this proof works for endomorphisms as well as for automorphisms. Therefore we have

Lemma 33. Let A be a locally compact abelian p-group. Then for any scalar endomorphism α there is an $r \in \mathbb{Z}_p$ such that $\alpha(a) = r \cdot a$ for all $a \in A$. Accordingly, α is an automorphism iff $r \in \mathbb{Z}_p^{\times}$.

Finally, if $A = \prod_{p}^{\text{loc}}(A_p, C_p)$ is any periodic locally compact abelian group we observe that every closed subgroup H is of the form $\prod_{p}^{\text{loc}}(H_p, C_p \cap H_p)$, and so an endomorphism α of A is scalar iff every restriction α_p to A_p is scalar. If this is the case, then for every p there is an $r_p \in \mathbb{Z}_p$ such that $\alpha_p(a_p) = r_p \cdot a_p$ for all $a_p \in A_p$. So if $r = (r_p)_p$ in $\mathbb{Z} = \prod_p \mathbb{Z}_p$, for the scalar endomorphism α we have an $r \in \mathbb{Z}$ such that $\alpha(a) = r \cdot a$ for $a \in A$. Thus we have the following classification of scalar endomorphisms, justifying the nomenclature:

Proposition 34. Let A be a periodic locally compact abelian group and $\alpha: A \to A$ an endomorphism of locally compact abelian groups such that $\alpha(H) \subseteq H$ for all closed subgroups of A. Then there is an $r \in \mathbb{Z}$ such that $\alpha(a) = r \cdot a$ for all $a \in A$.

Definition 35. The group of scalar automorphisms of a locally compact group G is denoted by SAut(G).

If A is abelian and is written additively, then the subgroup

$${\operatorname{id}}_A, -\operatorname{id}_A \subseteq \operatorname{SAut}(A)$$

is said to consist of trivial scalar automorphisms. All other scalar automorphisms are called nontrivial.

Notice that we shall not only call the identity automorphism, but also the inversion automorphism " $-id_G$ " trivial.

For periodic locally compact abelian groups A we have seen in Proposition 34 that all scalar automorphisms are indeed scalar multiplications in the traditional sense (see [2], Proposition 4.15):

We topologize SAut(G) with the Braconnier topology (see [4, (26.3)]).

Proposition 36. Let the locally compact abelian group G be periodic. Then we have the following conclusions:

- (i) The natural map $\zeta: \widetilde{\mathbb{Z}}^{\times} \to \text{SAut}(G)$ (such that $\zeta(r)(g) = r \cdot g$) is surjective. In particular, SAut(G) is a profinite group and a homomorphic image of $\widetilde{\mathbb{Z}}^{\times}$.
- (ii) The subsequent two statements are equivalent:
 - (a) $\operatorname{SAut}(G) = {\operatorname{id}_G, -\operatorname{id}_G}.$
 - (b) The exponent of G is 2, 3, or 4.

Notably: The exponent of G is 2 if and only if $-id_G = id_G$.

Indeed, periodicity and the existence of nontrivial scalar multiplications are related as follows (see [2], Theorem 4.16):

Theorem 37. For a locally compact abelian group G, we consider the following statements:

- (i) G has nontrivial scalar automorphisms.
- (ii) G is periodic.

Then (i) implies (ii), and if G does not have exponent 2, 3, or 4, then both statements are equivalent.

The Sylow decomposition of SAut(G) is described in the following theorem (see [2], Theorem 4.17):

Theorem 38 (Mukhin, Theorem 2 in [6]). Let G be a locally compact abelian group written additively.

- (a) SAut(G) is a homomorphic image of $\widetilde{\mathbb{Z}}^{\times}$.
- (b) If G is not periodic, then $SAut(G) = \{id, -id\}.$
- (c) If G is periodic, then $\operatorname{SAut}(G) = \prod_p \operatorname{SAut}(G_p)$, where $\operatorname{SAut}(G_p)$ may be identified with the group of units of the ring $\mathcal{R}(G_p)$ of scalars of G_p , namely, $\mathcal{R}(G_p)^{\times}$ is isomorphic to

 $\begin{cases} \mathbb{Z}_p \times \mathbb{Z}(p-1), & \text{if } p > 2 \text{ and the exponent of } G_p \text{ is infinite,} \\ \mathbb{Z}(p^{m-1}) \times \mathbb{Z}(p-1), & \text{if } p > 2 \text{ and the exponent of } G_p \text{ is } p^m, \\ \mathbb{Z}_2 \times \mathbb{Z}(2), & \text{if } p = 2 \text{ and the exponent of } G_2 \text{ is infinite,} \\ \mathbb{Z}(2^{m-2}) \times \mathbb{Z}(2), & \text{if } p = 2 \text{ and the exponent of } G_2 \text{ is } 2^m > 2, \\ \{0\}, & \text{if } p = 2 \text{ and the exponent of } G_2 \text{ is } 2. \end{cases}$

(d) An $\alpha \in \operatorname{Aut}(G)$ is in $\operatorname{SAut}(G)$ iff there is a unit $z \in \widetilde{\mathbb{Z}}^{\times}$ such that

$$(\forall g \in G) \alpha(g) = z \cdot g = \prod_p z_p \cdot g_p \text{ for } z = \prod_p z_p, g = \prod_p g_p.$$

9. The prime graph of a periodic locally compact abelian group

Now let A be a periodic locally compact abelian group; the Sylow structure of SAut(A) is now easily discussed: The quotient morphism $\zeta: \mathbb{Z}^{\times} \to SAut(A)$ of Proposition 36, preserving the Sylow structures, and the structure of SAut(A) described so far in Theorem 38 allow a precise description of the Sylow structure of SAut(A).

We associate with A the bipartite graph $\mathcal{G}(A) = (U, V, \mathcal{E}(A), \lambda)$ with U and V as in the mastergraph and with

$$\mathcal{E}(A) = \{ e \in E : e = ((p,1), (q,0)) \text{ such that } SAut(A_q)_p \neq \{ id_A \} \},\$$

and for fixed p we let the cone \mathcal{E}_p peaking at p be the set of edges in \mathcal{E} emanating from (p, 1) and the funnel at q be the set of those edges terminating at (q, 0).

Let us define

$$S_e(A) := SAut(A_q)_p. \tag{35}$$

Finally, for $e \in \mathcal{E}(A)$ from p to q the label is

$$\lambda(e) = \begin{cases} 0, & \text{if } p = q, \\ \nu_p(q-1), & \text{if } p | (q-1). \end{cases}$$
(36)

Now let A be a periodic locally compact abelian group; the Sylow structure of SAut(A) is then easily discussed: The quotient morphism $\zeta: \mathbb{Z}^{\times} \to SAut(A)$ of Proposition 36, preserving the Sylow structures, and the structure of SAut(A) described so far in Theorem 38 allow a precise description of the Sylow structure of SAut(A).

Theorem 39 (The Sylow Structure of SAut(A)). Let A be a periodic locally compact abelian group and SAut(A) = $\prod_{p \in \pi} SAut(A)_p$ the p-primary decomposition of the profinite group $SAut(A) = \prod_{e \in \mathcal{E}(A)} \mathbb{S}_e$. Then

(i) The p-primary decomposition of $SAut(A_q)$ is (additive notation assumed)

$$\prod_{e \in \mathcal{F}_q} \mathrm{SAut}(A_q)_{p_e} = \prod_{e \in \mathcal{F}_q} \mathbb{S}_e(A),$$

(see Eq. 35) and this group is isomorphic, in case p = 2, to

$$\begin{cases} \{0\}, & \text{if } A_2 \text{ has exponent} \leq 2, \\ \mathbb{Z}(2^{r-2}) \oplus \mathbb{Z}(2), & \text{if } A_2 \text{ has finite exponent } 2^r > 2, \\ \mathbb{Z}_2 \oplus \mathbb{Z}(2), & \text{if } A_2 \text{ has infinite exponent,} \end{cases}$$

and in case p > 2, to

$$\begin{cases} \mathbb{Z}(q^{r-1}) \oplus \bigoplus_{e \in \mathcal{F}_q} \mathbb{Z}(p_e^{\lambda(e)}), & \text{if } A_q \text{ has finite exponent } q^r, \\ \mathbb{Z}_q \oplus \bigoplus_{e \in \mathcal{F}_q} \mathbb{Z}(p_e^{\lambda(e)}), & \text{if } A_q \text{ has infinite exponent.} \end{cases}$$

(ii) The structure of the p-primary component $SAut(A)_p$ of SAut(A) (in additive notation) is

$$\begin{split} \prod_{e \in \mathcal{E}_p} \left(\operatorname{SAut}(A_{q_e}) \right)_p &= \prod_{e \in \mathcal{E}_p} \mathbb{S}_e(A) \cong \\ \begin{cases} \prod_{e \in \mathcal{E}_p} \mathbb{Z}(2^{\lambda(e)}), & \text{if } p = 2 \text{ and } A_2 \text{ has exponent} \leq 2, \\ \mathbb{Z}(2^{r-2}) \oplus \mathbb{Z}(2) \oplus \prod_{e \in \mathcal{E}_p} \mathbb{Z}(2^{\lambda(e)}), & \text{if } p = 2 \text{ and } A_2 \text{ has fin. exp. } 2^r > 2, \\ \mathbb{Z}_2 \oplus \mathbb{Z}(2) \oplus \prod_{e \in \mathcal{E}_p} \mathbb{Z}(2^{\lambda(e)}), & \text{if } p = 2 \text{ and } A_2 \text{ has inf. exponent}, \\ \mathbb{Z}(p^{r-1}) \oplus \prod_{e \in \mathcal{E}_p} \mathbb{Z}(p_e^{\lambda(e)}), & \text{if } 2$$

10. An application

For easy reference we repeat the following definition from the introduction

Definition 40. If (G, A) is a pair consisting of a topological group G and a closed normal subgroup A, then we call it a *special extension of* A if G is a locally compact group and the equivalent conditions of Proposition 1 are satisfied.

We now prove the following result as an example of the methods we are proposing.

Theorem 41. Let (G, A) be a special extension of a periodic locally compact abelian group. Then for each sloping edge $e \in \mathcal{E}(G, A)$ from some p to some q, all of A_q consists of commutators. In particular, $A_q \subseteq G'$.

Proof. By definition the existence of a sloping edge e from (p, 1) to (q, 0) in $\mathcal{G}(A)$ we have p < q and there is a p-element $1 \neq g \in G_p$ acting nontrivially on A. Hence $1 \neq r = \rho(g) \in (\mathcal{R}(A_q)^{\times})_p$. By Theorem 38 we know that $(\mathcal{R}(A_q)^{\times})_p$ is a cyclic group of order $p^{\lambda(e)} = p^{\nu_p(q-1)}$.

We claim that 1 - r is a unit in the ring $\mathcal{R}(A_q)$ of scalars which is isomorphic to \mathbb{Z}_q or quotient ring thereof depending as A_q has infinite or finite exponent. By way of contradiction suppose that r - 1 is not a unit. Since $\mathbb{Z}_q^{\times} = \mathbb{Z}_q \setminus q\mathbb{Z}_q$, there is an element $u \in \mathcal{R}(A_q)$ such that 1 - r = qu. Then $r = 1 - qu \in 1 + q\mathcal{R}(A_q)$ which, according to the structure of \mathbb{Z}_q^{\times} in (4), respectively, of $\mathbb{Z}(q^m)^{\times}$ in (25), is the q-Sylow subgroup of $\mathcal{R}(A_q)^{\times}$. But r is a p-element with p < q and this is a contradiction.

Now let $a \in A_q$. For the purpose of this proof we write g additively. Then the commutator of g and a is $[g, a] = \rho(g)(a) - a = r \cdot a - a = (r - 1) \cdot a$. Since 1 - r is invertible, we set $b = (r - 1)^{-1} \cdot a \in A_q$ and obtain $a = \rho(g)(b) - b = gbg^{-1} - b = [g, b]$.

This shows that every element of A_q is a commutator and thus proves the theorem. \Box

Acknowledgement

We thank KARIN HALUPCZOK for valuable information concerning Dirichlet's Theorem. In February 2018, Karl Heinrich Hofmann and Linus Kramer stayed at the Mathematisches Forschungsinstitut Oberwolfach in the Program *Research in Pairs*, where essential portions of this text were written. We are indebted to the referees for their interest in our work and the constructive reports.

References

- [1] Ethan D. Bolker, Elementary Number Theory. An Algebraic Approach, W. A. Benjamin, Inc., New York, 1970, xi+180 pp.
- [2] W. Herfort, K.H. Hofmann, F.G. Russo, Locally Compact Periodic Groups, de Gruyter Studies in Mathematics, de Gruyter, Berlin, 2018, xii+321pp.
- [3] K.H. Hofmann, S.A. Morris, The Structure of Compact Groups, third edition, de Gruyter Studies in Mathematics, vol. 25, de Gruyter, Berlin, 2013, xxii, 924pp.
- [4] Edwin Hewitt, Kenneth A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der mathematischen Wissenschaften, vol. Bd. 115, Academic Press, Inc., Publishers, New York, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [5] K.H. Hofmann, F.G. Russo, Near Abelian profinite groups, Forum Math. 27 (2015) 647-698.
- [6] Ju.N. Muhin, Automorphisms that fix the closed subgroups of a topological group, Sib. Mat. Zh. 6 (1975) 1231–1239.
- [7] L. Ribes, P.A. Zalesskii, Profinite Groups, 40, second edition, Springer Ergebnisse, vol. 40, Springer, 2010, xvi, 404pp.